PREPROJECTIVE ALGEBRAS, DIFFERENTIAL OPERATORS
AND A CONZE EMBEDDING FOR DEFORMATIONS OF
KLEINTAN SINGULARITIES

WILLIAM CRAWLEY-BOEVEY

ABSTRACT. For any associative algebra A over a field K we define a family of
algebras IT* (A4) for A € K ®7Ko(A4). In case A is the path algebra of a quiver,
one recovers the deformed preprojective algebra introduced by M. P. Holland
and the author. In case A is the coordinate ring of a smooth curve, the
family includes the ring of differential operators for A and the coordinate ring
of the cotangent bundle for Spec A. In case A is quasi-free and Q14 is a
finitely generated A-A-bimodule we prove that HA(A) is well-behaved under
localization. We use this to prove a Conze embedding for deformations of
Kleinian singularities.

If K 1s an algebraically closed field of characteristic zero and T’ 1s a non-trivial
finite subgroup of SLy(K ) then the coordinate ring of the Kleinian singularity K2/T
has a family of deformations O* where A € Z(KT). They have been defined and
studied in work of M. P. Holland and the author [5]. If A has trace zero on the regular
representation of I', then ©O* is a commutative ring, and it occurs as the coordinate
ring of a fibre of the semi-universal deformation of K?/T'. On the other hand, if
A has nonzero trace on the regular representation, then 0% is a non-commutative
ring.

In this paper we construct an embedding ¥ : O©* — C, where v is the trace of
A on the regular representation of I', and C, = K{z,y | zy — yz = v). This is an
embedding of noetherian domains, and we show that it induces an isomorphism of
quotient division rings. In the commutative case C, 1s a polynomial ring in two
variables, so the embedding i1s a birational map from the affine plane to a defor-
mation of the Kleinian singularity. In the noncommutative case C), is isomorphic
to the first Weyl algebra, and the embedding is reminiscent of one constructed by
N. Conze [3]. We therefore call 45 a ‘Conze embedding’.

In the work of M. P. Holland and the author, the key 1dea for studying deforma-
tions of Kleinian singularities was to relate them to a new class of algebras which we
introduced, the ‘deformed preprojective algebras’ associated to quivers of extended
Dynkin type. In fact, in our earliest work we constructed Conze embeddings. By
divided into cases according to the different types of extended Dynkin quivers, we
constructed representations of the deformed preprojective algebras over C,. These
representations induce maps ©* — C,, and we used computer calculations to prove
that these maps are injective. Instead of publishing our work, we decided to wait for
a better understanding of deformed preprojective algebras, and a natural proof of
the existence of Conze embeddings. This paper is the result. Although M. P. Hol-
land is not explicitly an author of this paper, he has contributed a great deal to
it.

Let K be an arbitrary field. For any K-algebra A (associative, with 1), and
any element A € K @z Ko(A) we define an algebra II*(A4). It is equipped with a

1991 Mathematics Subject Classification. Primary 16G20; Secondary 16532.
Key words and phrases. preprojective algebra, quiver, quasi-free algebra, pseudoflat epimor-
phism, differential operator, Kleinian singularity, Conze embedding.

1



2 WILLIAM CRAWLEY-BOEVEY

homomorphism A — II*(A). Note that an element v € K determines the element

v @ [A] € K ®7 Ko(4), and for simplicity we write I1”(A) rather than M*®41(4).
For finite-dimensional hereditary algebras this definition generalizes the prepro-

jective algebras of Baer, Geigle and Lenzing [2], which we denote here by Izqr,(4).

Theorem 0.1. If A is finite-dimensional and hereditary then T°(A) = Igq.,(4).

Our next result relates the new definition to the original deformed preprojective
algebras of [5], which we denote here by Hg‘BH(Q), where @ is a quiver with vertex
set T and A € KT, We identify K! with K ©7Ko(KQ), with A € K7 corresponding
to the element

A= Z)\i ® [KQe;] € K @7 Ko(KQ)
i€l
(where e; is the trivial path at vertex 7).

Theorem 0.2. If Q is a quiver and A € K @7 Ko(KQ) then TN KQ) = Hg‘BH(Q)

Theorems 0.1 and 0.2 together imply that HMgan(KQ) = M2,.(Q). This has
been known for some time—it was explained to the author by C. M. Ringel—and
it was used implicitly in [5]. An alternative proof has recently been written up by
Ringel [13].

Theorem 0.2 includes as a special case the fact that for a polynomaial ring in one
variable, IT* (K [z]) = C,. It is this isomorphism which leads to the appearance of
C, in the Conze embedding. When K has characteristic zero, the algebra II' (K [z])
is the ring of differential operators for K[z]. This turns out to be no coincidence.

Indeed we prove the following result.

Theorem 0.3. If K s a field of characteristic zero and A is the coordinate ring of
a smooth affine curve over K, then II°(A) is the coordinate ring of the cotangent
bundle of Spec A and II'(A) is the ring of differential operators for A.

The first three theorems deal with examples of II*(A). We now turn to the
functorial properties of II*(A). In Section 5 we prove the following result.

Theorem 0.4. Suppose that e s an tdempotent in an algebra A with AeA = A. If
A € K@y Ko(ede), then TI* (eAe) = e(I1#(A))e, where u € K @3 Ko(A) corresponds
to A under the natural isomorphism Ko(ede) = Ko(4).

It follows that the algebras II*(A) are well-behaved under passage to matrix
rings and under Morita equivalence. For example if A and B are Morita-equivalent
algebras, and A € K ®z Kg(A4) corresponds to p € K ®z Ko(B), under the iso-
morphism Ko(A) = Ko(B), then II*(A) and II#(B) are Morita equivalent. In the
next section we show that the algebras I1*(A) are also well-behaved under direct
products.

According to Cuntz and Quillen [6], an algebra A is quasi-free if the kernel QA
of the multiplication map A ® A — A is a projective A-A-bimodule. Such algebras
are to be considered as coordinate rings of noncommutative manifolds. We say that
A is bimodule-finite if Q' A is a finitely generated bimodule. The following result is
perhaps already known to experts.

Proposition 0.5. An algebra A is bimodule-finite if and only if it has a finitely
generated subalgebra C, such that the inclusion C — A 15 a ring epimorphism.

It i1s easy to see that path algebras are both quasi-free and bimodule-finite.
Now any quasi-free algebra is hereditary, and over the complex numbers Cuntz
and Quillen observed that every finite-dimensional hereditary algebra is Morita
equivalent to a path algebra, so is quasi-free. In the general case, however, the
situation 1s slightly more complicated.
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Proposition 0.6. A finite-dimensional algebra A is quasi-free if and only if it is
hereditary and A/rad A is separable over K.

Our real reason for working in an abstract setting is in order to prove a local-
1zation theorem. For any ring homomorphism § : A — B, the functor B ®4 —
defines a homomorphism 8, : K ®z Kq(4) — K @z Ko(B). Following [1, §5], a ring
epimorphism A — B is said to be pseudoflat provided that Tor‘lq(B, B) = 0. See
[15, Theorem 4.8] for a number of equivalent conditions.

Theorem 0.7. If 8 : A — B is a pseudoflat epimorphism and A € K @z Ko(4)
then there is a natural map T (A) — T*(M(B). If A is a quasi-free bimodule-finite
algebra, then so is B, and the diagram

A — HA(A)

l !

B —— %*()(B)
15 a pushout in the category of rings.

Now suppose that @ is an extended Dynkin quiver with vertex set I, and for
simplicity suppose that K is an algebraically closed field. Let § € Z! be the
minimal positive imaginary root for ). By using universal localization one can
easily construct a pseudoflat epimorphism ¢ : A — My (K[z]) such that the general
representation of K@ of dimension vector § is the restriction of a My (K [z])-module.

(It follows that N = >°.6;.) If A € K ®7 Ko(KQ), by the theorem there is an
induced a pseudoflat epimorphism 6, from II* (K Q) to

%) (My (K [2])) = M (I (K [2])) = Mn (C,)

where in fact v = 3, A;6;. By using the representation theory of @ we prove the
following result.

Theorem 0.8. If (@ s an extended Dynkin quiver, K 1s an algebraically closed field
and A € K@3Ko(KQ) then TN (K Q) is a prime noetherian ring of Gelfand-Kirillov
dimension 2. Moreover 6, : TN KQ) — My(C,) is injective, and it induces an
isomorphism on simple artinian quotient rings.

In an appendix we use the methods of this paper to study the variety of repre-
sentations of I°(K Q) of dimension §.

We finally return to Kleinian singularities. Assume that K is algebraically closed
of characteristic zero, and let T be a finite subgroup of SLy(K). Let @ be an
orientation of the McKay quiver of T', and let 0 be an extending vertex. Recall that
there is an isomorphism O* = e,II* (K Q)eo, where A € Z(KT) is identified with
A € KT by letting A; be the trace of A on the ith irreducible representation of I'.
Here is the result mentioned at the start of the introduction.

Theorem 0.9. There is an embedding vy : O* — C, where v is the trace of X on
the reqular representation of I'. Moreover vy induces an isomorphism on guotient
diviston rings.

1. DEFINITION OF II*(A)

Let A be an algebra (associative, with 1) over a field K. Recall that A-A-
bimodules are the same as A®-modules, where A° = A ® A°?. (Unadorned tensor
products are always over the field K.) The universal derivation bimodule, or bimod-
ule of noncommutative differential 1-forms is the kernel QA of the multiplication
map A ® A — A. See for example [1] or [6].
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If M is an A-A-bimodule, we write Der(A4, M) for the space of derivations from
Ato M. Tt is isomorphic to Hom4<(Q' 4, M), a homomorphism 6 giving rise to the
derivation d with d(a) = (e ® 1 —1® a).

The space Der(A4, A ® A) becomes an A-A-bimodule via adb = (rpy ® £,)d where
£y,7p : A — A denote left multiplication by a and right multiplication by b respec-
tively. We write A (or Ay4) for the derivation A — A®x A with A(a) = a®@1—1®a.

If M 1s an A-A-bimodule we write T4 M for the tensor algebra of M over A.
For any a € A we define II1*(A4) = T4 Der(A, A® A)/(A — a). We consider it as an
A-ring, that is, as an algebra equipped with homomorphism A — II*(A4). We have
the following elementary results.

Lemma 1.1. If u is ¢ unit in the centre of A and a € A, then II*(A) = II**(4).

Proof. Multiplication on the left by 4! induces an automorphism of the bimodule
Der(A4, A ® A), and hence there is an algebra automorphism of T4 Der(4, A ® A)
which is the identity on A, but sends A to u~'A. Under this automorphism the
ideal (A — a) is sent to (u™!A — a) = (A — wa). O

Lemma 1.2. Up to isomorphism I1*(A) depends only on the image of a in Ho(4) =
A/lA, A].

Proof. Write M = Der(A, A ® A). Given b,c € A, it suffices to construct an
automorphism of T4 M sending A — a to A — a + [b, ¢]. By the universal property
of tensor algebras, the homomorphisms § : T4 M — T4 M which are the identity
on A are in 1-1 correspondence with A-A-bimodule maps M — T4 M. Taking the
bimodule map sending d to d + ), y;cz;, where #; and y; are defined by d(b) =
>, % @y, it is clear that the resulting homomorphism 6 is an automorphism, and

that (A —a) = A —a+ [b, c], as required. O

Let tr : Ko(A) — Ho(A4) = A/[A, A] be the trace map, sending the class of
a projective module P to the image in A/[A, A] of the trace of any idempotent
e € M, (4) with image isomorphic to P. This map extends to a linear map K @z
Ko(A4) — Ho(A4) also denoted tr.

Definition 1.3. If A € K ®7 Kq(4) then
M*(A) = I*(A) = T4 Der(4, A ® A)/(A — ay)
where ay is any lift of tr(}) to A.

The previous lemma shows that II*(A4) does not depend on the choice of ay. If
a,b € A then aAb is the derivation with (aAb)(z) = 2b @ a — b ® az for z € A.
Thus the A-A-sub-bimodule of Der(4, A ® A) generated by A is the set of inner
derivations. Therefore Der(A, A®A)/AAA = H'(A, A® A), which has the following

consequence.
Lemma 1.4. I°A = T,4H(A4, A® A).

Any tensor algebra T4 M is naturally graded, with (T 4 M), being the nth tensor
power of M. Thus the lemma gives a grading of II°(A4). On the other hand the
algebra II%(A) is filtered

I*(A)<o € I*(4) <1 € ()2 C ...,

where I1*(A)<,, is the image in II*(A) of EZL:O(TA Der(A4, A ® A));. As usual one
can consider the associated graded algebra grII®(A4), and there is the following
result.

Lemma 1.5. There is a natural surjective graded algebra map II°(A) — grII%(A).
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Proof. An algebra homomorphism ¢ : II°(A) — grII*(4) is determined by an
algebra homomorphism A — II%(A)<, which we take to be the natural map, and
an A-A-bimodule map g : H' (4, A® A) — (gr I%(A));. For ¢ to be surjective, we
need g to be surjective, so it suffices to show that (gr II*(4)); is naturally a quotient
of HY(A4, A ® A). Now by definition (grII*(A4)); = (A @ Der(4, A® A))/S, where
S=A+IN(A® Der(4,A® A)) and I is the ideal (A —a) in T4 Der(4, A ® A).
The result follows since S contains A ¢ AAA. O

2. FINITE-DIMENSIONAL HEREDITARY ALGEBRAS
Let D be the duality Homg (—, K).

Lemma 2.1. For any algebra A there is a natural isomorphism Ext}q(DY,X) =
HY (A, X @Y) for X and Y left A-modules, with Y finite-dimensional.

Proof. Tensoring the defining sequence for Q'A with DY one obtains an exact
sequence
0—-Q'A®4 DY - A® DY — DY — 0.
Since A ® DY 1s projective, if X is a left A-module one obtains
.- — Homyu(A ® DY, X) — Homyu(Q'A®4 DY, X) — Exti(DY,X) — 0.

Now Hom4 (!4 ©4 DY, X) can be identified with Homu:(Q'4, X © Y), so with
Der(4,X ®@Y). Also we can identify Hom4 (4 ® DY, X) with Y ® X, and then the
map Y ® X — Der(A4,X ®Y) sends an element of Y ® X to the corresponding
inner derivation. O

Lemma 2.2. If A is a finite-dimenstonal hereditary algebra then there is a natural

isomorphism Ext' (DA, X) = H'(4,A® A) @4 X for X a left A-module.

Proof. Since A is hereditary the functor Extl(DA, —) is right exact. Since it also
commutes with direct limits it is naturally isomorphic to the tensor product functor

Ext' (DA, A) ©4 —. O

If A is a finite-dimensional hereditary algebra then the inverse Auslander-Reiten
translation is the functor 7= defined by 7~ (X) = Ext'(DA, X). The algebra
Mean(4) of [2, §3] is

P Homa (4, 77" (4)),

with the product defined by uv = 77" (u) o v for elements u € Homy (4, 77™(4))
and v € Homu (4, 77™(4)).

Theorem 2.3. If A is finite-dimensional and hereditary then T°(A) = Ilzqy,(4).
Proof. Combine Lemmas 1.4 and 2.2 with [2, Proposition 3.1]. O

3. DEFORMED PREPROJECTIVE ALGEBRAS

Let @ be a quiver with vertex set I and let K@) be its path algebra. Let e; € K@
be the trivial path at vertex i. Recall that K7’ is identified with K @7 Ko(K @),
with XA € K7 corresponding to the element

A=A [KQe] € K 91 Ko(KQ).
i€l
Let @ be the quiver obtained from @ by adjoining an arrow a* : j — 4 for each
arrow a : i — j in Q. The next result shows that I*(K Q) coincides with the

deformed preprojective algebra Hg‘BH(Q) of [5].
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Theorem 3.1. If A € K @3 Ko(KQ) then TNKQ) = KQ/J where J is the ideal
generated by EaEQ[a" a*] = ier Aiei

Proof. There is a standard projective resolution of K@) as a K@Q-K @-bimodule

0~ P Ker®eiKQL@KQei®eiKQﬂ>KQ—>O
a:1—JinQ i€l
where f sends (e; ® e;), to (&5 ® a); — (a ® e;);. Identifying

KQ®KQ= (P KQe, ©,KQ,

r,sel

one obtains an exact sequence

(1)
0— P KQe; ©eKQ & (PEQe, © e, KQ £ KQ® KQ =l gQ 0,
ait—j r#s
where g sends (e; @ ¢;)s to e; @ a—a@e; and (e, @ e,)ys to €, D e;.

If M is a KQ-KQ-bimodule, then Homgge(KQe; ® ¢; KQ, M) = e;Me;, so if
M = KQ ® KQ the Hom space is isomorphic to e; K@ @ KQe;. Now this tensor
product is over K, so one can swap the order of the terms and write KQe; ®e; KQ.
By doing this, one clearly sees the K @-K @-bimodule structure of this space.

Now the left hand term of the exact sequence (1) is Q' K@, and computing its
homomorphisms to KQ ® K one obtains

Der(KQ,KQ® KQ)= (P KQe; © e, KQ & P KQe. @ e, KQ.
ait—j r#s

Thus Trgg Der(KQ, KQ ® KQ) is identified with the path algebra of the quiver @
obtained from @ by adding an arrow ¢,, : # — s for each pair of vertices r # s.
Also A corresponds to the map g, so to the element

Z (a@ej —e;@a)e+ Z(es @ € )ps-
ai—j r#s
Now with the identification of K™ and K @7 Ko(K @), the element )", Aje; is a lift
to KQ of tr()) € KQ/[KQ, KQ]. Thus T KQ) = K@/({) where
&= Z (aa™ —a*a) + ZC” — Z)\iei.
ai—j r#s i
Clearly the ideal generated by ¢ is also generated by the elements ), e;€e; with

t € I and e;€e, with 7 £ s. These are ZaEQ[a" a*] =", Xie; and c,, respectively.
The result follows. (|

The path algebra of the quiver with one vertex and one loop is a polynomial ring
K|[z], so we have the following special case.

Corollary 3.2. Ifv € K then II"(K|[z]) = K{z,y | zy — yz = v).

4. DIFFERENTIAL OPERATORS ON CURVES

Throughout this section A4 is the coordinate ring of a smooth affine curve. Thus
1t 1s a commutative domain, finitely generated over K, of Krull dimension 1, and
1t 1s smooth over K, so for any commutative K-algebra C' and any ideal [ in
C with I? = 0, any K-algebra homomorphism A — C/I lifts to a K-algebra
homomorphism A — C. A suitable reference for smooth algebras is [10, §§25-30].
The following result is due to Schelter [14] (at least when K is algebraically closed).

Lemma 4.1. QA is a rank 1 projective A®-module. Thus A is quasi-free.
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Proof. Since A is smooth over K, so 1s A®, so for any maximal ideal m of A°® the
localization (A®)y is regular of dimension 2. Localizing the defining sequence for
QLA at m gives an exact sequence

0— (Q'A)m — (A%)m — A @4e (A%)m — 0,

and it suffices to prove that the ideal (' A)n of (A®)y is projective. This is certainly
true if m doesn’t contain Q! A, for then some element of Q' A4 is invertible in (A¢)n,
$0 (21 A)m = (A%)m. Thus suppose that m contains Q' 4, so m is the inverse image
under the multiplication map A®* — A of a maximal ideal n of A. This implies that
A®@pe (A%)m =2 Ay. Now if a is a nonzero element of n then 1 ® a € m and since
1®a acts as a non zero-divisor on A,, the (A°)y-module A, has depth at least 1. Tt
follows that it has projective dimension at most 1, so that (2! A)y, is projective. O

Since A° 1s commutative, any Hom space between A-A-bimodules is naturally
an A-A-bimodule. In particular Der(A, M) = Homy<(Q! A, M) is an A-A-bimodule
for any M.

Lemma 4.2. Der(A,Q'A) is a free A-A-bimodule generated by A.
Proof. 1t 1s the endomorphism ring of a rank 1 projective A®-module. O

Applying Homg(Q' 4, —) to the defining sequence for ' A, we obtain a sequence
0 — Der(4,Q'4) — Der(4,A® A) — Der(4, 4A) — 0

so by the previous lemma H'(A, A ® A) is naturally isomorphic to Der(A4, A4). Now
Der(A4, A) is a rank 1 projective A-module, so its tensor algebra over A coincides
with its symmetric algebra, and we have the following result.

Theorem 4.3. TI°(A) is isomorphic to the coordinate ring K[T* Spec A] of the
cotangent bundle of Spec A.

We now investigate the relationship between II'(A) and differential operators.
Let D(A) be the ring of differential operators for A. Elements of A are identified
with the differential operators of order 0, with @ € A corresponding to the homo-
thety alds. We write D<q(A) for the set of differential operators of order < 1. Tt
becomes an A-A-bimodule by composition of maps, and there is an exact sequence
of A-A-bimodules

0— A— Dc<i(A) L Der(A, A) — 0

where g sends a differential operator d to d — d(1)Id4. Note that Der(A4,4) is a
subspace of D<1(A) complementary to AIdy4, but it is not a sub-bimodule.
Lemma 4.4. The evaluation map A ® Der(A, A) — A s surjective.

Proof. If a € A and h € Homy<(Q A, A) then since A is commutative, the assign-
ment d(z) = h(az ® 1 — a ® z) defines a derivation A — A. Now the assertion
follows since firstly Q' A is generated as a left A-module by elements of the form
z®1—1® ez, and secondly the natural map

Q'A @4 Homae(Q1A, A) — A
is an isomorphism (since (' A is a rank 1 projective A°-module). O

Lemma 4.5. Aldy is a superfluous A-A-sub-bimodule of D<1(A). That is, of M
is an A-A-sub-bimodule of D<1(A) and M + Aldg = D<1(A), then M = D<1(A).

Proof. By assumption any derivation d € Der(A4, A) can be written as the sum of an
element m € M and a homothety aId4. Now if z € A then d(z)y = d(zy) — zd(y)
for y € A, so

d(z)Idg =do(zldg) — (zldg)od=mo(zlds) — (zIds) om € M.
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Thus AIdy C M by the previous lemma. O

Lemma 4.6. There are surjective bimodule maps 6, ¢ giving rise to a commutative
diagram with exact rows

0 — Der(4,Q0'A) —— Der(A, A® A) —— Der(4,4) —— 0

ls I |
0 —— A — D<1(4) 7, Der(4,4) —— 0

Proof. Since Der(4, A® A) is a projective bimodule, the map from Der(4, A ® A)
to Der(4, A) lifts to a map 6. Now 6 is surjective since AIdy is superfluous in

D<1(A). The result follows. O

Theorem 4.7. If K has characteristic zero and A 1is the coordinate ring of a
smooth affine curve, then II'(A) is isomorphic to the ring D(A) of differential
operators for A.

Proof. Since the map ¢ in Lemma 4.6 is surjective and Der(4, Q' 4) is generated
by A, the element u = ¢(A) must be a unit in A. Now # induces a homomorphism
¥ II*(A) — D(A) of filtered rings, and there is a commutative square

°(4) —— KJ[T* Spec 4]

l l

grl*(4) =% grD(4)
where the top map 1s the isomorphism of Theorem 4.3, the left hand vertical map
1s as in Lemma 1.5, and the right hand vertical map is the natural isomorphism
resulting from the fact that A is smooth and K has characteristic zero. It follows

that gre) is an isomorphism, and then the result follows since II'(A) = II*(A) by
Lemma 1.1. O

5. MORITA EQUIVALENCE

In this section A is an algebra and e € A is an idempotent with Aded = A, so
that A is Morita equivalent to eAe. We define f =1 —e.

Lemma 5.1. If M s an A-A-bimodule, then the assignment sending d to the map
a — ed(a)e induces a surjective linear map Der(A, M) — Der(ede,eMe) whose
kernel s the set of inner derwations a — am —ma withm € fMe DeMf® fMf.

Proof. Let X = (Af @ eA) ® (Ae ® fA) ® (Af ® fA). Since AeA = A, it follows
that A® A = QYA+ Ae @ eA. Thus the projection 4 ® A — X induces an exact
sequence

0> QANde®ed - QLA - X — 0.

This is split exact since X 1s a projective bimodule, so it induces an exact sequence
0 — Homy (X, M) 4, Homgu.(Q 4, M) 2, Homg.(Q'(4) N Ae ® eA, M) — 0.

Now e (Ql(A) N Ae® eA) e = Q'(eAe), so by Morita equivalence the last term can
be identified with the space of eAe-eAe-bimodule homomorphisms from Q!(eAe)
to eMe, and hence with Der(ede,eMe). Identifying also the middle term with
Der(A, M), the map ¢ is as stated. Now the left hand term is isomorphic to
fMePDeMf® fMf, and the map 6 sends an element m of this direct sum to the
inner derivation a +— am — ma, as required. O
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Lemma 5.2. If J is the A-A-sub-bimodule of Der(A, A ® A) generated by eAf,
fAe and fAf, and L = Der(A, A® A)/J, then there is an isomorphism of eAe-

eAe-bimodules
eLe — Der(ede,ede @ eAe)
sending ele to A, 4.

Proof. One can identify e Der(A, A® A)e with Der(4, Ae®eA), and then the lemma
follows from the previous one. O

There are inverse isomorphisms between Kg(eAe) and Ky(A) induced by the
functors P — Ae ®.4. P and @ — e@ on projective modules. This enables one to

identify K @z Ko(ede) and K @z Ko(4).

Theorem 5.3. If A € K @z Ko(eAe) then II*(eAe) = e(TI#(A))e, where u is the
corresponding element of K ®z Ko(A).

Proof. Tt suffices to show that II%(ede) = e(II*A)e for a € ede, as there is a
commutative square
K ®y Ko(eAe) — K ®y Ko(A)

4
ede/[ede ede] —— A/J[A, A

where 7 1s induced by the inclusion of ede in A, and the top map is the bijection
mentioned above. Now

I%(A) = (T4 Der(4,A® A))/(A —a)

= (TaDer(A, A® A))/(eAf, fAe, fAf, eAe — a)

=~ TyL/(eAe — a)
where L is as in the previous lemma. Thus

ell*(A)e = e[TaL/(eAe — a)le = e(T4L)e/(eAe — a)
= TeAe(eLe)/(eZe —a) 2 I%(ede)
by the previous lemma. O
If A and B are Morita-equivalent algebras, then there is an equivalence from

the category of left A-modules to the category of left B-modules. This induces a

bijection from K ®z Ko(4) to K ®zKo(B). In particular this applies to the algebras
A and M,,(4).

Corollary 5.4. If A € K @7 Ko(M,,(4)) then T*(M,(4)) = M, (TI#(A)) where p
1s the corresponding element of K ®z Ko(4).

Proof. The matrix units e;; (1 < 4,j < n) for M,(4) induce matrix units in
(M, (A)). Thus I*(M,(4)) = M, (R) where R = e1;1I*(M,,(A4))e11, and then
R = TI*(A) by the theorem. O

Corollary 5.5. If A and B are Morita-equivalent algebras, and A € K @z Ko(4)
corresponds to p € K @z Ko(B), then I*(A) and II*(B) are Morita equivalent.

Proof. Tt suffices to prove this in two cases, when B = M, (A), and when B = eAe
with e an idempotent with Ae A = A; see for example [11, Proposition 3.5.6]. The
first corollary deals with the case of a matrix ring. The theorem deals with the
other case, for e is an idempotent in IT*(A) with TI*(A)eII*(A4) = TI*(A4), so that
II*(A) is Morita equivalent to elI*(A)e = TI#(eAe). O
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6. ProDUCTS

In this section we suppose that A decomposes as a direct product of two algebras,
A = Bx(C. Weidentify B and C as subsets of A with A = B®C and BC = CB = 0.
This leads to a decomposition 1 = e+ f with e € B and f € C idempotents. There
is a natural isomorphism Kq(4) = Kq(B) x Ko(C), and if A € K ®z Kq(B) and
p € K @7 Ko(C) we write (X, ) for the corresponding element of K ®z Kq(4). We
prove that TI(M#)(4) = T (B) x I*(C).

Lemma 6.1. If I is the A-A-sub-bimodule of Der(A, A® A) generated by eAf and
fAe then there 1s an isomorphism

Der(A, A® A)/I = Der(B, B ® B) @ Der(C,C @ C)
with e ge corresponding to Ag and fA4f corresponding to Ac
Proof. Clearly Der(B, B ® B) @ Der(C,C ® C) can be identified with

D = {d € Der(4,A® A) | d(e) = 0},

so 1t suffices to prove that D and I are complementary. Now I consists of all
inner derivations of the form s(a) = a(p+ ¢) — (p + ¢)a with p € eA ® Af and
g € fA® Ae, and since s(e) = ¢ — p, it follows that D NI = 0. On the other
hand, if d : A — A® A 1s any derivation then the fact that e is idempotent implies
that d(e) € eA® Af & fA ® Ae. Thus there is an inner derivation d' € I with
(d+d')(e) = 0. It follows that D 4+ I = Der(4, A ® A). O

Theorem 6.2. If A= B x C, A € K @z Ko(B), p € K @z Ko(C), and (A, pu) s
the corresponding element of K @7 Ko(A), then TN (A) = TTN(B) x T#(C).

Proof. Tt suffices to prove that if & € A then IT?(A) = II*(B) x I (C) where u = eae
and v = faf. Now

%(A) = T4 Der(4, A2 A)/(A —u—v)
=TaDer(4,A® A)/(eAf, fAe,eNe —u, fAf —v)
= T4[Der(B, B ® B)®Der(C,C @ C)]/(Aeac — u,Asas —v)

by the previous lemma. Now this last tensor algebra is isomorphic to
Tpg Der(B, B® B) x T¢ Der(C,C @ C),
and the result follows. O

7. BIMODULE-FINITE ALGEBRAS

Lemma 7.1. If A — B s a ming epimorphism then there is an eract sequence of
B-B-bimodules 0 — Torf(B,B) — BRsa QA®4s B — Q'B - 0. Thus if A is
bimodule-finite then so 1s B.

Proof. Take the defining exact sequence for Q' A and tensor each side with B. Now
use the fact that multiplication induces an isomorphism B ®4 B — B. O

There is the following obvious consequence.

Lemma 7.2. If A — B is a pseudoflat ring epimorphism then Q' B is isomorphic
to B®a QL A®4 B. Thus if A is quasi-free then so is B.

Proposition 7.3. An algebra A is bimodule-finite if and only if it has a finitely
generated subalgebra C, such that the inclusion C — A 15 a ring epimorphism.
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Proof. If there is such a subalgebra C then Q'C is known to be finitely generated
(see for example [1]), and the short exact sequence of Lemma 7.1 shows that Q1A
is finitely generated. For the converse, choose generators of Q' A, and choose a
finitely generated subalgebra C sufficiently large so that the generators all lie in
C®C CA®A. Now there is a commutative diagram with exact rows

AcNCoOc A —— AQA —— A®c A —— 0

d H /|

0 —— QLA — AQA —— A — 0.

By construction f is surjective, and it follows that g 1s injective. In other words
the inclusion C — A is a ring epimorphism. O

8. FINITE-DIMENSIONAL QUASI-FREE ALGEBRAS

Lemma 8.1. Let M be an A-A-bimodule which s flat as a right A-module. If
M ®4 X 1is flat for all left A-modules X, then Torfe(X @Y, M) = 0 for all left
A-modules X and right A-modules Y.

Proof. Fix an exact sequence 0 — L — P — M — 0 with P a projective A-A-
bimodule. Tensoring first with X and then with Y, the hypotheses imply that the
tensor product sequence

0 =Y RaLOaX =2YR4POAX>YR4AM®sX—0
1s exact. But this sequence is identified with the sequence
05 (XQ®Y)®4e L - (X QY )4 P> (X QRY)®@upe M —0
so Tor (X @ Y, M) = 0. m

Lemma 8.2. Suppose that A is a finite-dimensional algebra, and that A/rad A s
separable over K. Let M be an A-A-bimodule which is projective as a right A-
module. If M ® 4 X 1s projective for any left A-module X, then M 1is a projective
bimodule.

Proof. Since rad A 1s nilpotent, every simple A-A-bimodule occurs as a compo-
sition factor of (A/rad A) @ (A/rad A), and the separability hypothesis implies
that (A/rad A) ® (A/rad A) is semisimple. The previous lemma now shows that
Tor‘lqe (5,M) = 0 for all simple A®-modules S. Since A® is finite-dimensional, it
follows that M is a projective A®-module. O

Lemma 8.3. If A and B are finite-dimensional self-injective algebras, then so is

A® B.

Proof. If D is duality with the field, then D(A) is a projective A-module and D(B)
is a projective B-module. Now the isomorphism D(A ® B) = D(A) ® D(B) shows
that D(A ® B) is a projective A ® B-module, so A ® B is self-injective. O

Lemma 8.4. If A is a finite-dimenstonal self-injective algebra then every A-module
1s either projective, or has infinite projective dimension.

Proof. Looking at the last two terms in the minimal projective resolution of a
module of finite projective dimension, there must be an injection of one projective
into another which is not split. This 1s impossible if all projective modules are
injective. O

Proposition 8.5. A finite-dimensional algebra A is quasi-free if and only if it is
hereditary and A/rad A is separable over K.
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Proof. If A is hereditary, the bimodule Q' A satisfies the hypotheses of Lemma 8.2.
Thus if A/rad A is separable over K then Q!4 is a projective bimodule, so A is
quasi-free.

Now suppose that A is quasi-free. Certainly this implies that A is hereditary.
Let S be a simple A-module, and let B be the corresponding simple factor of
A/rad A. Since A is hereditary, its Gabriel quiver has no oriented cycles (since any
nonzero map between indecomposable projectives must be injective). It follows
that Extfq(S, S) = 0. Now the projection A — B is a pseudoflat epimorphism by
[15, Theorem 4.8], since the the restriction to A of any B-module is isomorphic to
a direct sum of copies of S. Thus B is quasi-free, so B has projective dimension
< 1 as a B°-module. Now B° is self-injective by Lemma 8.3, so actually B is a
projective module. Thus B is separable. Repeating for each simple A-module it

follows that A/rad A is separable. O

9. LOCALIZATION

Lemma 9.1. If6 : A — B is a pseudoflat epimorphism and M is a B-B-bimodule,
then restriction induces an bijection Der(B, M) — Der(4, M).

Proof. We have 1somorphisms
Homp-(Q'B, M) = Homp: (B ©4 Q' A ©4 B, M) = Hom.(Q* 4, M)
using Lemma 7.2. O

Lemma 9.2. If0: A — B is a pseudoflat epimorphism and A € K @z Ko(A) then
there is a natural homomorphism T (A) — T%(M(B). Moreover the diagram

A — HA(A)

l !

B —— %*()(B)
commutes.

Proof. The question of naturality is slightly delicate, since the definition of II*(A)
depends on the choice of a lift of tr(A) to A, and for the homomorphism from
A (A4) to HG*O‘)(B) one should choose compatible lifts. The map ¢ induces a map
6:AJ[A, A] — B/[B, B)], and the square

K 95 Ko(4) —=— K @5 Ko(B)

| |

AJ[A, 4 —°— BJ[B,B]

commutes. If a is a lift to A of tr(A) we use 8(a) as a lift of 6,(A). Thus it suffices
to construct a natural map I1%(A) — I1%®)(B). Now there is a natural map

Der(A, A® A) — Der(A4, B ® B) = Der(B, B ® B)

which is in fact a homomorphism of A-A-bimodules, and 1t sends A4 to Ag. Com-
bining this with the algebra map A — B one obtains an algebra map

T4 Der(A,A® A) — Tg Der(B, B ® B).

This map sends A4 to Ap and a to 6(a). The result follows. O
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Theorem 9.3. Suppose that 8§ : A — B 1s a pseudoflat epimorphism and that
A€ K®zKo(4). If A ts a quasi-free bimodule-finite algebra, then so is B, and the
diagram

A — HA(A)

l !

B —— M%M)(B)
15 a pushout in the category of rings.

Proof. We have B ©4 Homye(Q'A, A® A)©4 B = Homu:(Q' A, B® B) since Q14
1s a finitely generated projective A-A-bimodule. Thus the induced map

B®4 Der(A, A® A) ®4 B — Der(B,B ® B)

1s an 1isomorphism of B-B-bimodules, sending 1 ® A4 ® 1 to Ap. Let a be a lift of
tr(A) to A. Since IT*(A4) = (T4 Der(4,A® A))/(A4 — a), the pushout of A — B
and A — II*(A4) is isomorphic to

TB(B X a DeI‘(A,A@A) X4 B)/(l QALgR1— G(a)),

and this is isomorphic to I°~(*)(B). O

Corollary 9.4. Under the hypotheses of the theorem, the map I (A) — T¥+(M)(B)
15 a pseudoflat epimorphism.

Proof. Use [1, Proposition 5.2]. O

We shall also need one further observation.

Corollary 9.5. Under the hypotheses of the theorem, the map T (A) — TI¥+(M)(B)
preserves filtrations, that is it sends II*(A4)<,, into He*o‘)(B)Sn for alln. Moreover,
1t induces a commutative square

n°4) —— 1%B)

! l

grI*(4) —— gr®~(M)(B).

One of the main examples of a pseudoflat epimorphism is given by universal
localization, see [1]. Here we consider just the special case arising from perpendic-
ular categories. If A is hereditary and X is a collection of finitely presented left
A-modules, then the perpendicular category X+ is the category of modules M with
Homy (X, M) = Ext' (X, M) = 0 for all X € X. Considering the universal localiza-
tion of A with respect to projective presentations of the modules in X, one obtains
a pseudoflat epimorphism A — Ay with the property that restriction induces an
equivalence between the category of left Ax-modules and X*. The theorem now
implies the following.

Corollary 9.6. Suppose that A s quasi-free and bimodule-finite and A € K ®g
Ko(A). If X is a collection of finitely presented left A-modules and 6 : A — Ax
1s the corresponding universal localization, then restriction via the natural map
induces an equivalence from the category of He*(k)(Ax)-modules to the category of
II* (A)-modules whose restriction to A is in X1.
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10. MODULE VARIETIES

Let K be an algebraically closed field, let A be a finitely generated K-algebra
and let e; (4 € I) be a complete set of orthogonal idempotents, so e;e; = 0 for
i#jand Y e = 1. If « € NY, we write Rep(4, @) for the variety of A-module
structures on K* = @, K under which each e; acts as projection onto the ith
summand. Thus Rep(4, «) consists of all algebra maps 4 — Endg (K %) sending
e; to the projection onto K**. Elements of Rep(4, ) are representations of A of
dimension vector a. The group GL(«) = [[; GL(«;) acts naturally on this variety,
and the orbits correspond to isomorphism classes of representations. The stabilizer
of a representation X can be identified with the automorphism group of X. It
follows that the orbit of X has dimension ), & — dimEnd(X).

Lemma 10.1. If 8 < « then the set of elements of Rep(A, ) such that the corre-
sponding representation has o subrepresentation of dimension vector 3, is closed.

Proof. It is the image of a closed set under the projection Rep(4,a) x P —
Rep(4, a), where P is the product of Grassmannians of subspaces of dimension g;
in K*. Now use the fact that P is a projective variety. See [16, Lemma 3.1]. O

We write Rep(4, ), for the GL(«)-stable subset consisting of simple A-modules.
By the lemma it 1s open.

Lemma 10.2. If A s a finitely generated K-algebra of GK dimension d, then for
any o we have dimRep(4,a), <>, a? +d— 1.

Proof. Passing to the quotient of A by the intersection of the annihilators of all
simple representations of dimension vector «, we may suppose that A is a semiprime
PI ring, satisfying the identities of N x N matrices, where N = >~ . o;. By [11,
Theorem 13.4.4], A has only finitely many minimal prime ideals, so we may assume
that it is prime. By [11, Proposition 13.7.4] there is a central localization A, which
1s an Azumaya algebra. Now each simple A-module is either an A.-module, or an
A/(c)-module, so by an induction we reduce to the case when A is an Azumaya
algebra, say with centre 7.

Now there is a natural map f : Rep(4, «); — maxspec Z sending a simple A-
module to its central character. For, Z is finitely generated by [11, Lemma 13.9.10],
and if zq, .. ., 2, are generators, they identify maxspec Z with a closed subset of K7.
Now if N = 3. ; then Endg (K*) = My (K), andif 6 : A — My (K) is an element
of Rep(4, «); then the map z — 6(z)11 is the central character of §. Thus we can
define f by sending 6 to (#(z1)11,...,0(2x)11) € K.

Now each fibre of f meets only finitely many GL(«)-orbits, and each orbit has
dimension ) ; @Z — 1. The result follows since Z has Krull dimension at most d. [J

Now let @ be a quiver with vertex set I and let @ € NY. Clearly Rep(KQ, «)
can be identified with the affine space

P Homg (K>, K*7).

ait—j
Also, by Section 3 and [5], one can identify Rep(II°(KQ), ) with the fibre over 0
of the moment map

p:Rep(KQ,a) — End(a)y, =z Z[:ca, Tar],
aEQR
where End(a) = [[, End(X*) and End(a)o = {(6;) € End(a) | >, tr(6;) = 0}.
Recall that a module M is called a brick if End(M) = K.

Lemma 10.3. The map p s smooth at a point = € Rep(K@, a) if and only if the
corresponding module 1s ¢ brick.
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Proof. 1dentifying Rep(K@, @) and End(a), with their tangent spaces at z and
p(z) respectively, p induces the map

dpe ReP(KG, a) - End(a)o, Yy Z([fcay Yar| + [Ya, fca*])~
aEQR
Now if D 1s duality with the field, there is a trace pairing which identifies the vector
spaces D(Rep(K @, «)) = Rep(K @, @) (with arrows a and a* being interchanged),
and identifies D(End(a)o) = End(a)/K. Then D(du,) is the map

End(a)/K — Rep(KQ, «),

(gz) = Z ((gjfca - :cagi)a* + (:ca* 9] - gifca*)a)y
ai—jEQ
so if X is the II°( K Q)-module corresponding to z, then Ker D(dpy) = End(X)/K.
Now X is a brick if and only if D(du,) is injective, so if and only if p is smooth
at z. O

Now let () be an extended Dynkin quiver and let § be the minimal positive
imaginary root for Q.

Lemma 10.4. The restriction map 7 : Rep(I°(KQ),5) — Rep(KQ,§) is onto,
and the fibre over a point ¢ € Rep(KQ, 8) is irreductble of dimension dim End(X),
where X 1s the K@Q-module corresponding x.

Proof. The fibre over z is isomorphic to the fibre ¢=1(0) in [5, Lemma 4.2], so it is
1somorphic to D Extl(X, X). Now since X has dimension § the Ringel form implies
that this has dimension dim End(X). O

Lemma 10.5. The variety Rep(II°(KQ), ) is irreducible and Cohen-Macaulay of
dimension 1 + 5. 62, and the general element is a simple II°(K Q)-module. More-
over, if Rep(II°(KQ), §) is considered as a scheme using the natural scheme struc-
ture on the fibre p=1(0), then it 1s reduced.

Proof. Equip Rep(II°(KQ),$) with the scheme structure. The argument of [5,
Lemma 8.3] shows that Rep(II°(K Q), §) is irreducible of dimension 145, 62, hence
a complete intersection, so Cohen-Macaulay.

Supposing that the general element 1s not simple, 1t follows from the irreducibility
and Lemma 10.1 that there is 0 < 8 < §é such that every I°(KQ)-module of
dimension é has a subrepresentation of dimension 3. Now any K @-module of
dimension § can be considered trivially as a II°(K@)-module, so has a submodule
of dimension #. Similarly any K Q°P-module of dimension § can be considered as
a II°(K@)-module, so has a submodule of dimension 5. Dualizing, this implies
that any K @Q-module of dimension é has a submodule of dimension § — 3. This is
impossible by [16, Theorem 3.4].

Now p is smooth at the general point of Rep(II°(KQ),$) by Lemma 10.3, so
Rep(II°(K @), §) is generically smooth, hence generically reduced. With the Cohen-
Macaulay property, this implies that it is reduced. O

11. A CoNZE EMBEDDING

Let Q be an extended Dynkin quiver with vertex set I and let § € Z! be the
minimal positive imaginary root for ). Let K be an algebraically closed field.

Lemma 11.1. There is a pseudoflat epimorphism 6 : KQ — My (K|[z]) such that
the general representation of KQ of dimension § is the restriction of a My (K|[z])-
module.
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Proof. If @ 1s of type fin, oriented as a cycle, then X should consist of n of the n+1
one-dimensional simple modules. If @ has no oriented cycles then X should contain
all the regular simple modules in one tube in the Auslander-Reiten quiver of K@,
and all but one regular simple module in every other tube. Localizing at a set
which contains all but one regular simple in each tube, one obtains by [4, Theorem
4.2] a tame hereditary algebra with two simple modules. Since the base field is
algebraically closed, this algebra i1s Morita equivalent to the Kronecker algebra.
Now localizing at one further regular simple module, one obtains an algebra Morita
equivalent to K|[z]. O

Henceforth we suppose that 8 : KQ — My (K|[z]) is a pseudoflat epimorphism
such that the general representation of K@) of dimension § is the restriction of a
My (K[z])-module. If A € K @7 Ko(K Q) there is a corresponding element A € K7.
See Section 3.

Lemma 11.2. We have N = > . 6;, and if P is the indecomposable projective
module for My (K [z]), then 0,(X) =3, Xi6; @ [P] for A € K @z Ko(KQ).

Proof. The general representation of K@) of dimension ¢ is a brick, so it must be
the restriction of a simple My (K [z])-module. The result follows. O

Recall from the introduction that ¢ induces a map 85 from II* (K Q) to My (C,)
for some v. The previous lemma and Corollary 5.4 show that v = >, X;6;.

Lemma 11.3. The map 8y is injective.
Proof. We factorize 8y as a product
I°(KQ) L I°(KQ)/ Ker(6y) & My (Co).
Both of these maps are ring epimorphisms, so we obtain injective morphisms
Rep(My(C,),8) — Rep(II°(KQ)/ Ker(6o), §) — Rep(II°(KQ), 6).

The image of the composition of these is the open set of representations whose re-
striction to K@ is in X*. Now Lemma 10.5 implies that Rep(TI°(KQ)/ Ker(6o), §)s
has dimension 1 + >, 2. Thus II°(KQ)/Ker(y) has GK dimension at least 2 by
Lemma 10.2. Now II°(K Q) is prime of GK dimension 2 by [2], and it follows that
Ker(6) = 0, as claimed. O

Theorem 11.4. The map 6 is injective, the natural map N°(KQ) — gr 1*(KQ)
is an isomorphism, and (K Q) s prime of GK dimension 2.
Proof. By Corollary 9.5 there is a commutative square

M9(KQ) —2— My(Co)

l l

g INKQ) &2 erMy(C)).

The associated graded algebra for the first Weyl algebra is the polynomial ring in
two variables, so the map My (Cy) — gr My (C,) is an isomorphism. Now the map
N°%(KQ) — grI*(KQ) is surjective, so the fact that 6y is injective implies that
M°(KQ) — grI*(KQ) is an isomorphism and gr 6, is injective. It follows that 85
is injective. Finally, T*(K @) is prime of GK dimension 2 by [2]. O

Lemma 11.5. The ring I*(K Q) has Goldie rank at least N.
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Proof. Let M be the restriction to II*(K Q) of the simple module for its quotient
ring. Letting E = End(M)° we consider M as a II*(KQ)-E-bimodule. One can
consider M as a representation of the quiver @ by right E-vector spaces and E-
linear maps, satisfying the usual relations for the deformed preprojective algebra.
Now these vector spaces are finite dimensional over E, and lead to a dimension
vector a € N7, and the Goldie rank of MK Q) is Y, c.

If i is a loopfree vertex and A; # 0 then the reflection functor of [5, Theorem
5.1] evidently defines an equivalence from the category of II*(K @)- E-bimodules to
the category of HAI(KQ)—E—bimodules, for some X', which acts as s; on dimension
vectors.

By applying a sequence of reflection functors to M we pass to a HAI(KQ)—E—
bimodule M’ of dimension vector o’ (for a new X'), and we choose the sequence
to ensure that o' is minimal. This implies that for any vertex ¢, either A, = 0 or
(o) <0.

If ¢ is a vertex with A, = 0, the 1-dimensional simple module S; at vertex ¢ has
projective resolution

0> IONEQ)e; — P TMNEQ)e; — TMNEQ)e; — Si — 0.

a:i—> §in Q

Now M is an injective module over II*(KQ), so M’ is injective over HAI(KQ), 0
applying dimg Hom(—, M') we deduce that (o, ¢;) = 0.

Thus ¢’ is in the fundamental region for @, so is a multiple of the vector §. Now
6 1s unchanged by the reflections s;, so & must have been a multiple of §. The result

follows. O

Let D, be the quotient division algebra for C,.

Theorem 11.6. The map 05 induces an isomorphism from the simple artinian
quotient ring of IN(KQ) to My (D,).

Proof. First observe that if & < N and D and E are division rings, then there
can be no homomorphism My (E) — Mg(D), for if S is the module obtained by
inducing the simple My (E)-module up to My(D), then SV = My (D) is semisimple
of length k.

By [11, Proposition 3.1.16], the quotient ring of II*(K Q) embeds in My(D,)
for some k& < N. By the discussion above we must have ¥ = N, and inspecting
the proof of the cited result we see that My (D, ) is simple as a HA(KQ)—MN(D,, )-
bimodule, and then that it is torsion free over II*(K Q). This means that 65 does
induce a map from the quotient ring of I*(K Q) to My(D,). Moreover this map
1s an isomorphism since it 1s a ring epimorphism. O

We now apply this to Kleinian singularities. Let K be an algebraically closed
field of characteristic zero, and let T' be a finite subgroup of SLy(K). Let @ be an
orientation of the McKay quiver of I'. Recall that there is an isomorphism O* =
eolI* (K Q)eg, where A € Z(KT) is identified with A € K7 by letting A; be the trace
of A on the ¢th irreducible representation of I', and hence with A € K ®z Ko(K Q).

Corollary 11.7. There is an embedding ¥ : O* — C, where v is the trace of A on
the reqular representation of I'. Moreover vy induces an isomorphism on guotient
diviston rings.

Proof. 1t suffices to observe that if e is an idempotent in a prime Goldie ring R
with simple artinian quotient ring Q(R), then eRe is prime Goldie with quotient
ring eQ(R)e. O
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12. APPENDIX

In this appendix we use the methods of the paper to prove the normality of
a certain variety. This result is used in the article [9] by M. P. Holland. If K
1s an algebraically closed field and @ i1s an extended Dynkin quiver with minimal
imaginary root §, then the variety Rep(II°(K @), §) need not be normal (see below).
Here we prove the normality of the open subvariety Rep(II°(K @), §),5 of semistable
II°( K Q)-modules, where the semistable modules are defined as follows. If M is a
KQ@- or a T°(KQ)-module of dimension vector «, then its defect is defined by the
formula d(M) = (6, «). One says that M is semistable if d(M) =0 and d(N) <0
for all submodules N C M. It is well known that the semistable K @-modules are
exactly the regular modules.

Lemma 12.1. A I°(KQ)-module is semistable if and only if it is semistable as a
K@Q-module.

Proof. Certainly if M is semistable as a K @-module then it is as a II°( K Q)-module,
for any II°(K @)-submodule N is also a K @-submodule, so d(N) < 0.

Now suppose that M is semistable as a II°(K@)-module. To show that it is
semistable over K@), 1t suffices to show that all indecomposable K Q-submodules of
M are preprojective or regular. For a contradiction, let N be an indecomposable
preinjective submodule. Now by Theorem 2.3,

I°(KQ)oxkg NENarT Nor 3 (N)a ...,

and since N is preinjective this sum terminates, so it is a finite-dimensional prein-
jective K@-module. Now the M°(KQ)-submodule N of M generated by N is a
quotient of this sum, so it is preinjective as a K@-module. Thus d(N) > 0, con-
trary to the assumption. O

Lemma 12.2. If Q s an extended Dynkin quiver then any semistable K QQ-module
M of dimension § can be extended to a I°(KQ)-module which is a brick.

Proof. Certainly this is true if Q has type A,, so that § = 1 for all vertices i. One
considers the K@Q-module M as a representation of ) in which the vector space
at each vertex is 1-dimensional. Now one extends this to a representation of Q
by letting a* be a non-zero map if and only if a 1s zero. Clearly this defines a
II°(K@)-module, and it is easy to see that it is a brick.

To deal with other quivers, we first formulate the assertion in a Morita-invariant
way, and then we use universal localization to reduce to type A,.

Observe that a K@-module M is semistable of dimension § if and only if it
1s regular, and its regular composition factors are exactly the regular simples for
some tube in the Auslander-Reiten quiver of K@, each with multiplicity one. For
simplicity we call this property (*).

In view of the Morita equivalence property for II°(A), the lemma may be for-
mulated as the following claim: if A is a tame hereditary algebra and M is an
A-module with property (*), then M can be extended to a II°(A)-module which is
a brick. We prove this claim by induction on the number of simple modules for A.
Let M be a module with property (*).

If there are no inhomogeneous tubes in the Auslander-Reiten quiver for A, except
possibly the one containing M, then A is of type A, and we have checked the claim
at the start of the proof.

If there is such an inhomogeneous tube, choose a regular simple module X con-
tained in this tube, and let A — B be the corresponding universal localization.
Then B is a tame hereditary algebra with one fewer simple module than A by [4,
Theorem 4.2]. Now M is in the perpendicular category to X, so it is the restriction
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of a B-module M’, and clearly M’ has property (*). By induction M’ can be ex-
tended to a II°(B)-module M"” which is a brick, and then since I°(4) — II°(B) is a
ring epimorphism, the restriction of M” to I1°(A4) is a brick. The claim follows. [

Theorem 12.3. If Q 1s an extended Dynkin quiver then Rep(II°(KQ),8)ss s a
normal variety.

Proof. 1t 1s Cohen-Macaulay by Lemma 10.5, so it suffices to prove that its singular
locus S has dimension at most —1 4", 62. Consider the projection

7 : Rep(TI°(K @), 6)ss — Rep(KQ, 8)ss.

Now the general element r of Rep(KQ,§)ss is a brick, so every element z of
the fibre 7=1(r) is a brick. Thus by Lemma 10.3 the map p is smooth at z, so
Rep(II°(KQ), §)ss is smooth at z. Besides the bricks, there are only finitely many
GL(é)-orbits of non-bricks in Rep(K @, 8),,. If Ox is one of these orbits, then

dim7~'(0x) = dimEnd(X) + dim Ox = dimGL(§) = ) _67.

Now the general element of 771(Ox) is a brick by the previous lemma, and so
771(0x) N S has dimension at most —1 4+ 5, 62, as required. O

Finally we justify our claim that Rep(II°(KQ),4) need not be normal. By
Lemma 10.5 the natural scheme structure on Rep(II°(K Q), §) is reduced, and hence
in the notation of Section 10, the tangent space at a point z € Rep(II°(K @), §) can
be identified with Ker(du,). It follows that Rep(II°(KQ), §) is smooth at z if and
only if z is a brick.

Now Ringel [12] has pointed out that if @ is extended Dynkin, not of type
A, then there is a KQ-module X of dimension § which is not the restriction of
any brick for II°(K Q). For example, let I be an indecomposable injective K Q-
module of defect > 2, say of dimension vector «. Then § — « 1s a positive root,
so 18 the dimension vector of an indecomposable P, necessarily preprojective. Let
X = P®I. The condition on defect implies that Hom(X, I) has dimension at least
2, s0o Hom(P, I) # 0, and hence X has a non-zero endomorphism ¢ which kills I and
has image contained in I. By Lemmas 1.4 and 2.2, a II°(K Q)-module structure on
X is determined by a map 7~ X — X. Now since 7~ I = 0 and Hom(r~ P, P) = 0,
it is easy to see that ¢ is a II°(K @)-endomorphism.

Now the inverse image of the GL(6)-orbit of X under the projection

Rep(II°(KQ), §) — Rep(KQ, 8)

has codimension 1 by the argument of Theorem 12.3. Since all points of the inverse
image are singular, Rep(II°(K @), §) cannot be normal.
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