
PREPROJECTIVE ALGEBRAS, DIFFERENTIAL OPERATORSAND A CONZE EMBEDDING FOR DEFORMATIONS OFKLEINIAN SINGULARITIESWILLIAM CRAWLEY-BOEVEYAbstract. For any associative algebra A over a �eld K we de�ne a family ofalgebras ��(A) for � 2 K
Z K0(A). In case A is the path algebra of a quiver,one recovers the deformed preprojective algebra introduced by M. P. Hollandand the author. In case A is the coordinate ring of a smooth curve, thefamily includes the ring of di�erential operators for A and the coordinate ringof the cotangent bundle for SpecA. In case A is quasi-free and 
1A is a�nitely generated A-A-bimodule we prove that ��(A) is well-behaved underlocalization. We use this to prove a Conze embedding for deformations ofKleinian singularities.If K is an algebraically closed �eld of characteristic zero and � is a non-trivial�nite subgroup of SL2(K) then the coordinate ring of the Kleinian singularityK2=�has a family of deformations O� where � 2 Z(K�). They have been de�ned andstudied in work of M. P. Holland and the author [5]. If � has trace zero on the regularrepresentation of �, then O� is a commutative ring, and it occurs as the coordinatering of a �bre of the semi-universal deformation of K2=�. On the other hand, if� has nonzero trace on the regular representation, then O� is a non-commutativering.In this paper we construct an embedding  � : O� ! C� where � is the trace of� on the regular representation of �, and C� = Khx; y j xy � yx = �i. This is anembedding of noetherian domains, and we show that it induces an isomorphism ofquotient division rings. In the commutative case C� is a polynomial ring in twovariables, so the embedding is a birational map from the a�ne plane to a defor-mation of the Kleinian singularity. In the noncommutative case C� is isomorphicto the �rst Weyl algebra, and the embedding is reminiscent of one constructed byN. Conze [3]. We therefore call  � a `Conze embedding'.In the work of M. P. Holland and the author, the key idea for studying deforma-tions of Kleinian singularities was to relate them to a new class of algebras which weintroduced, the `deformed preprojective algebras' associated to quivers of extendedDynkin type. In fact, in our earliest work we constructed Conze embeddings. Bydivided into cases according to the di�erent types of extended Dynkin quivers, weconstructed representations of the deformed preprojective algebras over C�. Theserepresentations induce maps O� ! C�, and we used computer calculations to provethat these maps are injective. Instead of publishing our work, we decided to wait fora better understanding of deformed preprojective algebras, and a natural proof ofthe existence of Conze embeddings. This paper is the result. Although M. P. Hol-land is not explicitly an author of this paper, he has contributed a great deal toit. Let K be an arbitrary �eld. For any K-algebra A (associative, with 1), andany element � 2 K 
ZK0(A) we de�ne an algebra ��(A). It is equipped with a1991 Mathematics Subject Classi�cation. Primary 16G20; Secondary 16S32.Key words and phrases. preprojective algebra, quiver, quasi-free algebra, pseudoat epimor-phism, di�erential operator, Kleinian singularity, Conze embedding.1



2 WILLIAM CRAWLEY-BOEVEYhomomorphism A! ��(A). Note that an element � 2 K determines the element� 
 [A] 2 K 
ZK0(A), and for simplicity we write ��(A) rather than ��
[A](A).For �nite-dimensional hereditary algebras this de�nition generalizes the prepro-jective algebras of Baer, Geigle and Lenzing [2], which we denote here by �BGL(A).Theorem 0.1. If A is �nite-dimensional and hereditary then �0(A) �= �BGL(A).Our next result relates the new de�nition to the original deformed preprojectivealgebras of [5], which we denote here by ��CBH(Q), where Q is a quiver with vertexset I and � 2 KI . We identify KI with K
ZK0(KQ), with � 2 KI correspondingto the element � =Xi2I �i 
 [KQei] 2 K 
ZK0(KQ)(where ei is the trivial path at vertex i).Theorem 0.2. If Q is a quiver and � 2 K 
ZK0(KQ) then ��(KQ) �= ��CBH(Q).Theorems 0.1 and 0.2 together imply that �BGL(KQ) �= �0CBH(Q). This hasbeen known for some time|it was explained to the author by C. M. Ringel|andit was used implicitly in [5]. An alternative proof has recently been written up byRingel [13].Theorem 0.2 includes as a special case the fact that for a polynomial ring in onevariable, ��(K[x]) �= C�. It is this isomorphism which leads to the appearance ofC� in the Conze embedding. When K has characteristic zero, the algebra �1(K[x])is the ring of di�erential operators for K[x]. This turns out to be no coincidence.Indeed we prove the following result.Theorem 0.3. If K is a �eld of characteristic zero and A is the coordinate ring ofa smooth a�ne curve over K, then �0(A) is the coordinate ring of the cotangentbundle of SpecA and �1(A) is the ring of di�erential operators for A.The �rst three theorems deal with examples of ��(A). We now turn to thefunctorial properties of ��(A). In Section 5 we prove the following result.Theorem 0.4. Suppose that e is an idempotent in an algebra A with AeA = A. If� 2 K
ZK0(eAe), then ��(eAe) �= e(��(A))e, where � 2 K
ZK0(A) correspondsto � under the natural isomorphism K0(eAe) �= K0(A).It follows that the algebras ��(A) are well-behaved under passage to matrixrings and under Morita equivalence. For example if A and B are Morita-equivalentalgebras, and � 2 K 
ZK0(A) corresponds to � 2 K 
ZK0(B), under the iso-morphism K0(A) �= K0(B), then ��(A) and ��(B) are Morita equivalent. In thenext section we show that the algebras ��(A) are also well-behaved under directproducts.According to Cuntz and Quillen [6], an algebra A is quasi-free if the kernel 
1Aof the multiplication map A
A! A is a projective A-A-bimodule. Such algebrasare to be considered as coordinate rings of noncommutative manifolds. We say thatA is bimodule-�nite if 
1A is a �nitely generated bimodule. The following result isperhaps already known to experts.Proposition 0.5. An algebra A is bimodule-�nite if and only if it has a �nitelygenerated subalgebra C, such that the inclusion C ! A is a ring epimorphism.It is easy to see that path algebras are both quasi-free and bimodule-�nite.Now any quasi-free algebra is hereditary, and over the complex numbers Cuntzand Quillen observed that every �nite-dimensional hereditary algebra is Moritaequivalent to a path algebra, so is quasi-free. In the general case, however, thesituation is slightly more complicated.



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 3Proposition 0.6. A �nite-dimensional algebra A is quasi-free if and only if it ishereditary and A= radA is separable over K.Our real reason for working in an abstract setting is in order to prove a local-ization theorem. For any ring homomorphism � : A ! B, the functor B 
A �de�nes a homomorphism �� : K 
ZK0(A)! K 
ZK0(B). Following [1, x5], a ringepimorphism A ! B is said to be pseudoat provided that TorA1 (B;B) = 0. See[15, Theorem 4.8] for a number of equivalent conditions.Theorem 0.7. If � : A ! B is a pseudoat epimorphism and � 2 K 
ZK0(A)then there is a natural map ��(A)! ���(�)(B). If A is a quasi-free bimodule-�nitealgebra, then so is B, and the diagramA ����! ��(A)??y ??yB ����! ���(�)(B)is a pushout in the category of rings.Now suppose that Q is an extended Dynkin quiver with vertex set I, and forsimplicity suppose that K is an algebraically closed �eld. Let � 2 ZI be theminimal positive imaginary root for Q. By using universal localization one caneasily construct a pseudoat epimorphism � : A!MN (K[x]) such that the generalrepresentation ofKQ of dimension vector � is the restriction of a MN (K[x])-module.(It follows that N = Pi �i.) If � 2 K 
ZK0(KQ), by the theorem there is aninduced a pseudoat epimorphism �� from ��(KQ) to���(�)(MN (K[x])) �= MN (��(K[x])) �= MN (C�)where in fact � = Pi �i�i. By using the representation theory of Q we prove thefollowing result.Theorem 0.8. If Q is an extended Dynkin quiver, K is an algebraically closed �eldand � 2 K
ZK0(KQ) then ��(KQ) is a prime noetherian ring of Gelfand-Kirillovdimension 2. Moreover �� : ��(KQ) ! MN (C�) is injective, and it induces anisomorphism on simple artinian quotient rings.In an appendix we use the methods of this paper to study the variety of repre-sentations of �0(KQ) of dimension �.We �nally return to Kleinian singularities. Assume that K is algebraically closedof characteristic zero, and let � be a �nite subgroup of SL2(K). Let Q be anorientation of the McKay quiver of �, and let 0 be an extending vertex. Recall thatthere is an isomorphism O� �= e0��(KQ)e0, where � 2 Z(K�) is identi�ed with� 2 KI by letting �i be the trace of � on the ith irreducible representation of �.Here is the result mentioned at the start of the introduction.Theorem 0.9. There is an embedding  � : O� ! C� where � is the trace of � onthe regular representation of �. Moreover  � induces an isomorphism on quotientdivision rings. 1. Definition of ��(A)Let A be an algebra (associative, with 1) over a �eld K. Recall that A-A-bimodules are the same as Ae-modules, where Ae = A 
 Aop. (Unadorned tensorproducts are always over the �eld K.) The universal derivation bimodule, or bimod-ule of noncommutative di�erential 1-forms is the kernel 
1A of the multiplicationmap A 
A! A. See for example [1] or [6].



4 WILLIAM CRAWLEY-BOEVEYIf M is an A-A-bimodule, we write Der(A;M ) for the space of derivations fromA toM . It is isomorphic to HomAe(
1A;M ), a homomorphism � giving rise to thederivation d with d(a) = �(a 
 1� 1
 a).The space Der(A;A
A) becomes an A-A-bimodule via adb = (rb 
 `a)d where`a; rb : A! A denote left multiplication by a and right multiplication by b respec-tively. We write � (or �A) for the derivationA! A
KA with �(a) = a
1�1
a.If M is an A-A-bimodule we write TAM for the tensor algebra of M over A.For any a 2 A we de�ne �a(A) = TADer(A;A
A)=(�� a). We consider it as anA-ring, that is, as an algebra equipped with homomorphismA! �a(A). We havethe following elementary results.Lemma 1.1. If u is a unit in the centre of A and a 2 A, then �a(A) �= �ua(A).Proof. Multiplication on the left by u�1 induces an automorphism of the bimoduleDer(A;A 
 A), and hence there is an algebra automorphism of TADer(A;A 
 A)which is the identity on A, but sends � to u�1�. Under this automorphism theideal (�� a) is sent to (u�1�� a) = (�� ua).Lemma 1.2. Up to isomorphism �a(A) depends only on the image of a in H0(A) =A=[A;A].Proof. Write M = Der(A;A 
 A). Given b; c 2 A, it su�ces to construct anautomorphism of TAM sending �� a to �� a+ [b; c]. By the universal propertyof tensor algebras, the homomorphisms � : TAM ! TAM which are the identityon A are in 1-1 correspondence with A-A-bimodule maps M ! TAM . Taking thebimodule map sending d to d +Pi yicxi, where xi and yi are de�ned by d(b) =Pi xi
 yi, it is clear that the resulting homomorphism � is an automorphism, andthat �(� � a) = �� a+ [b; c], as required.Let tr : K0(A) ! H0(A) = A=[A;A] be the trace map, sending the class ofa projective module P to the image in A=[A;A] of the trace of any idempotente 2 Mn(A) with image isomorphic to P . This map extends to a linear map K 
ZK0(A)! H0(A) also denoted tr.De�nition 1.3. If � 2 K 
ZK0(A) then��(A) = �a�(A) = TADer(A;A 
A)=(�� a�)where a� is any lift of tr(�) to A.The previous lemma shows that ��(A) does not depend on the choice of a�. Ifa; b 2 A then a�b is the derivation with (a�b)(x) = xb 
 a � b 
 ax for x 2 A.Thus the A-A-sub-bimodule of Der(A;A 
 A) generated by � is the set of innerderivations. Therefore Der(A;A
A)=A�A �= H1(A;A
A), which has the followingconsequence.Lemma 1.4. �0A �= TAH1(A;A
 A).Any tensor algebra TAM is naturally graded, with (TAM )n being the nth tensorpower of M . Thus the lemma gives a grading of �0(A). On the other hand thealgebra �a(A) is �ltered�a(A)�0 � �a(A)�1 � �a(A)�2 � : : : ;where �a(A)�n is the image in �a(A) of Pni=0(TADer(A;A 
 A))i. As usual onecan consider the associated graded algebra gr�a(A), and there is the followingresult.Lemma 1.5. There is a natural surjective graded algebra map �0(A)! gr�a(A).



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 5Proof. An algebra homomorphism � : �0(A) ! gr�a(A) is determined by analgebra homomorphism A ! �a(A)�0, which we take to be the natural map, andan A-A-bimodule map g : H1(A;A
 A)! (gr�a(A))1. For � to be surjective, weneed g to be surjective, so it su�ces to show that (gr�a(A))1 is naturally a quotientof H1(A;A 
 A). Now by de�nition (gr�a(A))1 = (A � Der(A;A
 A))=S, whereS = A + I \ (A � Der(A;A
 A)) and I is the ideal (� � a) in TADer(A;A
 A).The result follows since S contains A �A�A.2. Finite-dimensional hereditary algebrasLet D be the duality HomK(�;K).Lemma 2.1. For any algebra A there is a natural isomorphism Ext1A(DY;X) �=H1(A;X 
 Y ) for X and Y left A-modules, with Y �nite-dimensional.Proof. Tensoring the de�ning sequence for 
1A with DY one obtains an exactsequence 0! 
1A 
A DY ! A
DY ! DY ! 0:Since A 
DY is projective, if X is a left A-module one obtains� � � ! HomA(A
DY;X) ! HomA(
1A
A DY;X)! Ext1A(DY;X) ! 0:Now HomA(
1A 
A DY;X) can be identi�ed with HomAe(
1A;X 
 Y ), so withDer(A;X 
Y ). Also we can identify HomA(A
DY;X) with Y 
X, and then themap Y 
 X ! Der(A;X 
 Y ) sends an element of Y 
 X to the correspondinginner derivation.Lemma 2.2. If A is a �nite-dimensional hereditary algebra then there is a naturalisomorphism Ext1(DA;X) �= H1(A;A
A) 
A X for X a left A-module.Proof. Since A is hereditary the functor Ext1(DA;�) is right exact. Since it alsocommutes with direct limits it is naturally isomorphic to the tensor product functorExt1(DA;A) 
A �.If A is a �nite-dimensional hereditary algebra then the inverse Auslander-Reitentranslation is the functor �� de�ned by ��(X) = Ext1(DA;X). The algebra�BGL(A) of [2, x3] is 1Mn=0HomA(A; ��n(A));with the product de�ned by uv = ��m(u) � v for elements u 2 HomA(A; ��n(A))and v 2 HomA(A; ��m(A)).Theorem 2.3. If A is �nite-dimensional and hereditary then �0(A) �= �BGL(A).Proof. Combine Lemmas 1.4 and 2.2 with [2, Proposition 3.1].3. Deformed preprojective algebrasLet Q be a quiver with vertex set I and let KQ be its path algebra. Let ei 2 KQbe the trivial path at vertex i. Recall that KI is identi�ed with K 
ZK0(KQ),with � 2 KI corresponding to the element� =Xi2I �i 
 [KQei] 2 K 
ZK0(KQ):Let Q be the quiver obtained from Q by adjoining an arrow a� : j ! i for eacharrow a : i ! j in Q. The next result shows that ��(KQ) coincides with thedeformed preprojective algebra ��CBH(Q) of [5].



6 WILLIAM CRAWLEY-BOEVEYTheorem 3.1. If � 2 K 
ZK0(KQ) then ��(KQ) �= KQ=J where J is the idealgenerated by Pa2Q[a; a�]�Pi2I �iei.Proof. There is a standard projective resolution of KQ as a KQ-KQ-bimodule0! Ma : i! j in QKQej 
 eiKQ f�!Mi2I KQei 
 eiKQ mult���! KQ! 0where f sends (ej 
 ei)a to (ej 
 a)j � (a 
 ei)i. IdentifyingKQ 
KQ = Mr;s2IKQer 
 esKQ;one obtains an exact sequence0! Ma:i!jKQej 
 eiKQ � Mr 6=sKQer 
 esKQ g�! KQ
KQ mult���! KQ! 0;(y)where g sends (ej 
 ei)a to ej 
 a � a
 ei and (er 
 es)rs to er 
 es.If M is a KQ-KQ-bimodule, then HomKQe(KQei 
 ejKQ;M ) �= eiMej, so ifM = KQ 
 KQ the Hom space is isomorphic to eiKQ 
 KQej. Now this tensorproduct is over K, so one can swap the order of the terms and write KQej
eiKQ.By doing this, one clearly sees the KQ-KQ-bimodule structure of this space.Now the left hand term of the exact sequence (y) is 
1KQ, and computing itshomomorphisms to KQ 
KQ one obtainsDer(KQ;KQ
KQ) �= Ma:i!jKQei 
 ejKQ � Mr 6=sKQes 
 erKQ:Thus TKQDer(KQ;KQ
KQ) is identi�ed with the path algebra of the quiver ~Qobtained from Q by adding an arrow crs : r ! s for each pair of vertices r 6= s.Also � corresponds to the map g, so to the elementXa:i!j(a
 ej � ei 
 a)a +Xr 6=s(es 
 er)rs:Now with the identi�cation of Kn and K 
ZK0(KQ), the elementPi �iei is a liftto KQ of tr(�) 2 KQ=[KQ;KQ]. Thus ��(KQ) �= K ~Q=(�) where� = Xa:i!j(aa� � a�a) +Xr 6=s crs �Xi �iei:Clearly the ideal generated by � is also generated by the elements Pi ei�ei withi 2 I and es�er with r 6= s. These arePa2Q[a; a�]�Pni=1 �iei and crs respectively.The result follows.The path algebra of the quiver with one vertex and one loop is a polynomial ringK[x], so we have the following special case.Corollary 3.2. If � 2 K then ��(K[x]) �= Khx; y j xy � yx = �i.4. Differential operators on curvesThroughout this section A is the coordinate ring of a smooth a�ne curve. Thusit is a commutative domain, �nitely generated over K, of Krull dimension 1, andit is smooth over K, so for any commutative K-algebra C and any ideal I inC with I2 = 0, any K-algebra homomorphism A ! C=I lifts to a K-algebrahomomorphism A ! C. A suitable reference for smooth algebras is [10, xx25{30].The following result is due to Schelter [14] (at least when K is algebraically closed).Lemma 4.1. 
1A is a rank 1 projective Ae-module. Thus A is quasi-free.



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 7Proof. Since A is smooth over K, so is Ae, so for any maximal ideal m of Ae thelocalization (Ae)m is regular of dimension 2. Localizing the de�ning sequence for
1A at m gives an exact sequence0! (
1A)m ! (Ae)m ! A 
Ae (Ae)m ! 0;and it su�ces to prove that the ideal (
1A)m of (Ae)m is projective. This is certainlytrue if m doesn't contain 
1A, for then some element of 
1A is invertible in (Ae)m ,so (
1A)m = (Ae)m . Thus suppose that m contains 
1A, so m is the inverse imageunder the multiplication map Ae ! A of a maximal ideal n of A. This implies thatA 
Ae (Ae)m �= An . Now if a is a nonzero element of n then 1 
 a 2 m and since1
a acts as a non zero-divisor on An , the (Ae)m -module An has depth at least 1. Itfollows that it has projective dimension at most 1, so that (
1A)m is projective.Since Ae is commutative, any Hom space between A-A-bimodules is naturallyan A-A-bimodule. In particular Der(A;M ) = HomAe(
1A;M ) is an A-A-bimodulefor any M .Lemma 4.2. Der(A;
1A) is a free A-A-bimodule generated by �.Proof. It is the endomorphism ring of a rank 1 projective Ae-module.Applying HomAe(
1A;�) to the de�ning sequence for 
1A, we obtain a sequence0! Der(A;
1A)! Der(A;A
 A)! Der(A;A)! 0so by the previous lemma H1(A;A
A) is naturally isomorphic to Der(A;A). NowDer(A;A) is a rank 1 projective A-module, so its tensor algebra over A coincideswith its symmetric algebra, and we have the following result.Theorem 4.3. �0(A) is isomorphic to the coordinate ring K[T� SpecA] of thecotangent bundle of SpecA.We now investigate the relationship between �1(A) and di�erential operators.Let D(A) be the ring of di�erential operators for A. Elements of A are identi�edwith the di�erential operators of order 0, with a 2 A corresponding to the homo-thety a IdA. We write D�1(A) for the set of di�erential operators of order � 1. Itbecomes an A-A-bimodule by composition of maps, and there is an exact sequenceof A-A-bimodules 0 �! A �! D�1(A) g�! Der(A;A) �! 0where g sends a di�erential operator d to d � d(1) IdA. Note that Der(A;A) is asubspace of D�1(A) complementary to A IdA, but it is not a sub-bimodule.Lemma 4.4. The evaluation map A
 Der(A;A)! A is surjective.Proof. If a 2 A and h 2 HomAe(
1A;A) then since A is commutative, the assign-ment d(x) = h(ax 
 1 � a 
 x) de�nes a derivation A ! A. Now the assertionfollows since �rstly 
1A is generated as a left A-module by elements of the formx
 1� 1
 x, and secondly the natural map
1A 
Ae HomAe(
1A;A)! Ais an isomorphism (since 
1A is a rank 1 projective Ae-module).Lemma 4.5. A IdA is a superuous A-A-sub-bimodule of D�1(A). That is, if Mis an A-A-sub-bimodule of D�1(A) and M +A IdA = D�1(A), then M = D�1(A).Proof. By assumption any derivation d 2 Der(A;A) can be written as the sum of anelement m 2M and a homothety a IdA. Now if x 2 A then d(x)y = d(xy) � xd(y)for y 2 A, sod(x) IdA = d � (x IdA)� (x IdA) � d = m � (x IdA)� (x IdA) �m 2M:



8 WILLIAM CRAWLEY-BOEVEYThus A IdA �M by the previous lemma.Lemma 4.6. There are surjective bimodule maps �; � giving rise to a commutativediagram with exact rows0 ����! Der(A;
1A) ����! Der(A;A
 A) ����! Der(A;A) ����! 0??y� ??y� 0 ����! A ����! D�1(A) g����! Der(A;A) ����! 0Proof. Since Der(A;A
A) is a projective bimodule, the map from Der(A;A
A)to Der(A;A) lifts to a map �. Now � is surjective since A IdA is superuous inD�1(A). The result follows.Theorem 4.7. If K has characteristic zero and A is the coordinate ring of asmooth a�ne curve, then �1(A) is isomorphic to the ring D(A) of di�erentialoperators for A.Proof. Since the map � in Lemma 4.6 is surjective and Der(A;
1A) is generatedby �, the element u = �(�) must be a unit in A. Now � induces a homomorphism : �u(A)! D(A) of �ltered rings, and there is a commutative square�0(A) ����! K[T� SpecA]??y ??ygr�u(A) gr ����! grD(A)where the top map is the isomorphism of Theorem 4.3, the left hand vertical mapis as in Lemma 1.5, and the right hand vertical map is the natural isomorphismresulting from the fact that A is smooth and K has characteristic zero. It followsthat gr is an isomorphism, and then the result follows since �1(A) �= �u(A) byLemma 1.1. 5. Morita equivalenceIn this section A is an algebra and e 2 A is an idempotent with AeA = A, sothat A is Morita equivalent to eAe. We de�ne f = 1� e.Lemma 5.1. If M is an A-A-bimodule, then the assignment sending d to the mapa 7! e d(a)e induces a surjective linear map Der(A;M ) ! Der(eAe; eMe) whosekernel is the set of inner derivations a 7! am�ma with m 2 fMe� eMf � fMf .Proof. Let X = (Af 
 eA) � (Ae 
 fA) � (Af 
 fA). Since AeA = A, it followsthat A 
 A = 
1A + Ae 
 eA. Thus the projection A 
 A ! X induces an exactsequence 0! 
1A \Ae 
 eA! 
1A! X ! 0:This is split exact since X is a projective bimodule, so it induces an exact sequence0! HomAe (X;M ) ��! HomAe(
1A;M ) ��! HomAe (
1(A) \Ae 
 eA;M )! 0:Now e �
1(A) \Ae 
 eA� e = 
1(eAe), so by Morita equivalence the last term canbe identi�ed with the space of eAe-eAe-bimodule homomorphisms from 
1(eAe)to eMe, and hence with Der(eAe; eMe). Identifying also the middle term withDer(A;M ), the map � is as stated. Now the left hand term is isomorphic tofMe � eMf � fMf , and the map � sends an element m of this direct sum to theinner derivation a 7! am�ma, as required.



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 9Lemma 5.2. If J is the A-A-sub-bimodule of Der(A;A 
 A) generated by e�f ,f�e and f�f , and L = Der(A;A 
 A)=J , then there is an isomorphism of eAe-eAe-bimodules eLe! Der(eAe; eAe 
 eAe)sending e�e to �eAe.Proof. One can identify eDer(A;A
A)e with Der(A;Ae
eA), and then the lemmafollows from the previous one.There are inverse isomorphisms between K0(eAe) and K0(A) induced by thefunctors P 7! Ae 
eAe P and Q 7! eQ on projective modules. This enables one toidentify K 
ZK0(eAe) and K 
ZK0(A).Theorem 5.3. If � 2 K 
ZK0(eAe) then ��(eAe) �= e(��(A))e, where � is thecorresponding element of K 
ZK0(A).Proof. It su�ces to show that �a(eAe) �= e(�aA)e for a 2 eAe, as there is acommutative square K 
ZK0(eAe) ����! K 
ZK0(A)tr??y tr??yeAe=[eAe; eAe] i����! A=[A;A]where i is induced by the inclusion of eAe in A, and the top map is the bijectionmentioned above. Now�a(A) = (TADer(A;A
 A))=(�� a)= (TADer(A;A
 A))=(e�f; f�e; f�f; e�e � a)�= TAL=(e�e� a)where L is as in the previous lemma. Thuse�a(A)e �= e[TAL=(e�e � a)]e �= e(TAL)e=(e�e� a)�= TeAe(eLe)=(e�e� a) �= �a(eAe)by the previous lemma.If A and B are Morita-equivalent algebras, then there is an equivalence fromthe category of left A-modules to the category of left B-modules. This induces abijection fromK
ZK0(A) to K
ZK0(B). In particular this applies to the algebrasA and Mn(A).Corollary 5.4. If � 2 K 
ZK0(Mn(A)) then ��(Mn(A)) �= Mn(��(A)) where �is the corresponding element of K 
ZK0(A).Proof. The matrix units eij (1 � i; j � n) for Mn(A) induce matrix units in��(Mn(A)). Thus ��(Mn(A)) �= Mn(R) where R = e11��(Mn(A))e11, and thenR �= ��(A) by the theorem.Corollary 5.5. If A and B are Morita-equivalent algebras, and � 2 K 
ZK0(A)corresponds to � 2 K 
ZK0(B), then ��(A) and ��(B) are Morita equivalent.Proof. It su�ces to prove this in two cases, when B = Mn(A), and when B = eAewith e an idempotent with AeA = A; see for example [11, Proposition 3.5.6]. The�rst corollary deals with the case of a matrix ring. The theorem deals with theother case, for e is an idempotent in ��(A) with ��(A)e��(A) = ��(A), so that��(A) is Morita equivalent to e��(A)e �= ��(eAe).



10 WILLIAM CRAWLEY-BOEVEY6. ProductsIn this section we suppose that A decomposes as a direct product of two algebras,A = B�C. We identifyB and C as subsets ofA withA = B�C andBC = CB = 0.This leads to a decomposition 1 = e+f with e 2 B and f 2 C idempotents. Thereis a natural isomorphism K0(A) �= K0(B) � K0(C), and if � 2 K 
ZK0(B) and� 2 K 
ZK0(C) we write (�; �) for the corresponding element of K 
ZK0(A). Weprove that �(�;�)(A) �= ��(B) � ��(C).Lemma 6.1. If I is the A-A-sub-bimodule of Der(A;A
A) generated by e�f andf�e then there is an isomorphismDer(A;A
A)=I �= Der(B;B 
B) � Der(C;C 
C)with e�Ae corresponding to �B and f�Af corresponding to �CProof. Clearly Der(B;B 
B) � Der(C;C 
C) can be identi�ed withD = fd 2 Der(A;A
A) j d(e) = 0g;so it su�ces to prove that D and I are complementary. Now I consists of allinner derivations of the form s(a) = a(p + q) � (p + q)a with p 2 eA 
 Af andq 2 fA 
 Ae, and since s(e) = q � p, it follows that D \ I = 0. On the otherhand, if d : A! A
A is any derivation then the fact that e is idempotent impliesthat d(e) 2 eA 
 Af � fA 
 Ae. Thus there is an inner derivation d0 2 I with(d+ d0)(e) = 0. It follows that D + I = Der(A;A
 A).Theorem 6.2. If A = B � C, � 2 K 
ZK0(B), � 2 K 
ZK0(C), and (�; �) isthe corresponding element of K 
ZK0(A), then �(�;�)(A) �= ��(B) ���(C).Proof. It su�ces to prove that if a 2 A then �a(A) �= �u(B)��v(C) where u = eaeand v = faf . Now�a(A) = TADer(A;A
 A)=(�� u� v)= TADer(A;A
 A)=(e�f; f�e; e�e� u; f�f � v)�= TA[Der(B;B 
B)�Der(C;C 
C)]=(�eAe � u;�fAf � v)by the previous lemma. Now this last tensor algebra is isomorphic toTB Der(B;B 
B) � TC Der(C;C 
C);and the result follows. 7. Bimodule-finite algebrasLemma 7.1. If A ! B is a ring epimorphism then there is an exact sequence ofB-B-bimodules 0 ! TorA1 (B;B) ! B 
A 
1A 
A B ! 
1B ! 0. Thus if A isbimodule-�nite then so is B.Proof. Take the de�ning exact sequence for 
1A and tensor each side with B. Nowuse the fact that multiplication induces an isomorphism B 
A B ! B.There is the following obvious consequence.Lemma 7.2. If A! B is a pseudoat ring epimorphism then 
1B is isomorphicto B 
A 
1A
A B. Thus if A is quasi-free then so is B.Proposition 7.3. An algebra A is bimodule-�nite if and only if it has a �nitelygenerated subalgebra C, such that the inclusion C ! A is a ring epimorphism.



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 11Proof. If there is such a subalgebra C then 
1C is known to be �nitely generated(see for example [1]), and the short exact sequence of Lemma 7.1 shows that 
1Ais �nitely generated. For the converse, choose generators of 
1A, and choose a�nitely generated subalgebra C su�ciently large so that the generators all lie inC 
C � A 
A. Now there is a commutative diagram with exact rowsA
C 
1C 
C A ����! A
 A ����! A
C A ����! 0f??y  g??y0 ����! 
1A ����! A
 A ����! A ����! 0:By construction f is surjective, and it follows that g is injective. In other wordsthe inclusion C ! A is a ring epimorphism.8. Finite-dimensional quasi-free algebrasLemma 8.1. Let M be an A-A-bimodule which is at as a right A-module. IfM 
A X is at for all left A-modules X, then TorAe1 (X 
 Y;M ) = 0 for all leftA-modules X and right A-modules Y .Proof. Fix an exact sequence 0 ! L ! P ! M ! 0 with P a projective A-A-bimodule. Tensoring �rst with X and then with Y , the hypotheses imply that thetensor product sequence0! Y 
A L 
A X ! Y 
A P 
A X ! Y 
AM 
A X ! 0is exact. But this sequence is identi�ed with the sequence0! (X 
 Y )
Ae L! (X 
 Y )
Ae P ! (X 
 Y ) 
Ae M ! 0so TorAe1 (X 
 Y;M ) = 0.Lemma 8.2. Suppose that A is a �nite-dimensional algebra, and that A= radA isseparable over K. Let M be an A-A-bimodule which is projective as a right A-module. If M 
A X is projective for any left A-module X, then M is a projectivebimodule.Proof. Since radA is nilpotent, every simple A-A-bimodule occurs as a compo-sition factor of (A= radA) 
 (A= radA), and the separability hypothesis impliesthat (A= radA) 
 (A= radA) is semisimple. The previous lemma now shows thatTorAe1 (S;M ) = 0 for all simple Ae-modules S. Since Ae is �nite-dimensional, itfollows that M is a projective Ae-module.Lemma 8.3. If A and B are �nite-dimensional self-injective algebras, then so isA
 B.Proof. If D is duality with the �eld, then D(A) is a projective A-module and D(B)is a projective B-module. Now the isomorphism D(A 
B) �= D(A) 
D(B) showsthat D(A 
B) is a projective A
 B-module, so A 
B is self-injective.Lemma 8.4. If A is a �nite-dimensional self-injective algebra then every A-moduleis either projective, or has in�nite projective dimension.Proof. Looking at the last two terms in the minimal projective resolution of amodule of �nite projective dimension, there must be an injection of one projectiveinto another which is not split. This is impossible if all projective modules areinjective.Proposition 8.5. A �nite-dimensional algebra A is quasi-free if and only if it ishereditary and A= radA is separable over K.



12 WILLIAM CRAWLEY-BOEVEYProof. If A is hereditary, the bimodule 
1A satis�es the hypotheses of Lemma 8.2.Thus if A= radA is separable over K then 
1A is a projective bimodule, so A isquasi-free.Now suppose that A is quasi-free. Certainly this implies that A is hereditary.Let S be a simple A-module, and let B be the corresponding simple factor ofA= radA. Since A is hereditary, its Gabriel quiver has no oriented cycles (since anynonzero map between indecomposable projectives must be injective). It followsthat Ext1A(S; S) = 0. Now the projection A ! B is a pseudoat epimorphism by[15, Theorem 4.8], since the the restriction to A of any B-module is isomorphic toa direct sum of copies of S. Thus B is quasi-free, so B has projective dimension� 1 as a Be-module. Now Be is self-injective by Lemma 8.3, so actually B is aprojective module. Thus B is separable. Repeating for each simple A-module itfollows that A= radA is separable.9. LocalizationLemma 9.1. If � : A! B is a pseudoat epimorphism and M is a B-B-bimodule,then restriction induces an bijection Der(B;M )! Der(A;M ).Proof. We have isomorphismsHomBe (
1B;M ) �= HomBe (B 
A 
1A
A B;M ) �= HomAe(
1A;M )using Lemma 7.2.Lemma 9.2. If � : A! B is a pseudoat epimorphism and � 2 K 
ZK0(A) thenthere is a natural homomorphism ��(A)! ���(�)(B). Moreover the diagramA ����! ��(A)??y ??yB ����! ���(�)(B)commutes.Proof. The question of naturality is slightly delicate, since the de�nition of ��(A)depends on the choice of a lift of tr(�) to A, and for the homomorphism from��(A) to ���(�)(B) one should choose compatible lifts. The map � induces a map� : A=[A;A]! B=[B;B], and the squareK 
ZK0(A) ������! K 
ZK0(B)tr??y tr??yA=[A;A] �����! B=[B;B]commutes. If a is a lift to A of tr(�) we use �(a) as a lift of ��(�). Thus it su�cesto construct a natural map �a(A)! ��(a)(B). Now there is a natural mapDer(A;A
A)! Der(A;B 
B) �= Der(B;B 
B)which is in fact a homomorphism of A-A-bimodules, and it sends �A to �B. Com-bining this with the algebra map A! B one obtains an algebra mapTADer(A;A
A)! TB Der(B;B 
 B):This map sends �A to �B and a to �(a). The result follows.



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 13Theorem 9.3. Suppose that � : A ! B is a pseudoat epimorphism and that� 2 K 
ZK0(A). If A is a quasi-free bimodule-�nite algebra, then so is B, and thediagram A ����! ��(A)??y ??yB ����! ���(�)(B)is a pushout in the category of rings.Proof. We have B 
AHomAe(
1A;A
A)
A B �= HomAe(
1A;B
B) since 
1Ais a �nitely generated projective A-A-bimodule. Thus the induced mapB 
A Der(A;A
 A)
A B ! Der(B;B 
B)is an isomorphism of B-B-bimodules, sending 1
�A 
 1 to �B. Let a be a lift oftr(�) to A. Since �a(A) �= (TADer(A;A 
 A))=(�A � a), the pushout of A ! Band A! �a(A) is isomorphic toTB(B 
A Der(A;A
A) 
A B)=(1 
�A 
 1� �(a));and this is isomorphic to ���(�)(B).Corollary 9.4. Under the hypotheses of the theorem, the map ��(A)! ���(�)(B)is a pseudoat epimorphism.Proof. Use [1, Proposition 5.2].We shall also need one further observation.Corollary 9.5. Under the hypotheses of the theorem, the map ��(A)! ���(�)(B)preserves �ltrations, that is it sends ��(A)�n into ���(�)(B)�n for all n. Moreover,it induces a commutative square�0(A) ����! �0(B)??y ??ygr��(A) ����! gr���(�)(B):One of the main examples of a pseudoat epimorphism is given by universallocalization, see [1]. Here we consider just the special case arising from perpendic-ular categories. If A is hereditary and X is a collection of �nitely presented leftA-modules, then the perpendicular category X? is the category of modulesM withHomA(X;M ) = Ext1(X;M ) = 0 for all X 2 X. Considering the universal localiza-tion of A with respect to projective presentations of the modules in X, one obtainsa pseudoat epimorphism A ! AX with the property that restriction induces anequivalence between the category of left AX-modules and X?. The theorem nowimplies the following.Corollary 9.6. Suppose that A is quasi-free and bimodule-�nite and � 2 K 
ZK0(A). If X is a collection of �nitely presented left A-modules and � : A ! AXis the corresponding universal localization, then restriction via the natural mapinduces an equivalence from the category of ���(�)(AX)-modules to the category of��(A)-modules whose restriction to A is in X?.



14 WILLIAM CRAWLEY-BOEVEY10. Module varietiesLet K be an algebraically closed �eld, let A be a �nitely generated K-algebraand let ei (i 2 I) be a complete set of orthogonal idempotents, so eiej = 0 fori 6= j and Pi ei = 1. If � 2 NI, we write Rep(A;�) for the variety of A-modulestructures on K� = LiK�i under which each ei acts as projection onto the ithsummand. Thus Rep(A;�) consists of all algebra maps A ! EndK(K�) sendingei to the projection onto K�i . Elements of Rep(A;�) are representations of A ofdimension vector �. The group GL(�) = QiGL(�i) acts naturally on this variety,and the orbits correspond to isomorphism classes of representations. The stabilizerof a representation X can be identi�ed with the automorphism group of X. Itfollows that the orbit of X has dimensionPi �2i � dimEnd(X).Lemma 10.1. If � � � then the set of elements of Rep(A;�) such that the corre-sponding representation has a subrepresentation of dimension vector �, is closed.Proof. It is the image of a closed set under the projection Rep(A;�) � P !Rep(A;�), where P is the product of Grassmannians of subspaces of dimension �iin K�i . Now use the fact that P is a projective variety. See [16, Lemma 3.1].We write Rep(A;�)s for the GL(�)-stable subset consisting of simpleA-modules.By the lemma it is open.Lemma 10.2. If A is a �nitely generated K-algebra of GK dimension d, then forany � we have dimRep(A;�)s �Pi�2i + d� 1.Proof. Passing to the quotient of A by the intersection of the annihilators of allsimple representations of dimension vector �, we may suppose that A is a semiprimePI ring, satisfying the identities of N � N matrices, where N = Pi �i. By [11,Theorem 13.4.4], A has only �nitely many minimal prime ideals, so we may assumethat it is prime. By [11, Proposition 13.7.4] there is a central localization Ac whichis an Azumaya algebra. Now each simple A-module is either an Ac-module, or anA=(c)-module, so by an induction we reduce to the case when A is an Azumayaalgebra, say with centre Z.Now there is a natural map f : Rep(A;�)s ! maxspecZ sending a simple A-module to its central character. For, Z is �nitely generated by [11, Lemma 13.9.10],and if z1; : : : ; zr are generators, they identify maxspecZ with a closed subset ofKr .Now if N =Pi �i then EndK(K�) �= MN (K), and if � : A!MN (K) is an elementof Rep(A;�)s then the map z 7! �(z)11 is the central character of �. Thus we cande�ne f by sending � to (�(z1)11; : : : ; �(zr)11) 2 Kr.Now each �bre of f meets only �nitely many GL(�)-orbits, and each orbit hasdimensionPi�2i �1. The result follows since Z has Krull dimension at most d.Now let Q be a quiver with vertex set I and let � 2 NI. Clearly Rep(KQ;�)can be identi�ed with the a�ne spaceMa:i!jHomK(K�i ;K�j):Also, by Section 3 and [5], one can identify Rep(�0(KQ); �) with the �bre over 0of the moment map� : Rep(KQ;�)! End(�)0; x 7!Xa2Q[xa; xa� ];where End(�) = Qi End(K�i) and End(�)0 = f(�i) 2 End(�) j Pi tr(�i) = 0g.Recall that a moduleM is called a brick if End(M ) = K.Lemma 10.3. The map � is smooth at a point x 2 Rep(KQ;�) if and only if thecorresponding module is a brick.



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 15Proof. Identifying Rep(KQ;�) and End(�)0 with their tangent spaces at x and�(x) respectively, � induces the mapd�x : Rep(KQ;�)! End(�)0; y 7!Xa2Q([xa; ya� ] + [ya; xa�]):Now ifD is duality with the �eld, there is a trace pairing which identi�es the vectorspaces D(Rep(KQ;�)) �= Rep(KQ;�) (with arrows a and a� being interchanged),and identi�es D(End(�)0) �= End(�)=K. Then D(d�x) is the mapEnd(�)=K ! Rep(KQ;�);(�i) 7! Xa:i!j2Q((�jxa � xa�i)a� + (xa��j � �ixa�)a);so if X is the �0(KQ)-module corresponding to x, then KerD(d�x) �= End(X)=K.Now X is a brick if and only if D(d�x) is injective, so if and only if � is smoothat x.Now let Q be an extended Dynkin quiver and let � be the minimal positiveimaginary root for Q.Lemma 10.4. The restriction map � : Rep(�0(KQ); �) ! Rep(KQ; �) is onto,and the �bre over a point x 2 Rep(KQ; �) is irreducible of dimension dimEnd(X),where X is the KQ-module corresponding x.Proof. The �bre over x is isomorphic to the �bre c�1(0) in [5, Lemma 4.2], so it isisomorphic to D Ext1(X;X). Now since X has dimension � the Ringel form impliesthat this has dimension dimEnd(X).Lemma 10.5. The variety Rep(�0(KQ); �) is irreducible and Cohen-Macaulay ofdimension 1 +Pi �2i , and the general element is a simple �0(KQ)-module. More-over, if Rep(�0(KQ); �) is considered as a scheme using the natural scheme struc-ture on the �bre ��1(0), then it is reduced.Proof. Equip Rep(�0(KQ); �) with the scheme structure. The argument of [5,Lemma 8.3] shows that Rep(�0(KQ); �) is irreducible of dimension 1+Pi �2i , hencea complete intersection, so Cohen-Macaulay.Supposing that the general element is not simple, it follows from the irreducibilityand Lemma 10.1 that there is 0 < � < � such that every �0(KQ)-module ofdimension � has a subrepresentation of dimension �. Now any KQ-module ofdimension � can be considered trivially as a �0(KQ)-module, so has a submoduleof dimension �. Similarly any KQop-module of dimension � can be considered asa �0(KQ)-module, so has a submodule of dimension �. Dualizing, this impliesthat any KQ-module of dimension � has a submodule of dimension � � �. This isimpossible by [16, Theorem 3.4].Now � is smooth at the general point of Rep(�0(KQ); �) by Lemma 10.3, soRep(�0(KQ); �) is generically smooth, hence generically reduced. With the Cohen-Macaulay property, this implies that it is reduced.11. A Conze embeddingLet Q be an extended Dynkin quiver with vertex set I and let � 2 ZI be theminimal positive imaginary root for Q. Let K be an algebraically closed �eld.Lemma 11.1. There is a pseudoat epimorphism � : KQ! MN (K[x]) such thatthe general representation of KQ of dimension � is the restriction of a MN (K[x])-module.



16 WILLIAM CRAWLEY-BOEVEYProof. If Q is of type ~An, oriented as a cycle, then X should consist of n of the n+1one-dimensional simple modules. If Q has no oriented cycles then X should containall the regular simple modules in one tube in the Auslander-Reiten quiver of KQ,and all but one regular simple module in every other tube. Localizing at a setwhich contains all but one regular simple in each tube, one obtains by [4, Theorem4.2] a tame hereditary algebra with two simple modules. Since the base �eld isalgebraically closed, this algebra is Morita equivalent to the Kronecker algebra.Now localizing at one further regular simple module, one obtains an algebra Moritaequivalent to K[x].Henceforth we suppose that � : KQ ! MN (K[x]) is a pseudoat epimorphismsuch that the general representation of KQ of dimension � is the restriction of aMN (K[x])-module. If � 2 K 
ZK0(KQ) there is a corresponding element � 2 KI .See Section 3.Lemma 11.2. We have N = Pi �i, and if P is the indecomposable projectivemodule for MN (K[x]), then ��(�) =Pi �i�i 
 [P ] for � 2 K 
ZK0(KQ).Proof. The general representation of KQ of dimension � is a brick, so it must bethe restriction of a simple MN (K[x])-module. The result follows.Recall from the introduction that � induces a map �� from ��(KQ) to MN (C�)for some �. The previous lemma and Corollary 5.4 show that � =Pi �i�i.Lemma 11.3. The map �0 is injective.Proof. We factorize �0 as a product�0(KQ) f�! �0(KQ)=Ker(�0) g�!MN (C0):Both of these maps are ring epimorphisms, so we obtain injective morphismsRep(MN (C�); �)! Rep(�0(KQ)=Ker(�0); �)! Rep(�0(KQ); �):The image of the composition of these is the open set of representations whose re-striction to KQ is in X?. Now Lemma 10.5 implies that Rep(�0(KQ)=Ker(�0); �)shas dimension 1 +Pi �2i . Thus �0(KQ)=Ker(�0) has GK dimension at least 2 byLemma 10.2. Now �0(KQ) is prime of GK dimension 2 by [2], and it follows thatKer(�0) = 0, as claimed.Theorem 11.4. The map �� is injective, the natural map �0(KQ)! gr��(KQ)is an isomorphism, and ��(KQ) is prime of GK dimension 2.Proof. By Corollary 9.5 there is a commutative square�0(KQ) �0����! MN (C0)??y ??ygr��(KQ) gr ������! grMN (C�):The associated graded algebra for the �rst Weyl algebra is the polynomial ring intwo variables, so the map MN (C0)! grMN (C�) is an isomorphism. Now the map�0(KQ) ! gr��(KQ) is surjective, so the fact that �0 is injective implies that�0(KQ)! gr��(KQ) is an isomorphism and gr �� is injective. It follows that ��is injective. Finally, ��(KQ) is prime of GK dimension 2 by [2].Lemma 11.5. The ring ��(KQ) has Goldie rank at least N .



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 17Proof. Let M be the restriction to ��(KQ) of the simple module for its quotientring. Letting E = End(M )op we consider M as a ��(KQ)-E-bimodule. One canconsider M as a representation of the quiver Q by right E-vector spaces and E-linear maps, satisfying the usual relations for the deformed preprojective algebra.Now these vector spaces are �nite dimensional over E, and lead to a dimensionvector � 2 NI, and the Goldie rank of ��(KQ) isPi �i.If i is a loopfree vertex and �i 6= 0 then the reection functor of [5, Theorem5.1] evidently de�nes an equivalence from the category of ��(KQ)-E-bimodules tothe category of ��0(KQ)-E-bimodules, for some �0, which acts as si on dimensionvectors.By applying a sequence of reection functors to M we pass to a ��0(KQ)-E-bimodule M 0 of dimension vector �0 (for a new �0), and we choose the sequenceto ensure that �0 is minimal. This implies that for any vertex i, either �0i = 0 or(�0; �i) � 0.If i is a vertex with �0i = 0, the 1-dimensional simple module Si at vertex i hasprojective resolution0! ��(KQ)ei ! Ma : i! j in Q��(KQ)ej ! ��(KQ)ei ! Si ! 0:Now M is an injective module over ��(KQ), so M 0 is injective over ��0(KQ), soapplying dimE Hom(�;M 0) we deduce that (�0; �i) = 0.Thus �0 is in the fundamental region for Q, so is a multiple of the vector �. Now� is unchanged by the reections si, so � must have been a multiple of �. The resultfollows.Let D� be the quotient division algebra for C� .Theorem 11.6. The map �� induces an isomorphism from the simple artinianquotient ring of ��(KQ) to MN (D�).Proof. First observe that if k < N and D and E are division rings, then therecan be no homomorphism MN (E) ! Mk(D), for if S is the module obtained byinducing the simple MN (E)-module up to Mk(D), then SN �= Mk(D) is semisimpleof length k.By [11, Proposition 3.1.16], the quotient ring of ��(KQ) embeds in Mk(D�)for some k � N . By the discussion above we must have k = N , and inspectingthe proof of the cited result we see that MN (D�) is simple as a ��(KQ)-MN (D�)-bimodule, and then that it is torsion free over ��(KQ). This means that �� doesinduce a map from the quotient ring of ��(KQ) to MN (D� ). Moreover this mapis an isomorphism since it is a ring epimorphism.We now apply this to Kleinian singularities. Let K be an algebraically closed�eld of characteristic zero, and let � be a �nite subgroup of SL2(K). Let Q be anorientation of the McKay quiver of �. Recall that there is an isomorphism O� �=e0��(KQ)e0, where � 2 Z(K�) is identi�ed with � 2 KI by letting �i be the traceof � on the ith irreducible representation of �, and hence with � 2 K 
ZK0(KQ).Corollary 11.7. There is an embedding  � : O� ! C� where � is the trace of � onthe regular representation of �. Moreover  � induces an isomorphism on quotientdivision rings.Proof. It su�ces to observe that if e is an idempotent in a prime Goldie ring Rwith simple artinian quotient ring Q(R), then eRe is prime Goldie with quotientring eQ(R)e.



18 WILLIAM CRAWLEY-BOEVEY12. AppendixIn this appendix we use the methods of the paper to prove the normality ofa certain variety. This result is used in the article [9] by M. P. Holland. If Kis an algebraically closed �eld and Q is an extended Dynkin quiver with minimalimaginary root �, then the variety Rep(�0(KQ); �) need not be normal (see below).Here we prove the normality of the open subvariety Rep(�0(KQ); �)ss of semistable�0(KQ)-modules, where the semistable modules are de�ned as follows. If M is aKQ- or a �0(KQ)-module of dimension vector �, then its defect is de�ned by theformula d(M ) = h�; �i. One says that M is semistable if d(M ) = 0 and d(N ) � 0for all submodules N � M . It is well known that the semistable KQ-modules areexactly the regular modules.Lemma 12.1. A �0(KQ)-module is semistable if and only if it is semistable as aKQ-module.Proof. Certainly ifM is semistable as aKQ-module then it is as a �0(KQ)-module,for any �0(KQ)-submodule N is also a KQ-submodule, so d(N ) � 0.Now suppose that M is semistable as a �0(KQ)-module. To show that it issemistable over KQ, it su�ces to show that all indecomposable KQ-submodules ofM are preprojective or regular. For a contradiction, let N be an indecomposablepreinjective submodule. Now by Theorem 2.3,�0(KQ)
KQ N �= N � ��N � ��2(N )� : : : ;and since N is preinjective this sum terminates, so it is a �nite-dimensional prein-jective KQ-module. Now the �0(KQ)-submodule N of M generated by N is aquotient of this sum, so it is preinjective as a KQ-module. Thus d(N) > 0, con-trary to the assumption.Lemma 12.2. If Q is an extended Dynkin quiver then any semistable KQ-moduleM of dimension � can be extended to a �0(KQ)-module which is a brick.Proof. Certainly this is true if Q has type ~An, so that �i = 1 for all vertices i. Oneconsiders the KQ-module M as a representation of Q in which the vector spaceat each vertex is 1-dimensional. Now one extends this to a representation of Qby letting a� be a non-zero map if and only if a is zero. Clearly this de�nes a�0(KQ)-module, and it is easy to see that it is a brick.To deal with other quivers, we �rst formulate the assertion in a Morita-invariantway, and then we use universal localization to reduce to type ~An.Observe that a KQ-module M is semistable of dimension � if and only if itis regular, and its regular composition factors are exactly the regular simples forsome tube in the Auslander-Reiten quiver of KQ, each with multiplicity one. Forsimplicity we call this property (*).In view of the Morita equivalence property for �0(A), the lemma may be for-mulated as the following claim: if A is a tame hereditary algebra and M is anA-module with property (*), then M can be extended to a �0(A)-module which isa brick. We prove this claim by induction on the number of simple modules for A.Let M be a module with property (*).If there are no inhomogeneous tubes in the Auslander-Reiten quiver for A, exceptpossibly the one containingM , then A is of type ~An, and we have checked the claimat the start of the proof.If there is such an inhomogeneous tube, choose a regular simple module X con-tained in this tube, and let A ! B be the corresponding universal localization.Then B is a tame hereditary algebra with one fewer simple module than A by [4,Theorem 4.2]. NowM is in the perpendicular category to X, so it is the restriction



PREPROJECTIVE ALGEBRAS AND DIFFERENTIAL OPERATORS 19of a B-module M 0, and clearly M 0 has property (*). By induction M 0 can be ex-tended to a �0(B)-moduleM 00 which is a brick, and then since �0(A)! �0(B) is aring epimorphism, the restriction ofM 00 to �0(A) is a brick. The claim follows.Theorem 12.3. If Q is an extended Dynkin quiver then Rep(�0(KQ); �)ss is anormal variety.Proof. It is Cohen-Macaulay by Lemma 10.5, so it su�ces to prove that its singularlocus S has dimension at most �1 +Pi �2i . Consider the projection� : Rep(�0(KQ); �)ss ! Rep(KQ; �)ss:Now the general element r of Rep(KQ; �)ss is a brick, so every element x ofthe �bre ��1(r) is a brick. Thus by Lemma 10.3 the map � is smooth at x, soRep(�0(KQ); �)ss is smooth at x. Besides the bricks, there are only �nitely manyGL(�)-orbits of non-bricks in Rep(KQ; �)ss. If OX is one of these orbits, thendim��1(OX ) = dimEnd(X) + dimOX = dimGL(�) =Xi �2i :Now the general element of ��1(OX ) is a brick by the previous lemma, and so��1(OX ) \ S has dimension at most �1 +Pi �2i , as required.Finally we justify our claim that Rep(�0(KQ); �) need not be normal. ByLemma 10.5 the natural scheme structure on Rep(�0(KQ); �) is reduced, and hencein the notation of Section 10, the tangent space at a point x 2 Rep(�0(KQ); �) canbe identi�ed with Ker(d�x). It follows that Rep(�0(KQ); �) is smooth at x if andonly if x is a brick.Now Ringel [12] has pointed out that if Q is extended Dynkin, not of type~An, then there is a KQ-module X of dimension � which is not the restriction ofany brick for �0(KQ). For example, let I be an indecomposable injective KQ-module of defect � 2, say of dimension vector �. Then � � � is a positive root,so is the dimension vector of an indecomposable P , necessarily preprojective. LetX = P � I. The condition on defect implies that Hom(X; I) has dimension at least2, so Hom(P; I) 6= 0, and hence X has a non-zero endomorphism � which kills I andhas image contained in I. By Lemmas 1.4 and 2.2, a �0(KQ)-module structure onX is determined by a map ��X ! X. Now since ��I = 0 and Hom(��P; P ) = 0,it is easy to see that � is a �0(KQ)-endomorphism.Now the inverse image of the GL(�)-orbit of X under the projectionRep(�0(KQ); �)! Rep(KQ; �)has codimension 1 by the argument of Theorem 12.3. Since all points of the inverseimage are singular, Rep(�0(KQ); �) cannot be normal.References[1] G. M. Bergman and W. Dicks, Universal derivations and universal ring constructions,Paci�c J. Math. 79 (1978), 293{337.[2] D. Baer, W. Geigle and H. Lenzing, The preprojective algebra of a tame hereditary algebra,Commun. Algebra 15 (1987), 425{457.[3] N. Conze, Alg�ebres d'op�erateurs di��erentiels et quotients des alg�ebres enveloppantes, Bull.Soc. math. France 102 (1974), 379{415.[4] W. Crawley-Boevey, Regular modules for tame hereditary algebras, Proc. London Math.Soc. 62 (1991), 490{508.[5] W. Crawley-Boevey and M. P. Holland, Noncommutative deformations of Kleinian singu-larities, Duke Math. J. 92 (1998), 605{635.[6] J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8(1995), 251{289.
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