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A ’quiver’ is a directed graph, and a representation is defined by a vector

space for each vertex and a linear map for each arrow. The theory of

representations of quivers touches linear algebra, invariant theory, finite

dimensional algebras, free ideal rings, Kac-Moody Lie algebras, and many

other fields.

These are the notes for a course of eight lectures given in Oxford in

spring 1992. My aim was the classification of the representations for the
~ ~ ~ ~ ~

Euclidean diagrams A , D , E , E , E . It seemed ambitious for eight
n n 6 7 8

lectures, but turned out to be easier than I expected.

The Dynkin case is analysed using an argument of J.Tits, P.Gabriel and

C.M.Ringel, which involves actions of algebraic groups, a study of root

systems, and some clever homological algebra. The Euclidean case is treated

using the same tools, and in addition the Auslander-Reiten translations
-� , � , and the notion of a ’regular uniserial module’. I have avoided the

use of reflection functors, Auslander-Reiten sequences, and case-by-case

analyses.

The prerequisites for this course are quite modest, consisting of the basic
1

notions about rings and modules; a little homological algebra, up to Ext
n

and long exact sequences; the Zariski topology on
�
; and maybe some ideas

from category theory.

In the last section I have listed some topics which are the object of

current research. I hope these lectures are a useful preparation for

reading the papers listed there.

William Crawley-Boevey,

Mathematical Institute, Oxford University

24-29 St. Giles, Oxford OX1 3LB, England
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§1. Path algebras

Once and for all, we fix an algebraically closed field k.

DEFINITIONS.

(1) A quiver Q = (Q ,Q ,s,t:Q � � � � � � � � � � � Q ) is given by
0 1 1 0

a set Q of vertices, which for us will be {1,2,...,n}, and
0

a set Q of arrows, which for us will be finite.
1

An arrow � starts at the vertex s( � ) and terminates at t( � ). We sometimes
�

indicate this as s( � ) � � � � � � � � � � � � � � � � � � � � � t( � ).

(2) A non-trivial path in Q is a sequence � ... � (m � 1) of arrows which
1 m

satisfies t( � )=s( � ) for 1 � i<m. Pictorially
i+1 i

� � �
1 2 m• ��� � � � � � � � � � � � � � � • ��� � � � � � � � � � � � � � � ... ��� � � � � � � � � � � � � � � •

This path starts at s( � ) and terminates at t( � ). For each vertex i we
m 1

denote by e the trivial path which starts and terminates at i. We use the
i

notation s(x) and t(x) to denote the starting and terminating vertex of a

path x. Note that the arrows in a path are ordered in the same way as one

orders a composition of functions.

(3) The path algebra kQ is the k-algebra with basis the paths

in Q, and with the product of two paths x,y given by

� obvious composition (if t(y)=s(x))
xy =

�
	
0 (else)

This is an associative multiplication.

� �
For example if Q is the quiver 1 � � � � � � � � � � � 2 � � � � � � � � � � � 3 then kQ has basis the paths

e ,e ,e , � , � and ��� . The product ��� of the paths � and � is the path ��� . On
1 2 3

the other hand the product ��� is zero. Some other products are ��� =0, e � =0,
1

e � = � , � e = � , e ( ��� )= ��� , e e =e , e e =0, etc.
2 1 3 1 1 1 1 2
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EXAMPLES.

(1) If Q consists of one vertex and one loop, then kQ � k[T]. If Q has one

vertex and r loops, then kQ is the free associative algebra on r letters.

(2) If there is at most one path between any two points, then kQ can be

identified with the subalgebra

{C � M (k)
�
C =0 if no path from j to i}

n ij

of M (k). If Q is 1 � � � � � � � � � � � 2 � � � � � � � � � � � ... � � � � � � � � � � � n this is the lower triangular matrices.
n

IDEMPOTENTS. Set A=kQ.
2

(1) The e are orthogonal idempotents, ie e e = 0 (i � j), e = e .
i i j i i

n
(2) A has an identity given by 1 = � e .

i=1 i

(3) The spaces Ae , e A, and e Ae have as bases the paths starting at i
i j j i

and/or terminating at j.

n
(4) A = � Ae , so each Ae is a projective left A-module.

i=1 i i

(5) If X is a left A-module, then Hom (Ae ,X) � e X.
A i i

(6) If 0 � f � Ae and 0 � g � e A then fg � 0.
i i

PROOF. Look at the longest paths x,y involved in f,g. In the product fg the

coefficient of xy cannot be zero.

(7) The e are primitive idempotents, ie Ae is a indecomposable module.
i i

2
PROOF. If End (Ae ) � e Ae contains idempotent f, then f =f=fe , so

A i i i i
f(e -f)=0. Now use (6).

i

(8) If e � Ae A then i=j.
i j

PROOF. Ae A has as basis the paths passing through the vertex j.
j

(9) The e are inequivalent, ie Ae � Ae for i � j.
i i j

PROOF. Thanks to (5), inverse isomorphisms give elements f � e Ae , g � e Ae
i j j i

with fg=e and gf=e . This contradicts (8).
i j
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PROPERTIES OF PATH ALGEBRAS.

These are exercises, but some are rather testing.

(1) A is finite dimensional � Q has no oriented cycles.

(2) A is prime (ie IJ � 0 for two-sided ideals I,J � 0) � � i,j � path i to j.

(3) A is left (right) noetherian � if there is an oriented cycle through i,

then only one arrow starts (terminates) at i.

(4) rad A has basis {paths i to j
�
there is no path from j to i}.

(5) The centre of A is k � k � ... � k[T] � k[T] � ..., with one factor for each

connected component C of Q, and that factor is k[T] � C is an oriented

cycle.

REPRESENTATIONS.

We define a category Rep(Q) of representations of Q as follows.

A representation X of Q is given by a vector space X for each i � Q and a
i 0

linear map X :X � � � � � � � � � � � X for each � � Q .� s( � ) t( � ) 1

A morphism � :X � � � � � � � � � � � X � is given by linear maps � :X � � � � � � � � � � � X � for each i � Q
i i i 0

satisfying X ��� = � X for each � � Q .� s( � ) t( � ) � 1

The composition of � with � :X � � � � � � � � � � � � X � is given by ( �
	�� ) = ��	�� .
i i i

EXAMPLE. Let S(i) be the representation with

� k (j=i)
S(i) =

�
S(i) =0 (all � � Q ).

j � 1

	
0 (else)

EXERCISE. It is very easy to compute with representations. For example let

Q be the quiver • ��� � � � � � � � � �• � � � � � � � � � � � •, and let X and Y be the representations

1 1 1
k ��� � � � � � � � � �k � � � � � � � � � � � k k ��� � � � � � � � � �k � � � � � � � � � � � 0.

Show that Hom(X,Y) is one-dimensional, and that Hom(Y,X)=0.
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LEMMA. The category Rep(Q) is equivalent to kQ-Mod.

PROOF. We only give the construction. If X is a kQ-module, define a

representation X with

X = e X
i i

X (x) = � x = e � x � X for x � X .� t( � ) t( � ) s( � )

If X is a representation, define a module X via� �
n i iX= � X . Let X � � � � � � � � � � � X � � � � � � � � � � � X be the canonical maps.
i=1 i i i

� ... � x = � X ...X � (x)
1 m t( � ) � � s( � )

1 1 m m
e x = ��� (x),
i i i

It is straightforward, but tedious, to check that these are inverses and

that morphisms behave, etc. We can now use the same letter for a module and

the corresponding representation, ignoring the distinction.

EXAMPLE. Under this correspondence, the representations S(i) are simple

modules. Moreover, if Q has no oriented cycles, it is easy to see that the

S(i) are the only simple modules.

DEFINITIONS.

(1) The dimension vector of a finite dimensional kQ-module X is the vector
n

dim X � � , with

(dim X) = dim X = dim e X = dim Hom(Ae ,X).
i i i i

n
Thus dim X = � (dim X) .

i=1 i

n n
(2) The Euler form is < � , � > = � ��� - � � � for � , � ��� .

i=1 i i � � Q1 s( � ) t( � )
n

This is a bilinear form on � .

n
(3) The Tits form is q( � ) = < � , � >. This is a quadratic form on � .

(4) The Symmetric bilinear form is ( � , � ) = < � , � > + < � , � >.
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THE STANDARD RESOLUTION.

Let A=kQ. If X is a left A-module, there is an exact sequence
n

f g
0 � � � � � � � � � � � � Ae � e X � � � � � � � � � � � � Ae � e X � � � � � � � � � � � X � � � � � � � � � � � 0

t( � ) k s( � ) i k i� � Q1 i=1

where g(a � x) = ax for a � Ae , x � e X, and
i i

f(a � x) = a ��� x - a ��� x for a � Ae and x � e X
t( � ) s( � )

in s( � ) t( � ) component.

PROOF. Clearly g 	 f=0 and g is onto. If
�
is an element of the middle term

of the sequence, we can write it uniquely in the form

n�
= � � a � x (x � e X almost all zero)

a a s(a)
i=1 paths a with s(a)=i

and define degree(
�
) = length of the longest path a with x � 0.

a

If a is a non-trivial path with s(a)=i, then we can express it as a product

a=a � � with � an arrow with s( � )=i, and a � another path. Viewing a ��� x as an
a

element in the � ’th component of left hand term, we have

f(a ��� x ) = a � x - a ����� x .
a a a

We claim that
�
+ Im(f) always contains an element of degree 0. Namely, if

�
has degree d>0, then

n�
- f( � � a ��� x )

a
i=1 paths a with s(a)=i and length d

has degree < d, so the claim follows by induction.

Im(f)=Ker(g): If
� � Ker(g), let

� � � � +Im(f) have degree zero. Thus

0 = g(
�
) = g(

� � ) = g( � e � x � ) = � x �
i i e e

i i
n

Now this belongs to � X , so each term in the final sum must be zero.
i=1 i

Thus
� � =0, and the assertion follows.

Ker(f)=0: we can write an element
� � Ker(f) in the form

�
= � � a � x (x � e X almost all 0).� � Q paths a with s(a)=t( � ) � ,a � ,a s( � )

1
Let a be a path of maximal length such that x � 0 (some � ). Now� ,a

f(
�
) = � � a ��� x - � � a ��� x� a � ,a � a � ,a

so the coefficient of a � in f(
�
) is x . A contradiction.� ,a
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CONSEQUENCES.
i

(1) If X is a left A-module, then proj.dim X � 1, ie Ext (X,Y)=0
�
Y,i � 2.

PROOF. f and g are A-module maps and Ae � V is isomorphic to the direct sum
i

of dim V copies of Ae , so is a projective left A-module. Thus the standard
i

resolution is a projective resolution for X.

(2) A is hereditary, ie if X � P with P projective, then X is projective.
1 2

PROOF. Ext (X,Y) � Ext (P/X,Y) = 0
�
Y.

1
(3) If X,Y are f.d., then dim Hom(X,Y) - dim Ext (X,Y) = <dim X,dim Y>.

PROOF. Apply Hom(-,Y) to the standard resolution:

1
0 � � � � � � Hom(X,Y) � � � � � � Hom( � Ae � e X,Y) � � � � � � Hom( � Ae � e X,Y) � � � � � � Ext (X,Y) � � � � � � 0.

i i k i � t( � ) k s( � )
Now dim Hom(Ae � e X,Y) = (dim e X)(dim Hom(Ae ,Y)) = (dim X) (dim Y) .

i j j i j i

1
(4) If X is f.d., then dim End(X) - dim Ext (X,X) = q(dim X).

PROOF. Put X=Y in (3).

REMARK.

Let i be a vertex in Q and suppose that either no arrows start at i, or no

arrows terminate at i. Let Q � be the quiver obtained by reversing the

direction of every arrow connected to i. We say that Q � is obtained from Q

be reflecting at the vertex i. The two categories Rep(Q) and Rep(Q � ) are

closely related, by means of so-called reflection functors. See

I.N.Bernstein, I.M.Gelfand and V.A.Ponomarev, Coxeter functors and

Gabriel’s Theorem, Uspekhi Mat. Nauk. 28 (1973), 19-33, English Translation

Russ. Math. Surveys, 28 (1973), 17-32.
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§2. Bricks

In this section we consider finite dimensional left A-modules with A an

hereditary k-algebra. In particular the results hold when A is a path

algebra. We recall the Happel-Ringel Lemma and another lemma due to Ringel.

INDECOMPOSABLE MODULES.

Recall Fitting’s Lemma, that X is indecomposable � End(X) is a local ring,

ie End(X) = k1 +rad End(X), since the field k is algebraically closed.
X

Any module can be written as a direct sum of indecomposable modules, and by

the Krull-Schmidt Theorem the isomorphism types of the summands and their

multiplicities are uniquely determined.

We say that X is a brick if End(X)=k. Thus a brick is indecomposable.

1
LEMMA 1. Suppose X,Y are indecomposable. If Ext (Y,X)=0 then any non-zero

map � :X � � � � � � � � � � � Y is mono or epi.

PROOF. We have exact sequences

�
:0 � � � � � � � � � � � Im( � ) � � � � � � � � � � � Y � � � � � � � � � � � Cok( � ) � � � � � � � � � � � 0 and � :0 � � � � � � � � � � � Ker( � ) � � � � � � � � � � � X � � � � � � � � � � � Im( � ) � � � � � � � � � � � 0.
1

From Ext (Cok( � ), � ) we get

1 f 1
... � � � � � � � � � � � Ext (Cok( � ),X) � � � � � � � � � � � Ext (Cok( � ),Im( � )) � � � � � � � � � � � 0.

so
�
= f( � ) for some � . Thus there is commutative diagram

�� :0 � � � � � � � � � � � X � � � � � � � � � � � Z � � � � � � � � � � � Cok( � ) � � � � � � � � � � � 0
��� ��� �� � ��

�
:0 � � � � � � � � � � � Im( � ) � � � � � � � � � � � Y � � � � � � � � � � � Cok( � ) � � � � � � � � � � � 0

Now the sequence�
�
	�
�
� ( � -

�
)

0 � � � � � � � � � � � X � � � � � � � � � � � � � � � � � � � � � � � � � � Z � Im( � ) � � � � � � � � � � � � � � � � � � � � � � � � � � Y � � � � � � � � � � � 0

1
is exact, so splits since Ext (Y,X)=0.
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If Im( � ) � 0 then X or Y is summand of Im( � ) by Krull-Schmidt. But if � is

not mono or epi, then dim Im( � ) < dim X, dim Y, a contradiction.

SPECIAL CASE. If X is indecomposable with no self-extensions (ie
1

Ext (X,X)=0), then X is a brick.

LEMMA 2. If X is indecomposable, not a brick, then X has a submodule and a

quotient which are bricks with self-extensions.

PROOF. It suffices to prove that if X is indecomposable and not a brick

then there is a proper submodule U � X which is indecomposable and with

self-extensions, for if U is not a brick one can iterate, and a dual

argument deals with the case of a quotient.

Pick � � End(X) with I=Im( � ) of minimal dimension � 0. We have I � Ker( � ), for
2

X is indecomposable and not a brick so � is nilpotent. Now � =0 by
r

minimality. Let Ker( � ) = � K with K indecomposable, and pick j such
i=1 i i

that the composition � : I
� � � � � � � Ker( � ) � � � � � � � � � � � K is non-zero. Now � is mono, for

j�
the map X � � � � � � � � � � � I � � � � � � � � � � � K � � � � � � � X has image Im( � ) � 0 so � mono by minimality.

j

1
We have Ext (I,K ) � 0, for otherwise the pushout

j
r

0 � � � � � � � � � � � � K � � � � � � � � � � � X � � � � � � � � � � � I � � � � � � � � � � � 0
i=1 i � �� �� �

0 � � � � � � � � � � � K � � � � � � � � � � � Y � � � � � � � � � � � I � � � � � � � � � � � 0
j

splits, and it follows that K is summand of X, a contradiction. Now K has
j j

1 1
self-extensions since � induces an epi Ext (K ,K ) � � � � � � � � � � � Ext (I,K ). Finally

j j j
take U=K .

j
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§3. The variety of representations

In this section Q is a quiver and A=kQ. We define the variety of
n

representations of Q of dimension vector � � � , and describe some elementary

properties. We use elementary dimension arguments from algebraic geometry.

The properties we need are listed below.

ALGEBRAIC GEOMETRY.
r�
is affine r-space with the Zariski topology. We consider locally closed

r � � � � �
subsets U in

�
, ie subsets U which are open in their closure U.

A non-empty locally closed subset U is irreducible if any non-empty subset
r

of U which is open in U, is dense in U. The space
�

is irreducible.

The dimension of a non-empty locally closed subset U is

sup{n
� � Z � Z � ... � Z irreducible subsets closed in U}.

0 1 n
� � � � � r

We have dim U = dim U; if W=U � V then dim W = max{dim U,dim V}; the space
�

has dimension r.

r
If an algebraic group G acts on

�
, then the orbits O are locally closed;

� � � � � �O\O is a union of orbits of dimension strictly smaller than dim O; and if

x � O then dim O=dim G-dim Stab (x).
G

n
DEFINITIONS. Let Q be a quiver and � � � . We define

s( � ) t( � )
Rep( � ) = � Hom (k ,k ).� � Q k

1
r

This is isomorphic to
�

where r = � � � .� � Q1 t( � ) s( � )
� i

An element x � Rep( � ) gives a representation R(x) of Q with R(x) = k for
i

1 � i � n, and R(x) = x for � � Q .� � 1

n s n 2
We define GL( � ) = � GL( � ,k). This is open in

�
where s = � � .

i=1 i i=1 i
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THE ACTION.

GL( � ) acts on Rep( � ) by conjugation. Explicitly

-1
(gx) = g x g� t( � ) � s( � )

for g � GL( � ) and x � Rep( � ).

If x,y � Rep( � ), then the set of A-module isomorphisms R(x) � � � � � � R(y) can be

identified with {g � GL( � ) �
gx=y}. It follows that

(1) Stab (x) � Aut (R(x)).
GL( � ) A

(2) There is a 1-1 correspondence between isoclasses of representations X

with dimension vector � and orbits, given by O = {x � Rep( � ) �
R(x) � X}. To

X
see this we only need to realize that every representation of dimension

vector � is isomorphic to some R(x), which follows on choosing a basis.

REMARKS.

(1) Invariant Theory is about polynomial and rational maps � :Rep( � ) � � � � � � � � � � � k
which are constant on GL( � )-orbits. For example, if a = � ... � is an

1 m
oriented cycle, we have a polynomial invariant

f (x) = Trace(x x ...x ),
a � � �

1 2 m
and more generally if � (T) is the characteristic polynomial of � , we have�

i
f (x) = Coefficient of T in � (T).
ai x x ...x� � �

1 2 m

(2) If char k=0, then any polynomial invariant can be expressed as a

polynomial in the f . This has been proved by Sibirski and Procesi in case
a

Q has only one vertex, and in general can be found in L.Le Bruyn &

C.Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc.

317 (1990), 585-598.

(3) If char k � 0 and Q has only one vertex, any polynomial invariant can be

expressed as a polynomial in the f . This is recent work of S.Donkin.
ai

Presumably the restriction on Q is unnecessary.
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1
LEMMA 1. dim Rep( � ) - dim O = dim End (X) - q( � ) = dim Ext (X,X).

X A

PROOF. Say X � R(x). We have

dim O = dim GL( � ) - dim Stab(x) = dim GL( � ) - dim Aut (X)
X A

s
Now GL( � ) is non-empty and open in

�
, so dense, so dim GL( � ) = s.

Similarly Aut (X) is non-empty and open in End (X), so dense, so
A A

dim Aut(x) = dim End(X). The assertion follows.

CONSEQUENCES.

(1) If � � 0 and q( � ) � 0, then there are infinitely many orbits in Rep( � ).
PROOF. End (X) � 0 so dim O < dim Rep( � ).

A X

(2) O is open � X has no self-extensions.
X

1 � � � � � �
PROOF. By the lemma, Ext (X,X)=0 � dim O =dim Rep( � ) � dim O =dim Rep( � ).

X X� � � � � � � � � � � �
If dim O =dim Rep( � ) then O =Rep( � ), since a proper closed subset of an

X X
irreducible subset has strictly smaller dimension. Now O is open in Rep( � )

X
since it is locally closed. Conversely, if O is open in Rep( � ) then

X� � � � � �O =Rep( � ) since Rep( � ) is irreducible. Thus their dimensions are certainly
X

equal.

(3) There is at most one module without self-extensions of dimension � (up

to isomorphism).
� � � � � �

PROOF. If O � O are open, then O � Rep( � )\O , and so O � Rep( � )\O , which
X Y X Y X Y

contradicts the irreducibility of Rep( � ).

LEMMA 2. If
�
:0 � � � � � � � � � � � U � � � � � � � � � � � X � � � � � � � � � � � V � � � � � � � � � � � 0 is a non-split exact sequence, then

� � � � � �O � O \O .
U � V X X

PROOF. For each vertex i, identify U as a subspace of X . Choose bases of
i i

the U and extend to bases of X . Then X � R(x) with
i i

�
u w 	� �

x =
� �

� 0 v� �
� ���
0 	

with U � R(u) and V � R(v). For 0 �
�

� k define g � GL( � ) via (g ) = . Then
� �

� �
0 1 ��

u

�
w 	� �

(g x) =
� ��

� 0 v� �
�
so the closure of O contains the point with matrices

X

13



�
u 0 	�� �
0 v� �
�

which corresponds to U � V.

Finally Hom(
�
,U) gives an exact sequence

f 1
0 � � � � � � � � � � � Hom(V,U) � � � � � � � � � � � Hom(X,U) � � � � � � � � � � � Hom(U,U) � � � � � � � � � � � Ext (V,U),

so

dim Hom(V,U) - dim Hom(X,U) + dim Hom(U,U) - dim Im(f) = 0,

but f(1 )=
� � 0, so dim Hom(X,U) � dim Hom(U � V,U), and hence X � U � V.

U

CONSEQUENCES.

(1) If O is an orbit in Rep( � ) of maximal dimension, and X=U � V, then
X

1
Ext (V,U)=0.

A � � � � � �
PROOF. If there is non-split extension 0 � � � � � � � � � � � U � � � � � � � � � � � E � � � � � � � � � � � V � � � � � � � � � � � 0 then O � O \O , so

X E E
dim O < dim O .

X E

(2) If O is closed then X is semisimple.
X

REMARKS.

(1) Suppose Q has no oriented cycles. Let z � Rep( � ) be the element with all

matrices z =0. We can easily show that z is in the closure of every orbit,�
and it follows that there are no non-constant polynomial invariants.

Moreover, an orbit O is closed � X is semisimple, for the only semisimple
X

module of dimension � is R(z), and {z} is clearly a closed orbit.

(2) If Q is allowed to have oriented cycles, x,x � � Rep( � ) and R(x) and R(x � )
are non-isomorphic semisimple modules, then there is a polynomial invariant

� (of the form f ) with � (x) � � (y). In case Q has only one vertex and
ai

char k=0 this is proved in §12.6 of M.Artin, On Azumaya algebras and finite

dimensional representations of rings, J.Algebra 11 (1969), 532-563, but it

seems to be true in general. It follows that O is closed � X is
X

semisimple.

14



§4. Dynkin and Euclidean diagrams

In this section we give the classification of graphs into Dynkin,

Euclidean, and ’wild’ graphs, and in the first two cases we study the

corresponding root system.

DEFINITIONS.

Let � be finite graph with vertices {1,..,n}. We allows loops and multiple

edges, so that � is given by any set of natural numbers

n = n = the number of edges between i and j.
ij ji

n 2
Let q( � ) = � � - � n ���

i=1 i i � j ij i j

n
Let (-,-) be the symmetric bilinear form on � with

� -n (i � j)
ij

( � , � ) =
�

i j

	
2 - 2n (i=j)

ii
th

where � is the i coordinate vector.
i

Note that knowledge of any one of � , q or (-,-) determines the others,
1

since q( � ) = � � � � �( � , � ) and ( � , � ) = q( � + � )-q( � )-q( � ).
2

If Q is a quiver and � is its underlying graph, then (-,-) and q are the

same as before. The bilinear form <-,->, however, depends on the

orientation of Q.

n
We say q is positive definite if q( � )>0 for all 0 � � � � .

n
We say q is positive semi-definite if q( � ) � 0 for all � � � .

n
The radical of q is rad(q) = { � � � �

( � ,-) = 0}.
n n

We have a partial ordering on � given by ��� � if � - � � � .
n

We say that � � � is sincere if each component is non-zero.

LEMMA. If � is connected and ��� 0 is a non-zero radical vector, then � is
n

sincere and q is positive semi-definite. For � � � we have

q( � )=0 ��� ��� � ��� � rad(q).

15



PROOF. By assumption 0 = ( � , � ) = (2-2n ) � - � n � .
i ii i j � i ij j

If � =0 then � n � = 0, and since each term in � 0 we have � =0
i j � i ij j j

whenever there is an edge i � � � � � � � � � �j. Since � is connected it follows that � =0, a

contradiction. Thus � is sincere. Now

��� � � 2
i j

�
i j 	� n � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - � � � � � � � � � �

i<j ij 2
�
� � �
i j

� �
j 2 i 2

= � n � � � � � � � � � � � � � � � � - � n (- ��� ) + � n � � � � � � � � � � � � � � � �
i<j ij 2 � i i<j ij i j i<j ij 2 � j

i j

�
j 2

= � n � � � � � � � � � � � � � � � � + � n ���
i � j ij 2 � i i<j ij i j

i

1 2
= � (2-2n ) � � � � � � � � � � � � � � � � � + � n ��� = q( � ).

i ii i 2 � i i<j ij i j
i

It follows that q is positive semi-definite. If q( � )=0 then � / � = � / �
i i j j

whenever there is an edge i � � � � � � � � � � � � � � �j, and since � is connected it follows that

� ��� � . If � ��� � then � � rad(q) since � � rad(q) by assumption. Finally if

� � rad(q) then certainly q( � )=0.

CLASSIFICATION. Suppose � is connected.

(1) If � is Dynkin then q is positive definite. By definition the Dynkin

diagrams are:
• �

A • � � � � � � � � � �• � � � � � � � � � �• ... � � � � � � � � � �• D • � � � � � � � � � �• ����� � � � � � � � � � �•
n n �•

• • •� � �
E • � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• E • � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• E • � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �• � � � � � � � � � �•
6 7 8

(2) If � is Euclidean, then q is positive semi-definite and rad(q)= � � . By

definition the Euclidean diagrams are as below. We have marked each vertex

i with the value of
�
. Note that

�
is sincere and

� � 0.
i

1 � � � � � � � � � � � � � � � � � � � �1 1 1
~ � �

~
� �

A 1 1 (m � 0) D 2 � � � � � � � � � �2 ����� � � � � � � � � � �2 (m � 4) (n=m+1 vertices)
m

� � m � �
1 � � � � � � � � � � � � � � � � � � � �1 1 1

1 2 3
~ � ~ � ~ �
E 2 E 1 � � � � � � � � � �2 � � � � � � � � � �3 � � � � � � � � � �4 � � � � � � � � � �3 � � � � � � � � � �2 � � � � � � � � � �1 E 2 � � � � � � � � � �4 � � � � � � � � � �6 � � � � � � � � � �5 � � � � � � � � � �4 � � � � � � � � � �3 � � � � � � � � � �2 � � � � � � � � � �1
6 � 7 8

1 � � � � � � � � � �2 � � � � � � � � � �3 � � � � � � � � � �2 � � � � � � � � � �1
~ ~

Note that A has one vertex and one loop, and A has two vertices joined by
0 1

two edges.

(3) Otherwise, there is a vector ��� 0 with q( � )<0 and ( � , � ) � 0 for all i.
i
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PROOF.

(2) By inspection the given vector
�
is radical, eg if there are no loops

or multiple edges, we need to check that

2
�

= � �
.

i neighbours j of i j

Now q is positive semi-definite by the lemma. Finally, since some
�
=1,

i
n

rad(q) = � ��� � = � � .
~

(1) Embed the Dynkin diagram in the corresponding Euclidean diagram � , and
~

note that the quadratic form for � is strictly positive on non-zero,

non-sincere vectors.

(3) It is not hard to show that � has a Euclidean subgraph �
� , say with

radical vector
�
. If all vertices of � are in �
� take � = � . If i is a vertex

not in �
� , connected to �
� by an edge, take � =2 � + �
i

EXTENDING VERTICES.

If � is Euclidean, a vertex e is called an extending vertex if
�
=1. Note
e

(1) There always is an extending vertex.

(2) The graph obtained by deleting e is the corresponding Dynkin diagram.

NOW SUPPOSE that � is Dynkin or Euclidean, so q is positive semi-definite.

ROOTS.
n

We define
�
= { � � � � � � 0, q( � ) � 1}, the set of roots.

A root � is real if q( � )=1 and imaginary if q( � )=0.

REMARK.

One can define roots for any graph � , and more generally for valued

graphs (in which situation the Dynkin diagrams B ,C ,F ,G also arise). In
n n 4 2

case the graph has no loops, this can be found in Kac’s book on infinite

dimensional Lie algebras. In case there are loops, the definition can be

found in V.G.Kac, Some remarks on representations of quivers and infinite

root systems, in Springer Lec. Notes 832.
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PROPERTIES.

(1) Each � is a root.
i

(2) If � � � � {0}, so are - � and � + � with � � rad(q).
PROOF. q( ��� � ) = q( � )+q( � ) � ( � , � ) = q( � ).

��� (Dynkin)
(3) {imaginary roots} =

�
	
{r
� �

0 � r � � } (Euclidean)
PROOF. Use the lemma.

(4) Every root � is positive or negative.
+ - + -

PROOF. Let � = � - � where � , � � 0 are non-zero and have disjoint support.
+ -

Clearly we have ( � , � ) � 0, so that

+ - + - + -
1 � q( � ) = q( � ) + q( � ) - ( � , � ) � q( � ) + q( � ).

+ -
Thus one of � , � is an imaginary root, and hence is sincere. This means

that the other is zero, a contradiction.

(5) If � is Euclidean then (
� � {0})/ � � is finite.

PROOF. Let e be an extending vertex. If � is a root with � =0, then
�
- � and

e�
+ � are roots which are positive at the vertex e, and hence are positive

roots. Thus

n
{ � � � � {0}

� � =0} � { � � � �
-
� � ��� � }

e

which is finite. Now if � � � � {0} then � - � �
belongs to the finite set

e
{ � � � � {0}

� � =0}.
e

(6) If � is Dynkin then
�
is finite.

~
PROOF. Embed � in the corresponding Euclidean graph � with extending vertex

~
e. We can now view a root � for � as a root for � with � =0, so the result

e
follows from (5).
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§5. Finite representation type

In this section we combine almost everything that we have done so far in

order to prove Gabriel’s Theorem. The proof given here is due to J.Tits,

P.Gabriel, and the key step to C.M.Ringel, Four papers on problems in

linear algebra, in I.M.Gelfand, ’Representation Theory’, London Math. Soc.

Lec. Note Series 69 (1982).

THEOREM 1. Suppose Q is a quiver with underlying graph � Dynkin. The

assignment X � � � � � � � dim X induces a bijection between the isoclasses of

indecomposable modules and the positive roots of q.

PROOF.

If X is indecomposable, then X is a brick, for otherwise by §2 Lemma 2

there is Y � X a brick with self-extensions, and then
1

0 < q(dim Y) = dim End(Y) - dim Ext (Y,Y) � 0.

If X is indecomposable then it has no self-extensions and dim X is a
1

positive root, for 0 < q(dim X) = 1 - dim Ext (X,X).

If X,X � are two indecomposables with the same dimension vector, then X � X �
by §3 Lemma 1.

If � is a positive root, then there is an indecomposable X with dim X = � .
To see this, pick an orbit O of maximal dimension in Rep( � ). If X

X
1 1

decomposes, X=U � V then Ext (U,V)=Ext (V,U)=0 by §3 Lemma 2. Thus

1 = q( � ) = q(dim U) + q(dim V) + <dim U,dim V> + <dim V,dim U>

= q(dim U) + q(dim V) + dim Hom(U,V) + dim Hom(V,U) � 2,

a contradiction.

THEOREM 2. If Q is a connected quiver with graph � , then there are only

finitely many indecomposable representations � � is Dynkin.
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PROOF. If � is Dynkin then the indecomposables correspond to the positive

roots, and there are only a finite number of roots.

Conversely, suppose there are only a finite number of indecomposables. Any

module is a direct sum of indecomposables, so it follows that there are
n

only finitely many isoclasses of modules of dimension � for all � � � . Thus

there are only finitely many orbits in Rep( � ). By §3 Lemma 1 we have q( � )>0
n

for 0 � � � � . Now the classification of graphs shows that � is Dynkin.
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§6. More homological algebra

FROM NOW ON we suppose that Q is a quiver without oriented cycles, so the

path algebra A=kQ is finite dimensional. We still consider f.d. A-modules.

We study the properties of projective, injective, non-projective, and

non-injective modules. We give a little bit of Auslander-Reiten theory.

DUALITIES.

(1) If X is a left or right A-module, then DX = Hom (X,k), Hom(X,A) and
k

1
Ext (X,A) are all A-modules on the other side.

(2) D is duality between left and right A-modules.

PROOF. Hom(X,Y) � Hom(DY,DX) and DDX � X.

(3) D gives a duality between injective left modules and projective right

modules.
1 1

PROOF. Ext (DX,DY) � Ext (Y,X). This is zero for all Y if and only if DX is

projective, if and only if X is injective.

(4) Hom(-,A) gives a duality between projective left modules and projective

right modules.
n n n

PROOF. If P is a summand of A then Hom(P,A) is a summand of Hom(A ,A) � A ,

so is projective. Now the map P � � � � � � � � � � � Hom(Hom(P,A),A) is an iso for all P,

since it is for P=A.

(5) The Nakayama functor � (-) = DHom(-,A) gives an equivalence from

projective left modules to injective left modules. The inverse functor is
-

� (-) = Hom(D(-),A) � Hom(DA,-).

(6) Hom(X, � P) � DHom(P,X) for X,P left A-modules, P projective.

PROOF. The composition

Hom(P,A) � X � Hom(P,A) � Hom(A,X) � � � � � � � � � � � Hom(P,X)
A A

is an isomorphism, since it is for P=A. Thus

DHom(P,X) � Hom (Hom(P,A) � X,k) � Hom(X,Hom (Hom(P,A),k)) = Hom(X, � P).
k A k
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DEFINITION. The Auslander-Reiten translate of a left A-module X is
1 - 1 1� X = DExt (X,A). We also define � X = Ext (DX,A) � Ext (DA,X).

If 0 � � � � � � � � � � � L � � � � � � � � � � � M � � � � � � � � � � � N � � � � � � � � � � � 0 is an exact sequence then since A is hereditary there

are long exact sequences

0 � � � � � � � � � � � � L � � � � � � � � � � � � M � � � � � � � � � � � � N � � � � � � � � � � � � L � � � � � � � � � � � � M � � � � � � � � � � � � N � � � � � � � � � � � 0
- - - - - -

0 � � � � � � � � � � � � L � � � � � � � � � � � � M � � � � � � � � � � � � N � � � � � � � � � � � � L � � � � � � � � � � � � M � � � � � � � � � � � � N � � � � � � � � � � � 0.

1 -
LEMMA 1. Hom(Y, � X) � DExt (X,Y) � Hom( � Y,X).

-
(Thus � is left adjoint to � )

PROOF. Let 0 � � � � � � � � � � � P � � � � � � � � � � � Q � � � � � � � � � � � X � � � � � � � � � � � 0 be a projective resolution. The sequence

� Q � � � � � � � � � � � � X � � � � � � � � � � � � P � � � � � � � � � � � � Q

is exact, and � Q=0, so we have a commutative diagram with exact rows

0 � � � � � � � � � � � Hom(Y, � X) � � � � � � � � � � � Hom(Y, � P) � � � � � � � � � � � Hom(Y, � Q)� �
1

0 � � � � � � � � � � � DExt (X,Y) � � � � � � � � � � � DHom(P,Y) � � � � � � � � � � � DHom(Q,Y)
1

and hence Hom(Y, � X) � DExt (X,Y). The other isomorphism is dual.

LEMMA 2. Let X be indecomposable.
-

(1) If X is non-projective then Hom(X,P)=0 for P projective, and � � X � X.
-

(2) If X is non-injective then Hom(I,X)=0 for I injective, and � � X � X.

PROOF OF (1). If � :X � � � � � � � � � � � P is non-zero, then Im( � ) is projective since A is

hereditary. Now X � � � � � � � � � � � Im( � ) is epi, so Im( � ) is summand of X. But X is

indecomposable so X � Im( � ), a contradiction.

Let 0 � � � � � � � � � � � P � � � � � � � � � � � Q � � � � � � � � � � � X � � � � � � � � � � � 0 be a projective resolution. Now

0 � � � � � � � � � � � � X � � � � � � � � � � � � P � � � � � � � � � � � � Q � � � � � � � � � � � � X

is exact, and � X=0 since Hom(X,A)=0. Thus we have a commutative diagram

- - - -
� � P � � � � � � � � � � � � � Q � � � � � � � � � � � � � X � � � � � � � � � � � � � P� �
P � � � � � � � � � � � Q � � � � � � � � � � � X � � � � � � � � � � � 0

- -
with exact rows. Since � P is injective, � � P=0, and hence � � X � X.
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-
LEMMA 3. � and � give inverse bijections

�� � � � � � � � � � � � � � � � � � � � �
non-projective indecomposables non-injective indecomposables��� � � � � � � � � � � � � � � � � � � �

-�

PROOF. Let X be a non-projective indecomposable, and write � X as a direct
r

sum of indecomposables, say � X = � Y . Each Y is non-injective, since
i=1 i i

otherwise Hom(Y , � X)=0 by Lemma 1. By part (2) of Lemma 2 it follows that
i

- - r -
each � (Y ) � 0. By part (1) of Lemma 2 we have X � � � X � � � (Y ), and

i i=1 i
since X is indecomposable we must have r=1. Thus � X is a non-injective

-
indecomposable. Dually for � .

REMARKS.
-

(1) For any f.d. algebra there are more complicated constructions � , �

giving the bijection above, which involve D and a transpose operator Tr. In
-

general, however, � and � are not functors, Lemma 1 needs to be modified,

and Lemma 2 is nonsense.

1
(2) If X is indecomposable and non-projective, then Ext (X, � X) � DEnd(X),

and this space contains a special element, the map f � Hom (End(X),k) with
k

f(1 )=1 and f(rad End(X))=1. The corresponding short exact sequence
X

0 � � � � � � � � � � � � X � � � � � � � � � � � E � � � � � � � � � � � X � � � � � � � � � � � 0 is an Auslander-Reiten sequence, which has very special

properties.

Auslander-Reiten sequences exist for any f.d. algebra, and (under the name

’almost split sequences’ and together with the transpose) have been defined

and studied by M.Auslander & I.Reiten, Representation theory of artin

algebras III,IV,V,VI, Comm. in Algebra, 3(1975) 239-294, 5(1977) 443-518,

5(1977) 519-554, 6(1978) 257-300.

(3) The translate � can also be defined as a product of reflection

functors, see the remark in §1 and the paper by Bernstein, Gelfand and

Ponomarev. The equivalence of the two definition was proved by S.Benner and

M.C.R.Butler, The equivalence of certain functors occuring in the

representation theory of artin algebras and species, J. London Math. Soc.,

14 (1976), 183-187.
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INDECOMPOSABLE PROJECTIVES AND INJECTIVES.

(1) The modules P(i) = Ae are a complete set of non-isomorphic
i

indecomposable projective left A-modules.
n

PROOF. The e are inequivalent primitive idempotents and A = � Ae . Now
i i=1 i

use Krull-Schmidt.

(2) The modules I(i) = � (P(i)) = D(e A) are a complete set of
i

non-isomorphic indecomposable injective left A-modules.

PROOF. Use Hom(-,A) and D.

(3) <dim P(i), � > = � = < � ,dim I(i)> for any � .
i

PROOF. If X has dimension � , then
1

<dim P(i), � > = dim Hom(P(i),X) - dim Ext (P(i),X) = dim e X = � .
i i

< � ,dim I(i)> = dim Hom(X,I(i)) = dim Hom(P(i),X) = � .
i

n n
(4) The vectors dim P(i) are a basis of � . The dim I(i) are a basis of � .

PROOF. The module S(i) with dimension vector � has a projective resolution
i

0 � � � � � � � � � � � P � � � � � � � � � � � P � � � � � � � � � � � S(i) � � � � � � � � � � � 0 and an injective resolution 0 � � � � � � � � � � � S(i) � � � � � � � � � � � I � � � � � � � � � � � I � � � � � � � � � � � 0.
1 0 0 1

COXETER TRANSFORMATION.
n n

(1) There is an automorphism c: � � � � � � � � � � � � � with dim � P = - c(dim P) for P

projective.

PROOF. Define c via c(dim P(i)) = - dim I(i).

(2) If X is indecomposable and non-projective then dim � X = c(dim X).

PROOF. Let 0 � � � � � � � � � � � P � � � � � � � � � � � Q � � � � � � � � � � � X � � � � � � � � � � � 0 be a projective resolution. We have an exact

sequence 0 � � � � � � � � � � � � X � � � � � � � � � � � � P � � � � � � � � � � � � Q � � � � � � � � � � � 0 and so

dim � X = dim � P - dim � Q = -c(dim P - dim Q) = -c(dim X).

(3) < � , � > = -< � ,c � > = <c � ,c � >.
PROOF. <dim P(i), � > = < � ,dim I(i)> = -< � ,c(dim P(i))>.

(4) c � = � ��� � rad(q).
PROOF. < � , � -c � >=< � , � >-< � ,c � >=( � , � ).

REMARK. When � is written as a product of reflections, one sees that the

Coxeter transformation is a Coxeter element in the sense of Coxeter groups.
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§7. Euclidean case. Preprojectives and preinjectives

FROM NOW ON we set A=kQ where Q is a quiver without oriented cycles and

with underlying graph � Euclidean. We denote by
�
the minimal positive

imaginary root for � . In this section we describe the three classes of

preprojective, regular and preinjective modules.

DEFINITIONS. If X is indecomposable, then
i -m

(1) X is preprojective � � X=0 for i>>0 � X= � P(j) some m � 0, j.
-i m

(2) X is preinjective � � X=0 for i>>0 � X= � I(j) some m � 0, j.
i

(3) X is regular � � X � 0 for all i � � .
We say a decomposable module X is preprojective, preinjective or regular if

each indecomposable summand is.

The defect of a module X is <
�
,dim X> = -<dim X,

�
>.

N
LEMMA 1. There is N>0 such that c dim X = dim X for regular X.

PROOF. Recall that c � = � if and only if � is radical, and that q(c � )=q( � ).
Thus c induces a permutation of the finite set

� � {0}/ � � . Thus there is some
N N

N>0 with c the identity on
� � {0}/ � � . Since � � � it follows that c is the

i
n

identity on � / � � .
N iN

Let c dim X - dim X = r
�
. An induction shows that c dim X = dim X + ir

�
for all i � � . If r<0 this is not positive for i>>0, so X must be

preprojective. If r>0 this is not positive for i<<0, so X is preinjective.

Thus r=0.
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LEMMA 2. If X is indecomposable, then X is preprojective, regular or

preinjective according as the defect of X is -ve, zero or +ve.

PROOF. If X is preprojective then defect < 0, since

-m -m m
<dim � P(j),

�
>=<c (dim P(j)),

�
>=<dim P(j),c

�
>=<dim P(j),

�
>=
�
>0.

i

Similarly preinjectives have defect > 0. If X is regular with dimension
N N-1

vector � , then c � = � . Let � = � +..+c � . Clearly c � = � , so that � =r � . Now

N-1 i
0 = < � , � > = � <c � , � > = N< � , � >,

i=0

so < � , � >=0, ie X has defect zero.

LEMMA 3. Let X,Y be indecomposable.
1

(1) If Y is preprojective and X is not, then Hom(X,Y)=0 and Ext (Y,X)=0.
1

(2) If Y is preinjective and X is not, then Hom(Y,X)=0 and Ext (X,Y)=0.

-i i
PROOF. (1) As X is not preprojective, X � � � X for i � 0. Thus

-i i i i
Hom(X,Y) � Hom( � � X,Y) � Hom( � X, � Y) = 0 for i>>0.

1 -
Also Ext (Y,X) � DHom( � X,Y) = 0. (2) is dual.

REMARK. We draw a picture

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� preprojectives � regulars � preinjectives �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

by drawing a dot for each indecomposable module. We draw the projectives at
- -2

the extreme left, then the modules � P(j), then the � P(j), etc. We draw
2

the injectives at the extreme right, then the modules � I(j), then � I(j),

etc. Finally we draw all the regular indecomposables in the middle.

The lemma above, and §6 Lemma 2, say that non-zero maps tend to go from the

left to the right in the picture.
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LEMMA 4. If � is a positive real root, and either < � , � > � 0 or ��� � , then

there is a unique indecomposable of dimension � . It is a brick.

PROOF. If Y is a brick with self-extensions then q(dim Y) � 0 so Y is regular

and of dimension � � .
If X is indecomposable of dimension � , then it is a brick, for otherwise it

has submodule and quotient which are regular of dimension � � . This is

impossible for either X has dimension ��� � , or X is preprojective (so there

is no such submodule), or it is preinjective (so there is no such

quotient). By assumption q( � )=1, so X has no self-extensions, and the

uniqueness follows by the open orbit argument.

For the existence of an indecomposable of dimension vector � , pick an orbit

O in Rep( � ) of maximal dimension. If X decomposes, X=U � V, then
X

1 = q( � ) = q(dim U) + q(dim V) + dim Hom(U,V) + dim Hom(V,U).

Thus, q(dim U)=0, say, so dim U � � � . Now dim V � � � for otherwise dim X � � � and

then q( � )=0. Thus q(dim V)=1 and therefore the Hom spaces must be zero.

Thus <dim V,dim U>=0, so <dim V,
�
>=0. Since also <dim U,

�
>=0 we have

< � , � >=0. Now dim U � � � , so
� � � , which contradicts the assumption on � .
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§8. Euclidean case. Regular modules

In this section we study the category of regular modules. We show that its

behaviour is completely determined by certain ’regular simple’ modules.

PROPERTIES OF REGULAR MODULES.

(1) If � :X � � � � � � � � � � � Y with X,Y regular, then Im( � ) is regular.

PROOF. Im( � ) � Y, so it has no preinjective summand. Also X � � � � � � � � � � � Im( � ), so it

has no preprojective summand.

(2) In the situation above Ker( � ) and Coker( � ) are also regular.

PROOF. 0 � � � � � � � � � � � Ker( � ) � � � � � � � � � � � X � � � � � � � � � � � Im( � ) � � � � � � � � � � � 0 is exact, so Ker( � ) has defect zero. Now

Ker( � ) � X, so Ker( � )=preprojectives � regulars. If there were any

preprojective summand, then the defect would have to be negative. Similarly

for Coker( � ).

(3) If 0 � � � � � � � � � � � X � � � � � � � � � � � Y � � � � � � � � � � � Z � � � � � � � � � � � 0 is exact and X,Z are regular, then so is Y.

PROOF. The long exact sequence shows Hom(Z,Preproj) = 0 = Hom(Preinj,Z).

(4) The regular modules form an extension-closed abelian subcategory of the

category of all modules.

-
(5) � and � are inverse equivalences on this category.

DEFINITION.

A module X is regular simple if it is regular, and has no proper non-zero

regular submodule. Equivalently if defect(X)=0, and defect(Y)<0
�
0<Y<X.
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PROPERTIES. Let X be regular simple, dim X = � .
(1) X is a brick, so � is a root.

i
(2) � X is regular simple for all i � � .

(3) � X � X ��� is an imaginary root.

PROOF. If � X � X then c � = � so � is radical. Conversely, if q( � )=0, then
1

Hom(X, � X) � DExt (X,X) � 0, so X � � X since X and � X regular simple.

N
(4) � X � X.

N
PROOF. We may assume � is a real root. Now < � ,c � >=< � , � >=1, so

N N
Hom(X, � X) � 0, so X � � X.

DEFINITION.

X is regular uniserial if there are regular submodules

0 = X � X � ... � X = X
0 1 r

and these are the ONLY regular submodules of X. We say X has regular

composition factors X ,X /X ,..,X /X (which are clearly regular
1 2 1 r r-1

simples), regular length r, regular socle X and regular top X/X .
1 r-1

LEMMA 1. If X is regular uniserial, S is regular simple, and
f�

:0 � � � � � � � � � � � S � � � � � � � � � � � E � � � � � � � � � � � X � � � � � � � � � � � 0 is non-split, then E is regular uniserial.

PROOF. It suffices to prove that if U � E is regular and U is not contained

in S, then S � U. Thus f(U) � 0, so T � f(U) where T is the regular socle of X,
-1 -1

and so f (T) = S + U
�
f (T).

-
Since � S is regular simple the inclusion T

� � � � � � � X gives an isomorphism
- -

Hom( � S,T) � � � � � � � � � � � Hom( � S,X). Thus it gives an isomorphism

1 - - 1
Ext (X,S) � DHom( � S,X) � DHom( � S,T) � Ext (T,S),

so the pullback sequence

-1
0 � � � � � � � � � � � S � � � � � � � � � � � f (T) � � � � � � � � � � � T � � � � � � � � � � � 0� � �� �
0 � � � � � � � � � � � S � � � � � � � � � � � E � � � � � � � � � � � X � � � � � � � � � � � 0

-1 -1
is non-split. Now we have f (T) = S + U

�
f (T), and this cannot be a

-1
direct sum, so S

�
U
�
f (T) � 0. It follows that S � U.
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LEMMA 2. For each regular simple T and r � 1 there is a unique regular

uniserial module with regular top T and regular length r. Its regular
r-1

composition factors are (from the top) T, � T, ..., � T.

PROOF. Induction on r. Suppose X is regular uniserial of regular length r
r-1

with regular top T and regular socle � T. Let S be regular simple. Now

r� k (S � � T)
1 - - r-1

Ext (X,S) � Hom( � S,X) � Hom( � S, � T) � �
	
0 (else)

r
so there is a non-split sequence

�
:0 � � � � � � � � � � � Y � � � � � � � � � � � E � � � � � � � � � � � X � � � � � � � � � � � 0 if and only if S � � T,

and in this case, since the space of extensions is 1-dimensional, any
1

non-zero
� � Ext (X,S) gives rise to the same module E. It is regular

uniserial by the previous lemma.

THEOREM. Every indecomposable regular module X is regular uniserial.

PROOF. Induction on dim X. Let S � X be a regular simple submodule of X. By
r

induction X/S = � Y is a direct sum of regular uniserials. Now
i=1 i
r

1 1
Ext (X/S,S) � � Ext (Y ,S), 0 � � � � � � � � � � � S � � � � � � � � � � � X � � � � � � � � � � � X/S � � � � � � � � � � � 0 ��� � � � � � (

�
)

i i
i=1

Since X is indecomposable, all
� � 0. Now
i

-� k (if Y has regular socle � S)
1 i

Ext (Y ,S) � �
i

	
0 (else)

-
so all Y have regular socle � S.

i

If r=1 then X is regular uniserial, so suppose r � 2, for contradiction. We

may assume that dim Y � dim Y , and then (by Lemma 2, or more simply, by the
1 2

dual of Lemma 2), there is a map f:Y
� � � � � � � Y . This map induces an isomorphism

1 2
1 1

Ext (Y ,S) � � � � � � � � � � � Ext (Y ,S) so we can use f to adjust the decomposition of X/S
2 1

to make one component
�

zero, a contradiction. Explicitly we write
i

X/S=Y � � Y � ... � Y with Y � ={y +

�
f(y )

�
y � Y } for some

�
� k. We leave the

1 2 r 1 1 1 1 1
details as an exercise.
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DEFINITION.

Given a � -orbit of regular simples, the corresponding tube consists of the

indecomposable regular modules whose regular composition factors belong to

this orbit.

PROPERTIES.

(1) Every regular indecomposable belongs to a unique tube.

(2) Every indecomposable in a tube has the same period p under � .

PROOF. If X is regular uniserial with regular top T and regular length r,
i i

then � X is regular uniserial with regular top � T and regular length r. If
i i� T � T we must have � X � X.

i
(3) If the regular simples in a tube of period p are S = � S, then the

i
modules in the tube can be displayed as below. The symbol obtained by

stacking various S ’s is the corresponding regular uniserial. We indicate
i

the inclusion of the maximal proper regular submodule Y of X by Y
� � � � � � � X, and

the map of X onto the quotient Z of X by its regular socle as X � � � � � � � � � � � Z. The

translation � acts as a shift to the left, and the two vertical dotted

lines must be identified.
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§9. Euclidean case. Regular simples and roots

In this section we show that the tubes are indexed by the projective line,

and that the dimension vectors of indecomposable representations are

precisely the positive roots for � .

CONSTRUCTION.

Let e be an extending vertex, P=P(e), p=dim P. Clearly <p,p>=1=<p,
�
>.

By §7 Lemma 4 there is a unique indecomposable L of dimension
�
+p.

P and L are preprojective, are bricks, and have no self-extensions.

Hom(L,P)=0 for if � :L � � � � � � � � � � � P then Im � is a summand of L, a contradiction.
1

Ext (L,P)=0 since <dim L,dim P>=<p+
�
,p>=<p,p>-<p,

�
>=0.

dim Hom(P,L)=2 since <p,p+
�
> = 2.

LEMMA 1. If 0 � � � Hom(P,L) then � is mono, Coker � is a regular

indecomposable of dimension
�
, and reg.top(Coker � ) � 0.

e

PROOF. Suppose � is not mono. Now Ker � and Im � are preprojective (since

they embed in P and L), and so they have defect � -1. Now the sequence

0 � � � � � � � � � � � Ker ��� � � � � � � � � � � P � � � � � � � � � � � Im ��� � � � � � � � � � � 0 is exact, so

-1 = defect(P) = defect(Ker � ) + defect(Im � ) � -2,

a contradiction.

�
Let X=Coker � , and consider

�
:0 � � � � � � � � � � � P � � � � � � � � � � � L � � � � � � � � � � � X � � � � � � � � � � � 0. Apply Hom(-,P) to get

1
Ext (X,P)=k. Apply Hom(-,L) to get Hom(X,L)=0. Apply Hom(X,-) to get X a

brick.

If X has regular top T, then

dim T = dim Hom(P,T) = <p,dim T> = <p+
�
,dim T> = dim Hom(L,T) � 0.

e
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LEMMA 2. If X is regular, X � 0 then Hom(Coker � ,X) � 0 for some 0 � � � Hom(P,L).
e

1
PROOF. Ext (L,X)=0, so

dim Hom(L,X) = <p+
�
,dim X> = <p,dim X> = dim Hom(P,X) � 0.

Let � , � be a basis of Hom(P,L). These give maps a,b:Hom(L,X) � � � � � � � � � � � Hom(P,X).
-1

If a is an iso, let

�
be an eigenvalue of a b and set � = � -

�
� .

If a is non-iso, set � = � .
� � � � �

Either way, there is 0 � � � Hom(L,X) with �
	�� =0. Thus � :Coker ��� � � � � � � � � � � X.

LEMMA 3. If X is regular simple of period p, then
p-1

dim X + dim � X + ... + dim � X =
�
.

PROOF. Let dim X= � .
If � � 0 there is a map Coker ��� � � � � � � � � � � X which must be onto.

e
If � =0 then

�
- � is a root, and (

�
- � ) =1, so

�
- � is a positive root.

e e
Either way ��� � .
If � = � then X � � X, so we are done. Thus we may suppose � is a real root. Now�
- � is a real root, and <

�
,
�
- � >=0, so by §7 Lemma 4 there is a regular

brick Y of dimension
�
- � . Now

1
< � , � - � > = -1, so 0 � Ext (X,Y) � DHom(Y, � X), so reg.top(Y) � � X

1 - -
<
�
- � , � > = -1, so 0 � Ext (Y,X) � DHom( � X,Y), so reg.socle(Y) � � X.

2 p-1
It follows that Y must at least involve � X, � X,..., � X, so

p-1
dim X + dim � X + ... + dim � X � �

.

Also the sum is invariant under c, so is a multiple of
�
.

CONSEQUENCES.

(1) All but finitely many regular simples have dimension
�
, so all but

finitely many tubes have period one. This follows from §7 Lemma 4.

(2) Each tube contains a unique module in the set
�
= {isoclasses of indecomposable X with dim X=

�
and reg.top(X) � 0}.

e
(3) If X is indecomposable regular, then

dim X � � � � the period of X divides regular length of X, and

dim X � � � regular length X � period of X � X is a brick.
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THEOREM 1. The assignment � � � � � � � � Coker � gives a bijection � Hom(P,L) � � � � � � � � � � � �
, so

the set of tubes is indexed by the projective line.

PROOF. If U is indecomposable regular of dimension
�
and reg.top(U) � 0,

e
then there is a map Coker ��� � � � � � � � � � � U for some � . This map must be epi, since any

proper regular submodule of U is zero at e. Thus the map is an isomorphism.

If 0 � � , �
� � Hom(P,L) and Coker � � Coker �
� , then

1
Hom(L,P) � � � � � � � � � � � Hom(L,L) � � � � � � � � � � � Hom(L,Coker � ) � � � � � � � � � � � Ext (L,P)=0

so the composition L � � � � � � � � � � � Coker �
� � Coker � lifts to map g:L � � � � � � � � � � � L. Thus one

obtains a commutative diagram

�
�
0 � � � � � � � � � � � P � � � � � � � � � � � L � � � � � � � � � � � Coker �
� � � � � � � � � � � � 0

f � � g �� �
�

0 � � � � � � � � � � � P � � � � � � � � � � � L � � � � � � � � � � � Coker � � � � � � � � � � � � 0
Now f,g are non-zero multiples of identity, so � =

�
�
� with 0 �

�
� k.

THEOREM 2.

(1) If X is indecomposable then dim X is a root.

(2) If � is positive imaginary root there are � ly many indecs with dim X= � .
(3) If � is positive real root there is a unique indec with dim X= � .

PROOF.

(1) If X is a brick, this is clear. If X is not a brick, it is regular. Let

X have period p and regular length rp+q with 1<q � p. The submodule Y with

regular length q is a brick, and so dim X = dim Y + r
�
is a root.

(2) � =r � . If T is a tube of period p, then the indecomposables in T of

regular length rp have dimension r
�
. There are infinitely many tubes.

(3) We know there is a unique indecomposable of dimension � if < � , � > � 0 or

��� � , so suppose < � , � >=0 and write � =r � + � with 0 � ��� � a real root. There is a

unique regular indecomposable Y of dimension � , say of period p, and

regular length q. Let X be the regular uniserial containing Y and with

regular length rp+q. Clearly dim X = r
�
+ dim Y = � . It is easy to see that

this is the only indecomposable of dimension � .
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REMARKS.
~

(1) For the Kronecker quiver A
1

� � � � � � � � � � � � � � � �• •,� � � � � � � � � � � � � � � �
the regular simples all have period one. They are�

� � � � � � � � � � � � � � � � 1
k k

�
: � � � .� � � � � � � � � � � � � � � �

�

~
(2) For the 4-subspace quiver, D with the following orientation

4
� � � � � � � � � � � � � � • � ����� � � � � � � � � � �� � � �
• • • •

the real regular simples have period 2, and have dimension vectors

1 1 1 1 1 1
1100 0011 1001 0110 1010 0101

The regular simples of dimension vector
�
are

2� � � � � � � � � � � � � � k � ����� � � � � � � � � � �� � � �
�
1 	

�
0 	

�
1 	

�
1 	

with maps , , , where

�
� k,

�
� 0,1.

k k k k
�
0 � �

1 � �
1 � � � �

(3) One can find lists of regular simples in the tables in the back of

V.Dlab & C.M.Ringel, Indecomposable representations of graphs and algebras,

Mem. Amer. Math. Soc., 173 (1976). For the different graphs � the tubes

with period � 1 have period as follows

~�
p,q if p>0 arrows go clockwise and q>0 go anticlockwise.

m
~�

m-2,2,2
m

~�
3,3,2

6
~�

4,3,2
7

~�
5,3,2

8

One always has � (period-1) = n-2, which can be proved with a little
tubes

more analysis.
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§10. Further topics

In this section I want to list some of the topics which have attracted
interest in the past, and which are areas of present research. The lists of
papers are only meant to be pointers: you should consult the references in
the listed papers for more information.

(1) Kac’s Theorem: for any quiver the dimension vectors of the
indecomposables are the positive roots of the graph.

V.Kac, Infinite root systems, representations of graphs and invariant
theory I,II, Invent. Math 56 (1980), 57-92, J. Algebra 77 (1982),
141-162.

V.Kac, Root systems, representations of quivers and invariant theory, in
Springer Lec. Notes 996 (1983), 74-108.

H.Kraft & Ch.Riedtmann, Geometry of representations of quivers, in
Representations of algebras (ed. P.Webb) London Math. Soc. Lec. Note
Series 116 (1986), 109-145.

(2) Invariant theory and geometry for the action of the group GL( � ) on the
variety Rep( � ).

C.Procesi, The invariant theory of n � n matrices, Adv. Math. 19(1976),
306-381.

C.M.Ringel, The rational invariants of the tame quivers, Invent. Math.,
58(1980), 217-239.

L.Le Bruyn & C.Procesi, Semisimple representations of quivers, Trans. Amer.
Math. Soc. 317 (1990), 585-598.

Ch.Riedtmann & A.Schofield, On open orbits and their complements, J.Algebra
130 (1990), 388-411.

A.Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991),
385-395.

A.Schofield, Generic representations of quivers, preprint.

(3) Construction of the Lie algebra and quantum group of type � from the
representations of a quiver with graph � .

C.M.Ringel, Hall polynomials for the representation-finite hereditary
algebras, Adv. Math. 84 (1990), 137-178.

C.M.Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990),
583-592.

G.Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J.
Amer. Math. Soc. 4 (1991), 365-421.

A.Schofield, Quivers and Kac-Moody Lie algebras, preprint.
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(4) Auslander-Reiten theory for wild quivers. In particular, the behaviour
i

of the functions dim Hom(X, � Y) for fixed X,Y.

C.M.Ringel, Finite dimensional hereditary algebras of wild representation
type, Math.Z., 161 (1978), 235-255.

V.Dlab and C.M.Ringel, Eigenvalues of Coxeter transformations and the
Gelfand-Kirillov dimension of the preprojective algebras, Proc. Amer.
Math. Soc. 83 (1981), 228-232.

D.Baer, Wild hereditary artin algebras and linear methods, Manuscripta
Math. 55 (1986), 68-82.

O.Kerner, Tilting wild algebras, J.London Math.Soc, 39(1989), 29-47.
J.A.de la Peña & M.Takane, Spectral properties of Coxeter transformations

and applications, Arch. Math. 55 (1990), 120-134.
O.Kerner & F.Lukas, Regular modules over wild hereditary algebras,

preprint.

(5) Tame algebras of global dimension 2, but with properties analogous to
those of path algebras: the tame concealed and tubular algebras.

C.M.Ringel, Tame algebras and integral quadratic forms, Springer Lec. Notes
1099 (1984).

C.M.Ringel, Representation theory of finite-dimensional algebras, in
Representations of algebras (ed. P.Webb) London Math. Soc. Lec. Note
Series 116 (1986), 7-79.

I.Assem & A.Skowronski, Algebras with cycle finite derived categories,
Math. Ann., 280 (1988), 441-463.

(6) Interpretation of the representation theory of quivers as
non-commutative algebraic geometry.

H.Lenzing, Curve singularities arising from the representation theory of
tame hereditary artin algebras, in Springer Lec.Notes 1177 (1986),
199-231.

W.Geigle & H.Lenzing, A class of weighted projective curves arising in
representation theory of finite dimensional algebras, in Springer Lec.
Notes 1273 (1987), 265-297.

(7) Tame hereditary algebras when the field is not algebraically closed,
and the more ring-theoretic aspects of hereditary algebras.

V.Dlab & C.M.Ringel, Indecomposable representations of graphs and algebras,
Mem. Amer. Math. Soc., 173 (1976).

C.M.Ringel, Representations of K-species and bimodules, J. Algebra, 41
(1976), 269-302.

V.Dlab & C.M.Ringel, Real subspaces of a vector space over the quaternions,
Can. J. Math. 30 (1978), 1228-1242.

A.Schofield, Universal localization for hereditary rings and quivers, in
Springer Lec. Notes 1197 (1986).

D.Baer, W.Geigle & H.Lenzing, The preprojective algebra of a tame
hereditary Artin algebra, Comm. Algebra 15 (1987), 425-457.

W.Crawley-Boevey, Regular modules for tame hereditary algebras, Proc.
London Math. Soc., 62 (1991), 490-508.
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(8) Infinite dimensional representations, and contrast with the theory of
abelian groups.

C.M.Ringel, Infinite dimensional representations of finite dimensional
hereditary algebras, Symposia Math., 23 (1979), 321-412.

F.Okoh, Indecomposable pure-injective modules over hereditary artin
algebras of tame type, Commun. in Algebra 8 (1980), 1939-1941.

F.Okoh, Separable modules over finite-dimensional algebras, J. Algebra, 116
(1988), 400-414.

~
A.Dean & F.Zorzitto, Infinite dimensional representations of D4, Glasgow

Math. J. 32 (1990), 25-33.
F.Lukas, A class of infinite-rank modules over tame hereditary algebras,

preprint.
D.Happel & L.Unger, A family of infinite-dimensional non-selfextending

bricks for wild hereditary algebras, preprint
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