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These are the notes for a lecture course on the symmetric group, the
general linear group and invariant theory. The aimof the course was to
cover as nuch of the beautiful classical theory as tine allowed, so, for
exanpl e, | have always restricted to working over the conplex nunbers. The
result is a course which requires no previous know edge beyond a snmattering
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[Weyl], although beautifully witten, requires a lot of hard work to read.
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813: the only reference | found for this was [ Gace and Young] where it was

proved using the synbolic nethod.

The | ectures were given at Bielefeld University in the winter senester
1989-90, and this is a nore or less faithful copy of the notes | prepared
for that course. | have, however, reordered sone of the parts, and
rewitten the section on sem sinple al gebras.

The references | found nost useful were:

[H Boerner] "Darstellungen von G uppen" (1955). English translation
"Representations of groups" (North-Holland, 1962, 1969).
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81. SEM SI MPLE ALGEBRAS

The facts about sem sinple al gebras which we shall need for the
symmetric group should be well-known, and need not be repeated here. For
the general |inear group, however, we shall need sonme nore delicate
results, so sonme presentation is necessary. Not knowi ng what to include and

what to exclude, we give a very quick devel opnent of the whole theory here.

All rings R are associative and have an identity which is denoted by 1
or 1R‘ By "nodul e" we always nean |eft nodul e.
Definition. A C-algebra is ring Rwhich is also a C-vector space with
the sane addition, satisfying
A(rr?) = (ar)r” =r(ar’) V r,r’eR and AeC.
One has the obvious notions of subal gebras and al gebra hononorphi sns. W

shall be particularly interested in the case when Ris finite di nensional.

Remar ks and Exanpl es.

(1) Cis a C-algebra. Mn((D) is a C-algebra. If Gis a group, then the
group algebra CGis the C-algebra with basis the elenments of G and

multiplication lifted fromG

(2) If Rand S are C-algebras, then so is RxS. Here the vector space

structure cones fromthe identification of R«<S with ReS.

(3) If 1 =0inRthen Ris the zero ring. Oherw se, for A, ueC we have

M’R = ulR & A

subal gebra of R

iu so we can identify 2eC with MR € R This nakes C a

(4) If Mis an R nodule, then it becones a C-vector space via
Am = (AlR)m V AeC, meM
If Nis another R-nodule, then Horrh(l\/ll\l) is a C-subspace of HonHlVlN). In
particular it is a C-vector space. The structure is given by
(AMf)(m = Af(m =f(xm for meM 2AeC and f € Honh(MN).

(5) If Mis an R-nodul e, then EndR(M is a C-algebra, with

nmul tiplication given by conposition



(fg)(m = f(g(m) for me M f,g e End(M
In particular, if Vis a C-vector space, then Endq:(\/) is a C-algebra. O

C).

IR

course Endq:(\/) Mdimv(
(6) If Ris a C-algebra and X<R is a subset, then the centralizer
cR(X) ={ reR | rx=xr V xeX}
of Xin Ris a C-subalgebra of R In particular this holds for the centre
cR(R) of R

(7) If Ris a C-algebra and Mis an R-nodul e, then the map
o R—>End®(|\/9, r —(m—rmn
is a C-algebra nap. By definition
Edg(M = Cgng (i («(R).
so that

(R < cEnd(D(M(EndR(M).

(8) If Mis an R-nodule, then it is naturally an EndR(M-noduIe with the
action given by evaluation, and this action conmutes with that of R The
i nclusi on above says that the elenents of R act as EndR(M—noduI e
endonorphisnms of M If Nis another R-nobdule, then Horrh( N,M is also an
EndR(M—noduI e, with the action given by conposition.

Lemma 1. If Ris a finite dinmensional C-algebra, then there are only

finitely many isonorphismclasses of sinple R-nodules, and they are finite

di nensi onal .

Proor. If Sis a sinple nodule, pick O#seS and define a map R—S
sending r tors. This is an R nbdule map, and the inage is non-zero, so it
is all of S. Thus di rrzDS = di %R < «. Moreover, S nust occur in any
conposition series of R so by the Jordan-Hdl der Theoremthere are only

finitely many isonorphismclasses of sinple nodul es.

Schur’s Lenma. Let R be a finite dinensional C-al gebra.

(1) If S ¢ T are non-isonorphic sinple nodul es then Horrh(S, T) =0.
(2) If Sis a sinple Rnodule, then EndR(S) = C.

Proor. (2) The usual argunents show that D = EndR(S) is a division ring.



Since Sis finite dinmensional, so also is D, and therefore if deD the
el ement s 1,d,d2, ... cannot all be linearly independant, and so there is
sonme non-zero polynomal p(X) over C with p(d)=0. Since Cis algebraically
closed this polynonmal is a product of linear factors
p(XxX) = c(X—al)...(X-an), 0 #c € C, ap, A€ C

o) (d—allD). ..(d—anlD):O. Now D has no zero-divisors, so one of the terns
nmust be zero. Thus d:ai 1De(I:1D. Since d was arbitrary, D:(DlD.

Definition. An Rnodule is senisinple if it is a direct sumof sinple

subnodul es.

Lemma 2. Subnodul es, quotients and direct suns of sem sinple nodules are

again sem sinple. Every subnodule of a sem sinple nodule is a sunmand.
ProoF. Omitted.

Definition. If Rand S are C-al gebras, and Mand N are an R-nodul e and
an S-nodul e, then MeN (the tensor product over C) has the structure of an
R- nodul e gi ven by

r(men) = rnmen  for reR, meM neN.
and the structure of an S-nodul e given by

s(men) = mesn for seS, meM neN.

Remar ks.
(1) This is conpletely different to the tensor product of two CG nodul es

whi ch we shall consider |ater.

(2) These two actions commute, since
r(s(men)) = r(mesn) = rnesn = s(rnmen) = s(r(n®n)).

Thus the images of Rand S in End(D( MeN) comut e.

(3) If N has basis el,...,emthen the map
Me. .. oM — MeN, (mlmn? |—>ml®e1+...+mm®em
is an isonorphismof Rnodules. Simlarly, if M has basisfl,...,f[then
the map
No. .. eN — MeN, (nl,...,nl) |—>f1®n1+...+fﬁ>n[

i s an isonorphi smof S-nodul es.



Lemma 3. If Mis a senmisinple R nodule, then the eval uati on map

® S ® Hom(S,M — M
. "R
i s an isonorphi smof R-nbdul es and of EndR(M—noduI es. Here S runs over a

conpl ete set of non-isonorphic sinple R nodules, and we are using the

action of Ron S and of EndR(M on Horrh(S, M.

Proor. The nmap is indeed an R-nodul e map and an EndR(M—noduI e map. To
see that it is an isonorphismof vector spaces, one can reduce to the case

when Mis sinple, in which case it follows from Schur’s Lenma.

Lemma 4. If Mis a finite dinmensional sem sinple R nodule, then

EndR(M = g Endq:( Honrh( SSM)
where S runs over a conplete set of non-isonorphic sinple R nodules.

Proor. The product E = Ms End(D( Horrh( S, M) acts naturally on
g S@Horrh(s,l\/p, and since this action commutes with that of R there is a
hormonor phi sm E—>EndR( M which is in fact injective. To showthat it is an
i sonor phi smwe count dinensions. By Lemma 3, Mis isonorphic to the direct
sum of di rrzDHon(S, M copies of each sinple nodule S, and so by Schur’s
Lenmma,
di mEnd (M % T (di myHon(s, M) 2,

which is al so the di nension of E

Definition. Afinite dinensional C-algebra Ris senisinple if Ris a

sem si npl e R-nodul e.

Remar ks.
(1) If Ris a senmisinple algebra, then any R-nodule is senisinple, for
any nodule is a quotient of a free nodule, but these are senisinple.

(2) If Gis afinite group then CGis senisinple by Maschke's Theorem

Artin-Wedderburn Theorem Any finite dinmensional sem sinple C-algebrais

i sonor phic to a product
__h
R = T =1 Endq:( Vi)
where the Vi are finite dinensional vector spaces. Conversely, if R has

this formit is semsinple, the non-zero Vi forma conplete set of



non-i sonorphic sinple R-nodules, and as an R-nodule, R is isonorphic to the

direct sum of di %(Vi) copi es of each Vi .

Proor. W prove the assertions about the product first. Cearly we nmay

suppose that all Vi #0.

The Vi are naturally R-nodules, with the factors other than Endq:(vi)
acting as zero. Now GL(Vi), and hence also R acts transitively on Vi\{O},

and it follows that the Vi are sinple R nodul es.

,1""’ei,rr})’ then the map

R —>v1@...@v1@...@vh@...@v

If the Vi have bases (ei

h!

(g f) = (Tley ). f (e e e

Lm) )
is an R-nodule nap, and is injective, so is an isonorphi smby dinensions.

Thus R is sem sinple.

The Vi are a conplete set of sinple R nodul es by the Jordan-Hol der
Theorem as in Lenmma 1, and they are non-isonorphic since if i# then the
el emrent (0,..,0,1,0,..,0) e R(withthe 1 in the i-th place) annihilates \/J
but not Vi'

If Ris any ring then the natural nmap

«: R— End r— (X+>rx)

(R,
EndR(R)
is an isonmorphism for it is certainly injective, and if 8 lies in the
right hand side, then it commutes with the endonorphisns

fr € EndR(R), fr(x) = Xr.
Now i f reR then
e(r) = e(1lr) =o(f (1)) =f (6(1)) =e6(1)r,

so 6 acts as left nultiplication by 8(1)eR and hence 6 = «(0(1)) € (R,

SO « is surjective.

If now Ris a senisinple C-algebra then EndR(R) is senisinple by Lenma 4
and the proof above, so Ris a senisinple EndR( R) - nodul e. A second
application of Lenma 4 and the isonorphisma shows that R has the required

form



Lemma 5. If Ris semsinple and Mis a finite dinensional R-nodule then

the natural map

«: R— End r— (Mm—rm

EndR(M(M’

is surjective.

Proor. The kernel of this map is the annihilator
I ={reR | r M0}
of M Now R/l is semisinmple, Mis an R/|I-nodul e and
EndR(M = EndR/I(M,
so we can replace R by R'I and hence we may suppose that Mis faithful and

that « is injective.

By Lemmma 4, EndR(M

IR

Ms Endq:(Horrh(S, M), and since Mis faithful, all
t he spaces Horrh(S, M are non-zero, so they are precisely the sinple
EndR(M—noduI es.

By Lemma 3, Mis isonorphic as an EndR(M-noduIe to g S@Horrh(s, M, so
it is the direct sumof di rrzDS copi es of the sinple nodul e Horrh(S,l\/p for
each S. As in Lemma 4 this inplies that

di %EndEndR( M (M = ZS (di %8)2’

but this is the dinension of R, so « is an isonorphism
Finally, we note the follow ng fact

Lemma 6. If Ris a C-algebra and heRis an elenent with hZ:Ah for sone

non-zero AeC, then for any R-nodule M we have an i sonorphism
Horrh(Rh, M = hM
of EndR(M—noduI es.

Proor. Note first that hMis an EndR(M-subnodule of M since if
0 € EndR(M and hm e hMthen e(hn) = he(m) € hM Replacing h by h/Ax we may
suppose that h is idenpotent. Now we have an EndR(M—noduI e map
Honh(Rh, M —hM f +—f (h)
with inverse
hM—)Horrh(Rh, M, m—(r+—rm,

as required.



8§2. YOUNG SYMVETRI ZERS

Recal | that the representations p: G—G (V) of a group G correspond to
CG nodul es by setting gv = p(g)(v) for geG and veV. The trivial
representation is the map G—C” sending all geGto 1; the correspondi ng

CG nodul e is denoted by C.

The synmetric group is

Sn = { bijections {1,...n} — {1,...,n} }

with nmultiplication given by conposition. In this section we conpute its
representations using certain elenents of the group al gebra @Sn called

Young Symmetrizers. One representation, the signature
e: S — {1} givenby e = q (-9)
n o . (i-])
1=i <) =n

is of course well -known.

For convenience, in this section we set A = @Sn. This is a finite

di mensi onal semi sinple C-al gebra by Maschke’'s Theorem

Definition. A partition of nis a sequence A = (Al,hz,...) with Aiew,
Al = AZ = ... and Zi:1 Ai = n. The partitions of n are ordered
| exi cographically, so that
A<u e 3Ji €N such that Aj = ”j for j <i and Ai < M

This is a total ordering on the set of partitions of n

Exanpl e. The partitions of 5 are
(19 < (2,1 < (2% 1) <(3.1%) < (3,2) < (41) < (5).

Definition. If Ais a partition of n, then the Young frane [A] of A is

t he subset
{ Gy i =1, 1= sAi}clelN

We draw a picture for this. For exanple

[(52%1)] =




Definition. A Young tableau X, is a bijection [A]—{1,...,n}. For

A
exanpl e we m ght have
9] 5] 2] 7]10]
B 8 1
(5,22 1) = 476
3

| f ZA is a Young tableau and ¢ € Sn we define a Young tableau GZA by

(6% (x) = o(,(x)) for x e [A].

For each partition we need to pick one representative of all the
correspondi ng tabl eaux, so for definiteness we denote by Zg t he Young

tabl eau nunbered in the order that one reads a book. For exanple

1] 2] 3] 4] 5]
0 _ 6] 7
(5,2°, 1) 8] 9

10

We define subgroups Rom(ZA) and CbI(ZA) of Sn by
= Rom(ZA) s each ig{l,...,n} is in the sane row of ZA and GZA.

= CoI(ZA) s each ig{l,...,n} is in the sane col um of ZA and GZA.

Definition. If ZA is a Young tableau, then the Young symmetrizer is the

el enent
h(ZA) = Y e, re
rewazv ceQM(Zv
of A W also set hA = h(Zg). The rest of this section is devoted to

showi ng that the left ideals in A of the formAhA with A running through

the partitions of n, are a conplete set of non-isonorphic sinple A nodul es.

Exanpl es.
(1) If A =(n) then h = h(ZA) = Yoesh

gh = h for all geSn, so Ah = Ch is the trivial representation of Sn

o is the symmetrizer in A Cearly

(2) If A= (1n) then h = h(ZA) = Yoesn €0 © is the alternizer in A Now

gh = e h for all geSn, so Ah = Ch is the signature representation of Sn

Lemma 1. Let A be a partition of n, ZA a Young tableau and o € Sn
(1) Rom(zh) N CDI(ZA) = {1}.




(2) The coefficient of 1 in h(ZA) is 1

(3) Row(os)) = o Row(%,) o' and col (03) = o Col (%)) ot
(4) h(o%,) = o h(s,) ot

(5) The A-nodul es Ah(ZA) and AhA are isonorphic.

Proor. (5) =, = 022 for sone oeSn. Postrul tiplication by o defines an

A
isonorphisn1Ah(ZA)——eAhA.

Lemma 2. If A = u are partitions of n and =, and ZL are Young tabl eaux

A
with franes [A] and [u], then one of the following is true

(1) there are distinct integers i,j which occur in the sane row of ZA

and the sane col umm of ZL

(2) A = pu and Zu = cmA for sonme r € Rom(ZA) and ¢ € CbI(ZA).
Proor. Suppose (1) fails.

| f Al # Ky t hen Al

two of the nunbers in the first row of ZA are in the sane col umm of ZL, so

> My, SO [nu] has fewer columms than [A], and hence
(1) holds, contrary to the assunption

Thus Al = My and since (1) fails sone q

has the sane el enents nunbers in the first row as ZX

€ Col (Z’) ensures that c, =’
K 17

Now i gnore the first rows of ZA and CIZL' By the sane argunent we find

5 = Hy and can find <, such t hat czclzu have t he sane nunbers in each of

the first two rows.

A

Eventually we find A = p and sone ¢’ € CbI(ZL) such that =, = c’ZL have

A
the sane nunbers in each row. Then rZA = c’ZL for sonme r € Rom(ZA). Finally
3/ = rcZ, where
H A -1 ,-1 -1 -1 -1
c=r "¢’ rer c’CbI(ZL)c’ r=r Cbl(c’ZL)r = CDI(ZA)

since ¢’ € CbI(ZL).

Lemma 3. If o € Sn cannot be witten as rc for any reRom(ZA) and

cerI(ZA) then there are transpositions ueRom(ZA) and verI(ZA) with

uc = oVv.



Proor. (2) fails for &, and ¢%,, so there are i# in the same rowin X

A A

and in the sane columm in GZA' Let u=(i j) and v :o:luo*.

A

Lema 4. Let ZA be a Young tableau and a € A. The followi ng are

equi val ent
(1) rac = €. for all r € Rom(ZA) and ¢ € CbI(ZA).
(2) a =« h(ZA) for sone a € C.

PROCF.

(2)=(1) rh(ZA)c = eoh(zh) since as r’ runs through Rovv(ZA) so does rr”’,

and as ¢’ runs through Col (Z,) so does c’c, with e, =g ,e.
A c’c c’’c
(1)=(2) Say a = ZoeSn a o If o is not of the formrc then there are
transpositions ueRovv(ZA) and veCol (ZA) with uecv = ¢. By assunption
uav = £ a, and the coefficient of o gives a —ga, soa_ =-a, and
% uov vV o o o
hence a, = 0. Now the coefficient of rc in (1) gives a; = e.a . Thus
a = Zr,c a .re = Zr,c €.a, re = a; h(ZA).

Lemma 5. If a € A then h(ZA) a h(ZA) =« h(ZA) for sone a € C.
PrROOF. Let x = h(ZA) a h(ZA). This has property (1) above.
Definition. Let fA = d'”b:(AhA)'

Lema 6.
(1) h(ZA)Z = (nt/f.) h(s,)
(2) fA di vi des n!
(3) h(ZA) Ah(ZA) =C h(ZA).
In particular (fA/n!) h(ZA) is an idenpotent.

PROCF.
(1) Let h = h(ZA). We know t hat h2 = och for sone aeC. Ri ght
mul tiplication by h induces a linear map h: A~—A. For acA we have
(ah)h = «a(ah), so alAh acts as multiplication bonc. Take a basis of Ah and

extend it to a basis of AL Wth respect to this h has matrix
ol *
fA
0 0

10



(fA si nce dinhAh = dinhAhA), so Trace(h) = “fh

Wth respect to the basis Sn of A, h has matrix Hwth

H = coefficient of o in th.
oT

Now H =1 so Trace(h) = n!
oo

(2) The coefficient of 1in h® = ah is

a = Y e € €1

. C c
rl,rzeRom(ZA) Cl’CZGCDI(ZA) r1c1r2c2—1 1 2

(3) By Letma 5 the only other possibility is hAh = 0. But h2 # 0.
Lema 7. Ah(ZA) is a sinple A-nodule.

Proor. Let h = h(ZA). Since Ah is non-zero, and Ais senisinple, it
suffices to prove that Ah is indeconposable. Say Ah = UsV. Then
Ch = hAh = hU + hV,
so one of hU and hV is non-zero. Wthout |oss of generality hU # 0, but
then hU = Ch, so Ah = AhU <€ U, and hence U = Ah and V = 0.

Lemma 8. If A > u are partitions and
h(Zu) A h(ZA) = 0.

and ZL are Young tabl eau, then

A

Proor. Since A>u, by Lemma 2 there are be two integers in the sane row
of ZA and in the sane colum of X . The correspondi ng transposition
T € Rom(ZA) N CDI(ZL). Then
h(Zu) h(ZA) = h(Zu) T T h(ZA) = - h(Zu) h(ZA),
so h(Zu) h(ZA) = 0.

Applying this to ¢, and ZL for ¢ € Sn gi ves

A
0 = h(Z) h(es,) = h() o h(E,) o

so h(Z/) o h(s,) = 0. Thus h(Z)) A N(Z,) = 0.

1

Lemma 9. If A # u are partitions and =, and ZL are Young tabl eau, then

A
Ah(ZA) and Ah(ZL) are not isonorphic.

Proor. W may assune that A > u. If there is an isonorphi sm

11



f . Ah(Z;L) —>Ah(ZA)
of A-nodul es, then
f(ﬂlh(Z;L)) = f(h(Z;L)Ah(Z;L)) = h(Z;L)f(Ah(Z;L)) = h(Z"L)Ah(ZA) =0,

a contradiction.

Remar k. The partitions of n correspond to conjugacy classes in Sn, with

say (5, 22, 1) corresponding to the pernutations in S, . of the form

10
(... YD)

Theorem The left ideals AhA with A running through the partitions of n

are a conpl ete set of non-isonorphic sinple A nodul es.
Proor. They are sinple, non-isonorphic, and the nunber of themis equal

to the nunber of conjugacy classes in Sn, whi ch we know from character

theory is the nunber of sinple A nodules.

12



§3. STANDARD TABLEAUX

This section is not really necessary for the nain devel opnment, but is
i ncl uded because of its cleverness, and because the standard tabl eaux give

an explicit deconposition of tensor space into sinple subnodul es.

Definition. A Young tabl eau ZA is standard if the nunbers increase from

left toright in each row and fromtop to bottomin each colum. The

standard tableaux with franme [A] are ordered so that ZA is smaller than Z%

if it is smaller in the first place that they differ when you read [A] like

a book.

Exanple. For A = (3,2) the standard tabl eaux are

123 < 124 < 125 < 134 < 135
45 35 34 25 24 -

We denote by FA t he nunber of standard tableaux with frame [A]. W shal

2

show t hat FA =f, and as a first step we prove that ) FA = n!. In the next

A
fewlenmas we wite A/u to nean that A is a partition of mand pis a

partition of m1 for sone m and that [u] < [A].

Lemma 1. If A is a partition of mthen F, = Y F .
A K
st Apu

Proor. | f ZA is a standard tabl eau, then Zh_l({l,...,n}l}) is the frane

of a partition p of m1l, and Z_| is a standard tabl eau. And conversely.

Alul

Lemma 2. If A # m are partitions of m then
[{vIivix and v/in} | = |[{z|A T and @/ T} | € {0, 1}.

Proor. If v/ A and v/im then [v] 2 [A]u[n], so there nust be equality

here. Simlarly if A/t and /T then [T] = [A]n[7].

Now [A]u[m] and [A]n[ @] are always frames of partitions, so

thereis ave |[[AJun]| = ml & |[A]n[n]] = m1 «there is a T.

Lemma 3. If A is a partition of mthen (mrl)FA = Y F .
v st via

13



Proor. This is true for m= 1. W prove it by induction, so suppose it

is true for all partitions of m1. Now

Y FV = Y Y Fn by Lemma 1
v st vl v st vl mst vin

[{v]|vl A} | FA + Y Fn'
v, m st viA, vim mE

By i nspecting the Young franes one sees that
[{vivia} | = {zIM T} | + 1,
and using Lenma 2 we get
= [I{rlh/r}|+1] FA + Y Fn
T, T st AT, mT, WEA
= F + Z F
A T, m st AT, /T T
= F, 4+ Y nF by the induction
A T
Tst Mt
= FA + rrFA = (mrl)FA by Lenma 1.
2 _
Lemma 4. Y FA =m

A a partition of m

ProorF. It is true for m= 1. W prove it by induction on m Now
2

FA = Y FAFI by Lemma 1
A a partition of m A a partition of mand A/t
= Y nF2 by Lemma 3.
Lo, T
T a partition of m1
=m by the induction.

Lemma 5. |If ZA > Z% are standard tabl eaux then h(ZA) h(Z%) = 0.

Proor. It suffices to show that there are two nunbers i# in the sane

rowin =/ and in the sane colum in =, for then the transposition t=(i

is

SO

SO

A A
in Rom(Z%) and in CDI(ZA). Thus

h(s;) =t h(}) and h(s,)

- h(z) t,

h(Zﬁ h(Zﬁ :rsz t trmzﬁ
this product is zero.

h(z,) h(=).

Consi der where ZA and Z% first differ. Pictorially we have

14
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= =Z|= X
[A] =
y
where an "=" neans that the two tabl eaux are the sane at that box, and x is
the first place where they differ. Let Zi(x) =i and y = Z%l(i). By the

assunptions, y nust be below and to the left of x; in particular x cannot
be in the first colum or the last row. Let z be the elenent of [A] in the
same row as x and the sanme colum as y, and let j be the common val ue of X

A
and =/ at z. Nowi and j satisfy the assunptions above.

A
Theor em @Sn - e @th(zh) with ZA runni ng over all standard tabl eaux for

all partitions A of n.

Proor. W show first that the sumis direct, so suppose that there is a
non-trivial relation
ra(z)h(z,) =0 (*)
with a(ZA) € @Sn. Pi ck p maxi mal such that sone a(Zu)h(ZA) # 0, and then
pi ck ZL mniml wth respect to a(ZLZh(ZL) # 0. Multiplying (*) on the
ri ght by h(ZL) we obtain a(ZL) h(ZL) =0 by Letma 5 and 82 Lenma 8, so
a(ZL) h(ZL) = 0. Acontradiction

Now @Sn contains @ @th(zh). By the Artin-Weddurburn Theorem @Sn is
i sonor phic as an @Sn—nndule to the direct sum of fA copi es of each ®thh
while in this direct sumthere are FA copi es of ®thh’ so by the Jordan
Hol der Theorem FA = fA' On the other hand
ZAFizn! :thi
so we nust have FA = fA for each A. But this neans that the direct sumis

equal to @SW

Corollary. fA = d'nh(ﬁsnhh) is equal to the nunber FA of standard

tabl eaux with frame [2].

Lemma 6. If Mis a finite dinensional @Sn—nodule, t hen
M:@h@ﬁM

wher e ZA runs over all standard tableaux for all partitions of n

15



Proor. I ) n(ZA) = 0is anon-trivial relation with n(ZA) € h(ZA)IVl
choose p mninmal and then Z;L maxi mal , such that n(Z"L) # 0. Now premultiply
the rel ation by h(Z;L) to obtain a contradiction by Lenma 5 and 82 Lenmma 8.

Thus the sumis direct. Now

® h(ZA)M = @ I—Iorrtsn((Dth(ZA), M by 81 Lenma 6

IR

IR
<

o Hor‘rzDSn [@ (I:th(ZA), M]

and all we need is that the dinensions are equal.

an]DSE](DSn’ M

Exercise. If R = IVE((D) and h,g are idenpotents in Rwith R = RheRg, the
argunent used in the proof above shows that R is isonorphic to the external
direct sumof hR and gR Show, however, that it is still possible that
R # hR+gR

16



84. A CHARACTER FORMULA

Recall that if Mis a finite dinmensional CG nodule, then the
correspondi ng character is
ng):trmm of the map M—M m—gm

It is a class function G—C, so if « is a conjugacy class in G we can

wite XN‘“)'

If Ais a partition of n, the character of the @Sn—nndule ®thh is
denot ed by Xy In this section we derive a very useful fornula which
enabl es one to conpute the XA(“)' In the present course we shall not use
this fornula to conpute any characters explicitly; instead we use it later

to derive Weyl's character fornula for the general |inear group

If awis a conjugacy class in Sn, then « consists of all the pernutations

with a fixed cycle type, which we denote by

nOLn. - 20621061
meani ng that the pernutations involve @ n-cycles, ..., o, 2-cycl es and oy
1-cycles. The nunber of pernutations in « is denoted by N,
n
Lenma 1. n“ = Tl
1727 ... atla2!. ..
ProoF. Any pernutation in o« is one of the n! of the form
() ) ) () ()L
ocl OC2
with the *'s replaced by the nunbers 1,...,n. However, each such
pernutati on can be represented in al!az!...lalzaz... ways by pernuting the
o i-cycles in ai! ways, or rotating an i-cycle in i ways.

Othogonal ity relations.

(1) If A and p are partitions of n then

_Jfn (A=p
Za conj class in Sn Ny XA(“) Xu(“) - { 0 (else)
(2) If « and B are conjugacy classes in Sn, t hen
| =
n./noc (¢ = B)

¥ - X, (@) x,(B) =
A partition of n " A 0 (el se)

17



Proor. Every el enent in Sn is conjugate to its inverse, so

_ -1, _
for g e Sn. Wth this observation these rel ati ons becone the standard

orthogonality relations for finite groups.

Notation. Gven Xx,,...,x_e€ Cand [,...,[ e Z define
_— 1 m 1 m
A m, _ [
Ix 7, ..., x | = det(xi )15iJ i

Usual |y the 4 = 0, in which case it is a honbgeneous pol ynoni al of degree

L+ ..+[_in the x.
1 m i

Exanpl e. The Vander nonde Ixn}l,...,x,lL

Lemma 2. The Vander nonde = ni<j(xi-xj).

Proor. Subtracting the second row fromthe first, the elenent in

position (1,j) is
| ) i-1 j-2 i-1
X1 Xy = (x1 x2)(x1 + X3 % + ...+ Xo )

so the entire first rowis divisible by Xq Xy Thus the deterninant Vis

di visible by x in @[xl,...,xnl. Simlarly for xi—xj with i<j. Since

- X
172
pol ynom al rings are UFDs, V is divisible by the product P. Now V is a

pol ynom al of degree 1+2+...+(m1), which is the degree of the product, so

V = aP for sone aeC. W show by induction on mthat a=1. If mrl then this

is clear. In general, if xnfo t hen expandi ng the deterni nant and using the
i nduction V = X1 Xp X0 g ”i<j<n$xi'xj)’ so a=1
. A m, .
Remar k. The sane argunent shows that if 420 then |[x7,...,x | is

di visi bl e by the Vandernonde, so that

is a polynomal in x_,... .
poly 1 m

Cauchy’s Lemma. |f XY € C (1=i =m and al ways xiyjil t hen

1 B m1l ml 1
det(w) = |X ,,1||y !!1|n|,J (W)

Proor. By induction on m True for mel. Now

18



1 1 Xi Xy Yi

1-xiyj i 1-x1yj 1-x1yj ' 1_Xi%
so subtracting the first row fromeach other row in the determ nant one can

renove the factor Xi =Xy fromeach row i #1 and 1/(1—x1yj) from each col um,

and t he determ nant equal s

1 1 .
i 1 yi1/ (1-x2y1) y2/(1-x2y2) ... .
M1 (XX - T (1—x1yj) - det 0 (1-x3y1) ya2/ (1-x3y2) ()

Now subtract the first columm from each other, and use

1-xiyj 1-xiy1 1-xiy1 1-xiy
so the deternminant in (*) becones

J

1 0 0
1/ (1-x2y2) 1/(1-x2y3)

*

1

M1 YY) - Tisg (1—xiy1) det |« 1/(1-x3y2) 1/(1-x3y3)
and the assertion follows.
Lemma 3. |f xl,...,xn1and yl,...,yn1have nodul us < 1, then
1 _ A [m A [m
det(ijiTy;J = Zﬁ>...>&20 X ..o, x oy oo,y .

Proor. The determ nant is

m 2 2
Tresm € M=y (1 XYoiy ¥ XYy ¥

and the nonomi al xii...xérl(mjth gem) occurs wWith coefficient
Z € m [i = | h [;'nl
TeSm nnizl yn(i y ...,y .

In particular it zero unless the 4 are distinct, so the deternmnant is

X[l X[ml A [}nl
Zﬂq..., fdistinct X1 Xm WY o0
[ [ [ [
= Z X 7[(1) TI(rT) |yﬂ(1) yn(n’)l
li>...>l}'ﬂ, nGSm 1 e m 3 ey
[ [
= m( 1) m( m A fn
B Zﬁ>...>m1 meSm X1 cee X e Iy ...yl
= Zli>>l;’ﬂ |Xli,...,Xl;n|. |yli,,y[;n|
Notation. If A = (Al"--’hn?ezn1(f0f exanple if Ais a partition with =m

parts), we set
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—_
I
>
+
3

o) ﬁ = A1+n}1, ce, %1: Am
Remar ks.
(1) Alzhzz...zhn1 = ﬁ>%>...>%1
(2) If Zi Ai = n, Aizo, then the pol ynoni a
[1 [m
[x 7, ..., x ]
XM 1
has degree n in the X; -
Not ation. |If xl,...,xn1and Yy Yy are conpl ex nunbers, for ieN we set
s. = xi + xi + + xi and t. = ! + ! + +
i - X1 T X T m i T Yr T Yo Ty
t he power suns of the X; and the Y-
Lenma 4.
|X[1 X[ml | [1 [ml
» T yo ey _ 1 T n Socl Socn tocl tocn
m 1 ' m 1 T oon LAy 17" 7n 17 n
[x ..., 1] ly ..., 1]

where the first sumis over the partitions A of n with =mparts, and the

second sumis over the conjugacy classes « in Sn

Remar k. The quotients on the left are polynom als, so this nakes sense

even if the X; ory, are not distinct.

Proor. Since both sides are polynom als, we need only prove this when

t he X; and Y have nodul us < 1. Now

vy B2 x33
m 1 B iYi i i

|Og n|,J:1 (1_XIyJ) - Z|,J (1 + > + 3 +)
_ %1tn S2'a S3's
= 1 5 3

SO
mo L S1'1 2’2 S3's
M j=1 %y, N 2 3 o
St st st n

S|
[N
[ERN
N
N
w
w
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By the multinom al theoremthis is

1 ni [Slt 1] % [Szt 2]"‘2

= Z nl ] ]
n! ocl.ocz.... 1 2

where the sum extends over all sequences (al, ..) of non-negative

o .
2!
integers with only finitely nany non-zero terns.

SO(,].SOCZ tOCltOCZ
I A
1%2%2 a2l

By Lemma 3 and Cauchy’s Lenmm,

(1 [m (1 [m
[Ix 7, ..., x| ly *, ...,y | m 1
¥ _ = T i (1—————0
ml ml i,]= -X. Y.
[x ..., 1] ly ..., 1] J ij
where the sumis over all a>...>%$0. So
(1 [m (1 [m ol a2 ol o2
[x 7, . .., x ] ly =, ...,y | s.Us.LLL t Tt
» - » 172 1 2
™ ™ 1 1909 silanl .

We can now equate the terns in this which are of degree n in the Xi’

getting the required equality.

Definition. For A = (Al,...,hn? e 7"and « a conjugacy class in Sn
Y.(o«) be the coefficient of the nononi al xhl...th in s .. s Thus
A 1 m 1 n
ol oan _ Al Am
Sy -8, = Zhl,...,hm wh(“) Xq e Xy

Equi val ently we can think of the wh as class functions wA:Sn——JN

Remar ks.

(1) Wx(“) =0 if any Ai<0 or if A +...+An$n.

1
(2) wh(“) is a symetric function of the Ai

Definition. Set w,(e) =Y g e Yy 4

_ (o).
(1) M )

We are eventually going to show that w, = Xy but first we need to

A
verify the orthogonality relations for the W, - To do this we need the
following lemma, which will eventually be our character fornula.

Lemma 5.

T PULLE S T, ©(a) DL
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with sumation over the partitions A of n with =m parts.

ol on ml

PROCF. Si S, [ X I N .
_ Al Am o m 1 0
Z?\elm, 7eSm 1 w?\(a) 1 Xm Xr(l) Xr(n')
A +m 1 A
_ (1) T(m
Z?\elm, 7eSm 1 w?\(a) Xr( 1) Xr(n')
Let [I = Ar(i)+mi i nstead of the usual convention. Since w?\(“) is
synmmetric in the Ai, we get
_ [1 [m
= L4, fez tesm St Yati-m . 6 (Y X1y 0 Xx(m
_ h [m
S 24, ez Y(arrem . (9 P X
Since the terms with the [I not distinct are zero, this becones
_ A [m
_Z[1>"'>[n1 nesmw([n(l)ﬂ'm""[n(m))((x) e IxTo xTL
Now setting Ai = [|+i—mas usual , it becones
A [m
=X W i () e Ix7, ..., x|
A, TESm ([1[(1)+1m""[n(n')) T
where the sumis over all (A Arr? e 7" with A= ..2a_. Now the terms
1 1 1))

for which this is not a partition of n are zero by the remarks above, for

if A< 0 then certainly [m+n_1(n')-m< 0.

Lemma 6. If A and A’ are partitions of n with =mparts then

n'  (a=a’)
Zoc conj class N w?\(“) w?\’(“) {0 (el se)
Proor. By Lenmma 4, the sum
A I, A [m
T XXMy

over the partitions A of n with =mparts is equal to

%u ZOL noc si‘l...szn ti‘l...tzn Ixml,...,ll Iyml,...,ll.
By Lemma 5, this is

1 A m A’ g

ﬁl ZOCAAI nO(, wh((x‘)whl(a‘) |X yoea sy X | |y yeeas Y |

with sumation over the partitions A, A’ of n with =mparts and conjugacy

cl asses «. The assertion follows since as A and A’ vary, the polynonials
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are linearly independent in B[Xl""’xniyl""’yd'

We now start to relate these ideas with the symmetric group (which has,

so far, played no role). The key result is:

Lemma 7. If A is a partition of n with =mparts then wh is the character

of the @Sn—nndule @Snrh wher e ry = ZoeRom(Zg) o.

Proor. Let 6 be the character of @Snr

let ¢ € Sn be in the conjugacy
class «, let R= Rom(zg), and | et

A.,

_ 1 N
Sp = U gR
be a coset deconposition. Then @Snrh has basi s (girh)lsisN' We use this
basis to conpute traces. Now
og; 1, = gjrh if 0y, € ij.

Thus
B . -1
(o) = [{ 1=i=N | 9, 09; € R}I.

Now go-g_1 € Rif and only g is in a coset g Rwith giog;1 e R and
= | |
IR] Al.hz...., so .
= | |
0(a) = UA AN ... I{ geS | gog = € R}I.

Si nce go-g_1 = g’o-g’_1 © g’ "g e cg (o), each value taken by go*g_1 i s taken

by |c8400| el ement s geSn. Now

n! ol o2
= - = | |

|CS(O‘)| = 172 e,

o«
SO
ol 02
= 1o | 1|
o( ) 172 ...ocl.ocz....lhl.hz.... le n RJ.

Now a pernutation T € « n Rrestricts to a pernmutation of the nunbers in

the i-th row of Zg. If this restriction involves say “ij j-cycles, then the

“ij satisfy (*):

R
+
N
R
+
w
R
+
1

i1 i 2 izt = (A==m
« (15 =0)

133
+
133
+
133
+
1

The nunber of pernutations in R of this type is

| oall ol2 | | | 21,022 | |
(Al.ll 2 ocll.oclz....)(hz.ll 2 oc21.oc22....)...

SO
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| |
(Xl. OCZ.

6() =} [ [ [ [
o Tog, T o la I

where the summuation is over all “ij satisfying (*).

By the multinom al theoren1s$1...szn is equal to

| |
% %11 %21 i %y 2015 205 200
— T X, X, X ) (e X X Co X ). .
“11' oc21. S 2 1 2 m

| |
0612. 0622. P
where the sumis over all “ij e N (1=i=m 1=j=n) satisfying

L (

o, + o, *t ... o, = 1=j =n).

1 * % m =g (E=

- . Al A .

Thus wh(“) (the coefficient of the nononi al Xq e X ”} is equal to
o, ! ol m
1 2
| | | |
0611.0621.... (X12.(X22....

where the sumuation is over all “ij satisfying (*), and hence is equal to

o( ).

Lemma 8. Let u=A be partitions of n. The sinple nodul e @thu is a

subnodul e of @Snrh if and only if u =2

Proor. |f p<A and oeSn, then by 82 Lemma 2 there are two integers in the
sane row of Zg and in the sanme colum of 0_122, soif tis their
transposition then 010_1 € Cbl(Zz) and

_ -1 _ _
huorh—huo'w‘ o*rrh—huorh—o.

Thus 0 = huﬁsnrh = anhsn(ﬁsnhu, @Snrh). Conversel y

2
hyra (ZGGCOI(Zg) €.9) = hy =0,

HonhSn(BthA’BSnrh)'

IR

so 0 # hhﬁsnrh

Lemma 9. If A is a partition of n with =mparts, then Wy = Xy

PRoCF.
(1) If T e Sn, | et o be the partition with parts

+1-m ., édrﬂ

%(1)
in the appropriate order, so with parts
Ai+n'1(i)-i

Si nce wh(a) is symmetric in the Ai, we can wite
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Y T ZneSm S w“n
If m=1then p_>2 for A +r Y(1)-1 = A, with equality only if m Y(1)=1

1 1
Then A2+n_1(2)-2 A, with equality only if n 1(2)=2, etc.. If m=1 then
B o= A. Thus N is a Z-linear conbination of wv with v=A and with

coefficient of wh equal to 1

v

(ii) By Lenmas 7 and 8, wh is an N-linear conbination of xu’s with uza
and with non-zero coefficient of Xy Thus N is a Z-linear conbination of
xv’s with v=x and with positive coefficient of Xy Say

“y T Zv partition of n khv oy

with the k e Z, k > 0 and k =0if v
AV AV

AL

(iii) We know t hat

{ nl (A=p)

N wh(“) wu(“) - 0 (el se)

Za conj class

In the case A = u the orthogonality of the N gi ves ZV kiv =1, so

khv =0if Aazv and kM = 1, as required.
At | ast our character fornmula! Recall that meN and xl,...,xn$® are
arbitrary, £=x +mi and s. =X +. . +x
i i i 1 m
Theor em
al an , m1l _ A m
Si S, [ X v, 1] = ZA XA(“) (X, ..o, x ]

with sumation over partitions A of n with =mparts
Proor. Fol l ows from Lemmas 5 and 9.

Remark. In particular, taking m= n, we can ensure that the right hand

side involves all partitions of n

Remark. If A is a partition of n with =mparts, then XA(“) is the

coefficient of the nonom al xii...xé?]in t he expansi on of
S Ixn}l,...,ll.
1 n
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8§5. THE HOOK LENGTH FORMULA

We al ready have one fornmula for the dinension of the sinple @Sn—nDduIes,
the nunber of standard tableaux. In this section we derive two nore

formul ae, one of which is easy to use.

Theorem If A is a partition of n with exactly mparts then the degree

f, of Xy is equal to

A
" Misiqjem (575 1 41
Proor. f. = x,(1), which is the coefficient of x[1 X[m in the
. A‘ A‘ , 1--- m
expansi on of
.+Xn?n |Xm 1] —Z’tesm . +Xn,? 'L'(l) 1 X’rlfn(n)-l

By the multinom al theoremthis coefficient is equal to

n
Lresm 1 (M+1-w(D) T (L +L-w(m)!
where, by convention 1/x! = 0 if x < 0. Nowthis is equal to
= n! |(Fm1)!, ... 1(ED)Y, 1A
= m/ﬁ' [ [...,{F1), [ 1]

nLIGY. L VAR Y

by addi ng appropriate columms, and this is what we want since the |ast

determinant is the Vandernonde

Definition. If A is a partition of n then the hook at (i,j)e[A] is the

set of (a,b)e[A] with (azi and b=j) or (a=i and bz ). The hook | ength hiJ
is the nunber of elenents of the hook at (i,j), so that if [A] has colum

| engt hs Hys Koy oo t hen hij = Ai+uj—|—1+1.

Exanple. If A = (7,52,3,1) then the hook at (2,2) is the shaded part of

]

[(7,5%3,1)] =

so h22 = 6.

n

Theorem (Hook length fornmula). f_ = A
M(i,j)erar Mij

A
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Proor. Let A have mparts. By the previous theoremit suffices to show
t hat

m A _
Mesivn CAo80 - =g My = 6!
for each i. Now the product on the left is a product of Ai+mi :[I terns,

so it suffices to showthat the terns are precisely 1,2,...,[I in sone
order. Now

i m I m1l I m2
hig > Mo > Mg >
Since A has exactly mparts, py = m and hi1 = [I so each termis SLI. Thus

it suffices to show that no hij is equal to any [|4< However, if r = ”j
then A, =z j and A <j so
r r+l1

h . -L+L = X 4r-i-j+1-A -mHi +A_+mr = A _+1-j > 0,

ij i [ [ r r

hij-[|+[r+1:Ai+r-|-J+1-7\i-mH+7\r+1+mr-1:Ar+1-1 < 0,
and hence [-fL <h.. < [-[ ..

T ] I T+l

Exanple. If n =11 and A = (6,3,2) then

[A] =

so t hat

fo= 11.10.9.8.7.6.5.4.3. 2.1
A 8.7.5.3.2.1.4.3.1.2.1

= 990.
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§6. MULTI LI NEAR AND POLYNOM AL ALGEBRA
In this section we recall sone rather standard nultilinear al gebra for
finite dimensional CG nodul es where Gis a group, which may be infinite, or
it my be 1, so that we just deal with vector spaces.

Let V,Wbe finite di nmensional CG nodul es.

Tensor products. The tensor product VeW (over C) is a CG nodule via

g(vew) = (gv)e(gw).

Properties. VeC = C, VeW=z= WV, (VeWeZ = Veo(WZ). If 6:V—V' and
¢: W—W are CG nodul e maps, then so is 6e¢ : VeW—V' eW.

Hom Spaces. HorrzD(V,V\) is a CGnodule via (gf)(v) = gf(g_lv). In
particular the dual of Vis V = HomL(V, ©), S0 (gf) (V) =f (g 1v).

* * * *
Properties. (VoW = V oW. If V is one-dinensional then V ovzC. |f
* *

* *
0:V—Wis a CG nodule map, then sois 8 :W—V . The map V ®W—>HorTID(V,V\)

taking fewto the map vi—f(v)wis a CG nodul e i sonorphi sm

Tensor powers. The n-th tensor power of Vis

TV = Ve. ..V (n copies, if n>0), TOV = C.

Properti es.
(1) If V has basis e .,emthen TV has basis € ® .. SO it has
di mension nl'.

(2) T"is a €S- modul e vi a

o(v1®...®vf) = v ) (oeSf).

0-1( 1) ®. .. ®Vo“-1(f

and the actions of (I:Sn and CG commute: gox = ogx for geG oeSn, xeT"V.

Definition. The n-th exterior power of Vis AV = TV / X where

X = €xX - & _ox | xeT"V, ces >.
The i mage of v, e... ov in A"V is denoted by VA AV We al so define

TV :{xeTnVIGXZSGXVGGSn},

1

anti
the set of antisymmetric tensors.
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Properti es.

(1) ViA AV = Vofl(l) A AV -
considering a transposition, VA AV S

1 for c € S. In particular
(n) n
0 whenever two of the vi are

equal .

(2) Tnvanti and A"V are CG nodul es

(3) A"V has basis eilA...Aeinthh i ,<...<i , so it has dinension qB.

1 n
In particul ar AW i's one-dinensional and Anwlv = Anwzv =... =0.

Remark. For a vector space V over an arbitrary field k one shoul d define
the exterior powers by AV = TV X where X is spanned by the tensors of
formv, ev ®. .. eV, with two of the Vi equal . If k has characteristic # 2

172
this reduces to the given definition

Lerma 1. T'V. . = aT'V where a = Y € o is the alternizer. The
anti n ceSn o
natural map T Vénti——e AV is an isonorphi smof CG nodul es

Proor. If x is antisymetric, then ax = (n!)x, so xeaT V. Conversel y
si nce ca=e a, any el enent of aT'Vis antisymetric. The map
amTv— TV — AV
is a CGnodule nmap with kernel X n aT'V <€ aX since x = 1/n! ax for x
anti symetric. However aX = 0 since for yeTnV and oesn we have a(y-eooy):o.
The map is surjective since if xeh"V i's the i mage of yeTnV, then x is al so

the image of 1/n! ay.
Lemma 2. A(V) = (A"V) .

Proor. The natural map TV—sA"V gi ves an inclusion
(A" oty o2 TV,
By the universal property of AV - that any alternating multilinear map
Vx...xV——C factors through A"V - the imge of this map is Tn(Vﬁ)anti’
which is isonorphic to An(wﬁ).

Definition. The n-th symmetric power of Vis s = T / Y where

Y = 0<x - ox | xeTV, ces >.
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The i mage of v ®. .. eV, in SV is denoted by VyVee s W We al so define

TV ={xeTV | ox=xVoeS },
symm n

the set of symetric tensors.

1

Properti es.

(1) For oesn one has VyVeoew o= vo;l(l) V... V vo;l(n).
n n
(2) TV and SV are a CG nodul es
synmm
(3) sV has basis & V... ve with ils...Sin, so has di nension (nwg—l).
To see this, note that
-1 -1 i1 im
(1-X1) "'(1'Xn? = Zil,...,im X1 ...Xm )
so the nunber of terns with total degree n is the coefficient of X in
(1-%"™ which is (-n"("T) = (”‘*2'1).
As in the case of exterior powers one has
Lenma 3. TV = sT'V where s = Y o is the symmetrizer. The
n synmm n ceSn
natural map T ngnnr—e SV is an isonorphi smof CG nodul es

Lemma 4. SV ) = (S"V) .

Next we consider polynom al maps between vector spaces. These generali ze

t he usual notion of |inear naps.

Definition. Let V and Wbhe finite dinensional C-vector spaces. A

function ¢ : V—Wis a polynonmi al (resp. honobgeneous n-ic) map provided

that V and W have bases el,...,en1and fl,...,fh such that for al
X1""’Xn1€ C we have

¢(X1e1+...+Xn$n? = ¢1(X1,...,Xn?f1 + ...+ ¢h(X1""’Xn?fh
where the ¢i(X1""’Xn? are polynom als (resp. honbgeneous pol ynom al s of
degree n).

Lemma 5. |If there are such functions ¢i with respect to sone bases, then

there are such functions with respect to any bases.

ProoF. Suppose t hat e{ =Y.

..e. and f. =Y. g..f’. Then
] pJl J I ZJ qJl J
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=L ¢r(zilxi1p1i1""’ Zimximpmm) Fr

= Zr,s ¢r(zi1 Xilplil""’zimximpmm) qsr fs
and the functions

L 9. (% 1Xi et 1""’Zi mxi mpmm) Asy

are pol ynom al s or honpgeneous pol ynom als of degree n like the ¢i.

Not ati on. W denote by Pol y(D(V,V\) and HorrzD n(V’W t he spaces of such

maps. Cearly these are vector spaces.

Lemma 6. A conposition of polynom al maps X—Wand W—Z is a

pol ynom al nmap. The conposition of a honbgeneous n-ic and a honbgeneous

n‘-ic map i s a honbgeneous nn’-ic nap.

Procr. (X)) = X"

Exanpl es.
(1) Horrb 0(V,V\) = Wand Horrb 1(V,V\) = HonHV,V\),

(2) The map A : vV —> vv...w lies in HO"I]: n(V,SnV), si nce
A(inei)

I
fing|
X

.Xi e. v...vei

I
lng!
A
1A
(¢
X
X
o
<
<
®

for suitable constants ci .
g

Theorem |f V and Ware vector spaces, then yr——yoA induces an

i sonor phi sm HorrzD( SnV, W — Hon]D n(V, w.

Proor. To show that the nap is injective, suppose that yoA = 0. We show
by descendi ng i nduction on i that l/l(V1V- ..vvn) = 0 whenever i of the terns
are equal. The case i=n is true by assunption, and the case i=1 is what we

want . Suppose true for i+1, then for «eC,

0 = Y((x+tay)v...v(x+ay) Wi oV vvn)
_ i+l j i+l
= ijooc (j )w(xv...vxvyv...vyvvi+2v...vvn)

Sl ——
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Since this is zero for each @« € C, each termis zero. In particular
i +1 _
( 1 ) Y(xv. C VXYW oV vvn) = 0,

as required.

Now i f dirrzDV: m dirrzDW: h then
mtn- 1

di %Honb:(s”v,vv =h (M) = dimpHony, (VW

so the map is an isonorphism

Lemma 7. The el enents of the formvv...vw with veV span s,

Proor. Take W= C. If these el enents do not span sV then there is a

non-zero |inear map SnV—>ﬂ: whose conposition with A is zero.

Remark. We can construct an inverse explicitly. Let ¢ € HorrzD n(V’W’ o)

BX et X e ) = (X, XNV g (X X

with ¢i a honobgeneous pol ynoni al of degree n. W define the total
pol ari zation P¢ € HorrzD( SnV,V\) of ¢ by

o 8",
(Pg)(e, v...ve, ) :Z._l—Jf.
1 n 1= X ... BX J

This makes sense since the right hand side is symetric in i ,i . Note

g
that the partial derivative is a conplex nunber since ¢j has degree n. Now

for veV we have (Pg¢) oA = nl¢. Nanely,

(P¢)A(X1e1+"'+xmen? = Zi 1,...,in Xi1

..Xi o (P¢)(ei Ve .nvei n)
8 ¢
o, e X K o T
X, ...3X
11 I'n
By iteration of Euler’s Theorem that if F is honbgeneous of degree r in

vari abl es Xi t hen Zi Xi aF/ axi = rF, we obtain

= ZJ

= ZJ

n! ¢j (Xl’ ce, Xn) fj = n! ¢ X1e1+. .. +Xmen?.

Exanmple. If ¢:V—C is a quadratic form so

¢(X1e1+...+Xmen? = Zi,j aini Xj
with aij :aji’ t hen

(P¢)|:(Zixiei) V(ZJYJEJ):I = ZZi,j aij Xi Yj

is (2x) the corresponding symretric bilinear form
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§7. SCHUR- VEEYL DUALI TY

Let V be a vector space of dinension mand let n € N. W know t hat TV
is a (I:Sn- nodul e, so we have a nmap
(I:Sn — End(D(TnV) sending o € Sn to (X +—0oX)
Al'so, regarding V as a representation of G (V) in the natural way, TV

becones a CGE.(V)-nodul e, and we have a correspondi ng nmap

CA(V) —s Endq:(TnV) sending ¢ € GL(V) to T'¢ = ¢e...ep.

Remark. In this section we prove Schur-Wyl duality, that the i mages of
(I:Sn and CGA(V) in End(D(TnV) are each others centralizers. Despite its
i nnocuous appearance this result is absolutely fundanental. For exanple it
is precisely this fact which explains why the symmetric group and the

general linear group are rel ated.

Definition. The al gebra An(\/) of bisymmetric transformations is the

subal gebra of End(D(TnV) consi sting of the endonorphi snms which comute with
the i mage of (I:Sn. Thus

n _ n

A(V) = End(DSn(T V).
Si nce (I:Sn is senisinple and TV is a finite dimensional (I:Sn- nodul e, An(\/)

is a semsinple C-algebra by 81 Lenma 4.
Ve set W= End (V). which is a CG(V)-nodule by conjugation.
Lemma 1. There is an isonorphism

@ TW—s End( V)

sendi ng f1®...®fn to the map

Vg ® ... @V |—>f1(v1) ® ... ®fn(vn).

This is an isonorphismof CG.(V)-nodules, and of (I:Sn- nodul es.

* *
PROCE. T'W= Wb...oW= (VoV ) @ ... @ (VeV )
* *
(Ve...®V) ® (V &...0V)
n no,* n
TVe (TV sEnd(D(TV).

Now T'Whas a natural structure of (I:Sn- nodul e, and End(D(TnV) inherits its

IR

IR

structure from TV (as conjugation). One can check that « is an (I:Sn- nodul e

map (exercise).
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n _ n
Lemma 2. A(V) = «T v%ynn?'
PROCF. An(V) is the set of x € EndB(TnV) fixed under the action of Sn

and T"w is the set of y € T'Wfixed under the action of S .
synmm n

Lemma 3. Affine n-space AMis irreducible, that is, if

M= xuy

and X and Y are Zari ski-cl osed subsets, then X = m” or Y = AW

Proor. The ring of regular functions on AMis R = @[Xl,...,Xn]. If X and
Y are the zero sets of ideals I,J in R then the assunption is that any
maxi mal ideal contains either | or J. If | and J are both non-zero then we
can pick O# el and 0% €J. Now any naxi nal ideal contains ij, so
(ij)(al,...,an) =0
for all al,...,aneﬁ. Thus by Hilbert’s Nullstellensatz ij € v{0} = {0},
which contradicts the fact that Ris an integral donain.

Lemma 4. If Y is a subspace of @d, then identifying @d =A, Yis

Zari ski - cl osed.

Proor. Choose a basi s fl,...,f of anh(ﬁd/Y,ﬁ), and regard these as

h
maps @d——em. Then Y is the zero set of the fi.

n . ,

Lemma 5. T v%ynn1ls spanned by the ¢o...®p With ¢ € GL(V).
Proor. Let X be the subspace of TnV%ynn1spanned by the ¢®...®p with

¢ € (V). Now the map

wW-5 W  p—pe. . . 0

is a regular map between the affine spaces
n? n n?n
W=z A and T W= A

Since X is a subspace, it is Zariski-closed by Lemma 4, and hence a_l(X) is
Zari ski-cl osed. Thus
W= a_l(X) v {the endonorphisns with deterninant zero}

2
is a union of Zariski-closed subsets. But A" is i rreducible, so a'l(X):vv

Thus X contains all nmaps of the formg¢e...®p with ¢ € W But these span
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. n
T V\éymﬁ since the ¢v...v¢ span S Wby 86 Lenma 7.

Restating this, we have
Theor em An(\/) i s spanned by the Tn¢ with ¢ e GL(V).
Finally, we have Schur-Wyl duality

Theorem The i mages of (I:Sn and CGA(V) in End(D(TnV) are each others

centralizers.

Proor. The statenent that the image of CGA.(V) is the centralizer of the
i mage of (I:Sn is just a refornulation of the assertion that An(\/) i s spanned
by the T'¢ with ¢eGL(V), which was the Iast theorem

Recal | that An(\/) is a semsinple C-algebra. By 81 Lenma 5 we know t hat

(I:Sn maps onto EndAn V)(Tn\/), and since the i mage of G (V) spans An(\/) it

(

foll ows that
n _ n
EndAn(V)(T V) = End(DGL(V)(T V).

Thus (I:Sn maps onto End or in other words, the imge of (I:Sn in

n
Endq:(T V) is the centralizer of the inmage of CGA(V).
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§8. DECOWPGCSI TI ON OF TENSORS

Still Vis a vector space of dinension m

One learns in school physics that any rank two tensor, ie any el enment of
VeV, can be witten in a unique way as a sumof a symetric and an
antisymetric tensor. The Young symetrizers enabl e one to generalize this

to higher rank tensors, nanely by 83 Lenma 6 we have

(*) TV = ® h(s,) TV
A a partition of n and ZA standard
n, _ -n ~ AN n, _ -n ~ N .
Exanpl e. h(ln)T V=T Vanti = AV and h(n)T V=T Vsyrrm =~ SV, so taking
n=2 this deconposition becones
T2V = T2V G T2V = A2V ® SZV.
anti synm

Since the actions of Sn and G(V) on TV commute, if A is a partition of
n and ZA is a Young tableau with frame [A], then h(ZA)TnV is a
CA(V)-subnodul e of T'V. Note that h(ZA)TnV hATnV as CA(V)-nodul es, for
hA =0 h(ZA) o
for sone oeSn, so prenmultiplication by ¢ induces an isonorphism

n n
h(Z)TV — h,TV.

-1

Lemma 1. The non-zero nodul es hATnV with A a partition of n, are

non-i sonorphic sinple CA&(V)-nodules. If Mis an An(\/)—rrodul e, and Mis

regarded as a CA(V)-nodule by restriction via the natural map

(DGL(V)—>An(V), then Mis isonorphic to a direct sumof copies of the
n

hAT V.

Proor. Recal | that
Alv) = End(DSn(TnV) and hATnV = Hom.. (€S h,, V)
by 81 Lenma 6. By the Artin-Wdderburn Theorem and 81 Lenmma 4, the non-zero
spaces hATnV are a conpl ete set of non-isonorphic sinple An(\/)—rrodul es.
Not e al so that An(\/) is senisinple, so the lenma follows fromthe next two
assertions, which both follow imediately fromthe fact proved in 87 that

t he map (DGL(V)HA”(V) is onto.

(1) If Mis an An(\/)-rrodule and Nis a CA&(V)-subnodule of M then Nis
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an An(V)—suanduIe, and

(2) If Mand N are An(V)-nDduIes and 8: M—N is a CA(V)-nodul e map,

then 6 is an An(V)-nDduIe map.

Remark. Thus (*) is a deconposition of ™V into CGA.(V) - subnodul es whi ch
are either zero or sinple. Cbviously it is inportant to know which of these
subnodul es are non-zero, and that is what the rest of this section is

devoted to. First we have a rather technical |enma.

Let A be a partition and suppose that [A] is partitioned into two

non-enpty parts, say of i and j = n-i boxes, by a vertical bar

[ ]
i boxes j boxes
Let ZA be a tabl eau whose nunbers in the left hand part are {1,...,i} and
in the right hand part are {i+1,...,n}. Let u be the partition of i

corresponding to the left hand part, and |et Zu be the restriction of ZA to
[]. Let v be the partition of j corresponding to the right hand part, and
| et ZV be the corresponding tableau. This is a map from|[v] to {1’,...,]"}

if we set 17=i+1, 2’=i+2, ..., j’=n.

Lemma 2. There is a CGA(V)-nodul e surjection

I:h(Zu)Ti v] ® [h(ZV)Tj v] —> I:h(ZA)TnV].

PROCF. Si = Aut{1,...,i} and Sj = Aut{1’,...,n’} are enbedded in Sn, o)
we can regard @Si and @Sj as subsets of @Sn whi ch conmut e. Now
CoI(ZA) = Cbl(Zu)bel(ZV) and H = Rom(Zu)xRom(ZV) is the subgroup of
Rom(zh) on the pernutations which keep each nunber on the sane side of the
bar. Let Rom(zh) = Ui r H be a coset deconposition

h(Z,) = ZreRovv(ZA) ZceCoI(ZA) € e

e ,c ”rir’r”c’c”

=1 Zr’eRow(Zu)Zr ”eRovv(ZV)Zc’eCol(Zu)zc”eCol(ZV) c’Ec

= %1 hEYN(E,).
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Thus h(Z,) h(Z)h(Z,) = zirih(zu)zh(zv)2 = @ h(s,) where o = iljt/f f

W have a CGA.(V)-nodul e map Tve PveTV — h(ZA)TnV gi ven by
prenul tiplying by h(ZA). The restriction of this nap to

[ j
[h(ZH)T V] ® [h(ZV)T V]
is onto, since
h(ZA) (x oy) =1« h(Zh)[ h(Zu)x ® h(ZV)y ].

Lemma 3.

_ n
(1) If An%l = 0 then hAT V £ 0.

_ . ny, o
(2) I'f n>0 and An1_ 0 then dlﬁh hAT vV = 2,

PROCF.

(1) Let ij =rowin which j occurs in Zg, and x = € ® .. o8 . Then for
ceS

n

oX = X i.o=0 -1,
C T e
s | and o_l(j) occur in the same row

for 1=j=n

6 o Row(zg).
Thus the coefficient of x in the deconposition of hAx wrt the standard
basis of T'Vis |Rom(2§)| # 0, so hAx # 0.

(2) Ify=e¢e ®e, .. then the argunent above shows that hAx and

L@ ..
1+i1 1+in
hAy are linearly independent.

Lemma 4. If A =0 and A_> 0 then
m+-1 m

hATnV = AMv) e h(A 1 _1)Tn_nb.
1 m
Proor. Divide [A] into the first columm and the rest. Let ZA be a
t abl eau whose first columm consists of the nunbers {1,...,n}. By Lenma 2
there is a surjection
MV e h(s) 2 IR VAN h(s,) TV,

where v = (Al—l,h _1""’Anf1)' Usi ng the usual isonorphisns this gives a

2
map
MV e hVT”'”\/ —> hATnV.

Now bot h hVTn_nV and hATnV are non-zero, and hence are sinple
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CGA.(V)-nodul es by Lemma 1. Since AnkV) i s one-dinensional, both sides are

si mpl e nodul es and the map nust be an i sonor phi sm

Theorem If A is a partition of n and m= dinhv, t hen

0 (Anwl z 0)
. n, _ - _ _ _
du%ruTV = 1 (Al—hz—.” —Am Mml_o)
=2 (el se)

ProoF. If A
mr1 i n-i n i
there is a surjection A (V) ® th V —» hAT V. But A (V) =0

# 0 then [A] has i>mrows and as in the previous | ema

On the other hand, if An%l = 0, then by iterating Lenma 4 we have
. n . n- Mm
di h, TV = di h T \%
RN il (A=A A=A
which is one if Al = ... = Ani and otherwise is = 2 by Lenma 3.
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89. RATI ONAL REPRESENTATI ONS OF GL(V)

Throughout, V is a vector space with basis € €

Definition. A finite dinensional CA&(V)-nodule Wwith basis Wyooo W is
said to be rational (resp. polynomal, resp. honbgeneous n-ic) provided
that there are rational functions (resp. polynomals, resp. honbgeneous

pol ynoni al s of degree n) fij(xrs) (1=i,j=h) in the n? vari abl es er
(1=r,s=n), such that the map

basi s e representation basis w.
GLn$®) — A(V) EndB(Vv —_— Nh(@)

sends a matrix (Ars)rS € Gln$®) to the matrix (fij(A?s))ij'

Lemma 1. These notions do not depend on the bases el,...,en1and

Wy W

Remark. Wis a rational CA(V)-nodule if and only if the nmap
G(V)—>G (W is aregular map of affine varieties. Recall that a rationa
map of affine varieties is not everywhere defined: we definitely don't want
t hat .

Exanpl es.

(1) ™Vis a honbgeneous n-i ¢ CGA.(V)-nodul e.

(2) C ® Vis polynom al, but not honpbgeneous.
*

(3) V is rational, but not polynoni al

Lemma 2.

(1) Subnodul es, quotient nodul es and direct suns of rational (resp
pol ynomi al, resp. honobgeneous n-ic) nodules are of the sane type.

(2) If Uis rational, then so is U*

(3) If Uand Ware rational (resp. polynom al, resp honbgeneous n-ic and
n‘-ic) then UWWis rational (resp. polynom al, resp. honbgeneous n+n’-ic).

(4) If Uis honogeneous n-ic and honpbgeneous n’-ic, then U=0.

Proor. For (2) note that the entries of A_1 are rational functions of

the entries of A
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Definition. If A =zx_ = ..z =0 and ), A = n, we set
—_— 172 m i n

D T 0, TV

Theorem Every honbgeneous n-ic CG(V)-nodule is a direct sumof sinple

subnodul es. The nodul es DM m(\/) with Alz. .. ZAmZO and Zi Ai =n are a

y e A
conpl ete set of non-isonorphic sinple honbgeneous n-ic CA(V)-nodul es.

ProoF. In view of 88 Lemma 1, it suffices to show that any honbgeneous

n-ic CA(V)-nodule is obtained from sone An(\/)-rrodule by restriction.

Let U be a honbgeneous n-ic CGE(V)-nodule, so U corresponds to a nmap
p: G.(V)—)End@(U). In the followi ng diagram the nmaps across the top are
the natural maps, and their conposite 7: GL(V)—)An(V) is in fact the
natural map we use for restricting An(\/)—rrodul es to CA(V)-nodules. W

shal | show that there are naps P, maki ng the di agram conmut e.
n . =N ~ AN
G(V) & End (V) — S(End (V) =T (E?d@(\O)syrnn =AY

p Pyl Pyl Pal Pal
End (U) — End(U) —— End () —— End () ——— End (U

Since U is honpbgeneous n-ic, we can extend the domain of definition of pto
obt ai n a honpbgeneous n-ic nap Py By the property of synmetric powers there
is alinear map % Since the remaining maps across the top are

i sonor phisns there are certainly |inear maps Py and Py 8S required.

Now p,(1) = p,(%(1)) = p(1) =1 and
P (¥(99")) = p(99”) = p(9)p(9") = p,(7(9)) p,(7(9"))
for g,9’eC(V). Since y(G(V)) spans An(\/) it follows that Py is a
C-al gebra map. This turns Uinto an An(\/)—rrodul e, and the restriction to

CA(V) is the nodule we started with, as required.

Lemma 3. Every polynonmial nodule for G (C) = c* deconposes as a direct

sum of subnodul es on which g € c* acts as nulti plication by gn (sone n).

PrRooF. Here is a silly proof. If p: c* — A (U = GLh((D) is a
pol ynomi al representation, then each p(g)ij is a polynomal in g, and we
can choose NelN such that each p(g)ij has degree strictly less than N. By
restriction, U becomes a CG nodul e where
G={exp 2mj/N | 0sj<N} c C~
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is cyclic of order N. Now
U= U1 ® U2 ® ... @ Uh
as a CG nodule, with each Ui one-di nensi onal and geG acting as
mul tiplication by gni on Ui (0 = n, < N) (since these are the possible
si mpl e CG nodul es). Choosi ng non-zero el enents of the Ui gi ves a basis of
U and if (p(g)ij) now denotes the matrix of p(g) with respect to this

basi s then

p(g)ij = . Qe i)

for g = exp{2mij/N} with 0 =j < N, and hence for all g € c* since the

p(g)ij are polynonmi als of degree < Nin g.

Lemma 4. Every polynom al CG.(V)-nodul e deconposes as a direct sum of

honbgeneous n-ic nodul es.

ProoF. Say p: GL(V)—G.(U) is a polynom al representation of G(V). The
i ncl usion @X——eGL(V) enables us to regard U as a pol ynoni al representation
of @X, so by Lemma 3,

U= U0 ® ... ® UN

with el € G(V) acting as nultiplication by «" on Un' | f ueUn and geG.(V),
| et

gu = Ug + ... Uy

with u e U. Now (al)gu = g(al)u for « e ¢, so

u, + au, + azu + ...+ aNu = aiu + aiu + aiu + ...+ aiu

0 1 2 N 0 1 2 N
and hence u, = 0 for i # n. Thus gu € Un and t he spaces Un are
CG.(V)-subnodul es of U Since al acts as nultiplication by «" on Un it

foll ows that Un i s a honbgeneous n-ic CGA.(V)-nodul e.

Theorem Every polynomal CG(V)-nodule is a direct sumof sinple

subnodul es. The nodul es Ekl Am(\/) with Alz...ZAHFO are a conpl ete set of

non-i sonor phi c sinple polynom al CGE.(V)-nodul es.
Definition. If neZ then the one-di nensional CGE.(V)-nodul e corresponding

to the representation
n
GL(V) —C", gr—[det(g)]
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n

is denoted by det™. Thus det® = AM(v), det™ = T"(detd) if n=0, and

det" = (det™™ if n=0.

Definition. If A,z ..2Ax_but A_< 0, we define
e 1 m m

Am
D (V) =D, i (V) o det
Al,..,hm Alhm..,hmlhmo

Remark. If A = .. zxm>0 then we have al ready seen that

Am
D (V) 2D, i (V) e det
1""Am Alhn’i"’hmlhmo

Theorem Every rational CA(V)-nodule is a direct sumof sinple
subnodul es. The nodul es DM, . .,Am(\/) with Alz. ..ZAm are a conpl ete set of

non-i sonorphic sinple rational CG.(V)-nodules.

Proor. The rational functions f: G (V)——C are all of the formf = p/deti
with p a polynomial function. Thus if Uis a rational CG(V)-nodule, then
W= Uw® det'\I is a polynonmal CGA(V)-nodule for sone N Since Wdeconposes
as a direct sumof sinples, so does U If Uis sinple, then so is W and

thus W« Dul um(v) for sone ulz...zum. Finally U D (V),

p1-N, ..., um N

using the remark above.

Theorem The one-di nensional rational CG.(V)-nodules are precisely the
n .
det with n e Z

Proor. After passing, as above, to polynom al nodules, this follows from

the theoremin 8§8.
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§10. WEYL' S CHARACTER FORMULA

Notation. V is a vector space of dinmension m |f A:(Al,...,hn? e 7™ and
Alz"'zhni then the character of the CGE.(V)-nodul e
_ n,, .
D, adV) (E R TVIT A Z0)

i s denoted by ¢X

Lemma 1. If & is an endonorphismof V then ¢A(€) is a symetric rationa

function of the eigenval ues of &.

Proor. The function P(Xl""’xn? = ¢A(diag(x1,...,xn?) is a rationa
function of Xprooo X and it is symmetric since dlag(xl,...,xn? is
conjugate to dlag(xr(l),...,xr(n)) for T e Sm

Now choose a basis of V so that the matrix A1 of € is in Jordan Nor nal
Form and for teC, |et At be the matrix obtained fromA1 by changi ng the
1's on the upper diagonal into t's. Let gt be the endonor phi sm
correspondi ng to At' For t =0, At is conjugate to A, so ¢A(Et) = ¢A(E)'
Si nce ¢A is arational function it is continuous (where defined), so

608 = 1ima(€) = g [ 1ime | = (60 = POxp. . x).
t-0 t -0
Exercise. Phrase this using the Zariski topology, by neans of the

di scrimnant of the characteristic pol ynon al

Lemma 2. Let « be a conjugacy class in Sn with cycle type n® .. 1* and
. , . i i
| et € be an endonor phismof V with ei genval ues Xpv oo X | f si—x1+...+xm
t hen
ol oan _

with sumation over partitions A of n with =mparts

ProoF. Let g € . W may suppose that £ has matrix diag(xl,...,xn? with
respect to the standard basis el,...,en1of V. Consider the endonor phi sm of

™V sending x to g&x = &€gx. W conpute its trace in two ways.

Consi deri ng TV as a @Sn—nodule, by 81 Lenma 3, we have
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n, _ n

TV=oe (I:thA ® Horrb:S ((I:thx TV)
A n

and then by 81 Lemma 6 this becones

™V

IR

n
;) (€S h)) ® (h.T'V).

Now this is an isonorphismas both a (I:Sn- nodul e and an End(DSn(TnV)—rrodul e,
and since the action of G.(V) on TV conmmutes with that of Sn, t he
correspondi ng action of g€ on the right hand side is given by the action of

g on (I:thA and of &€ on hATnV, so the trace of this action is
Ty %,(0) ,(8).

On the other hand we can conpute the trace directly:

gg(ei ®. .. ®e, ) = Xi e X & ® ... ®e
1 n 1 n g (1) g (n)
so the trace is ) Xigoo X sunmed over
{(il""’irr? 15i15m 15insmand ig-l(j) :ij for each j }
Now t he condition that ig-l(j) = ij for each j is equivalent to requiring
that the function j |—>ij be constant on the cycles involved in g. It
follows that the trace is equal to si‘l...szn.

Equating the two cal culations of the trace gives the required equation.

Theorem Let A be a partition of n with = mparts and let € be an
—_ : .

. , . _ i
endonor phismof V with ei genval ues Xpv oo X | f S, —x1+...+xm t hen
NCRES By By
A . o, .o ! 1 n '
« conj class 1 n

Proor. Take the fornmula in Lenma 2, nmultiply by n, xu(oc), and sum over

«, using the orthogonality of the Xy

Theorem (Weyl's Character Formula for the general |inear group).
If € € GAL(V) has eigenval ues xl,...,xmthen
[1 [m
[x 7, . .., x ]
¢, (&) =
A KL

wher e [I = Ai+mi.
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Proor. First suppose that the Aizo, so that A is a partition of n with
=m parts. By Lemma 2 and the character fornmula for the symetric group we
know t hat s“l...szn is equal to both

1
A Im m1
X

L a0 x5 X o1l and T ox () ,(8)

with sumation over partitions A of n with =mparts. The orthogonality of

t he Xy enabl es us to equate coefficients.

For general A, since

N Am
DV = Dy am L amant V) @ det
it follows that
[1- Am [ Am (1 [m
| x s X | Am [Ix 7, ..., x|
¢A(€) = ) . (Xl"'xn? = 1 .
| x U | Ix ..., 1|

Remar k. Qur proof of Weyl's character formula | ooks quite short, but
this is because nost of the proof, the character fornula for the symmetric
group, is in 84. There is, however, another approach to these forml ae
whi ch derives Weyl's character fornula first, and then deduces the
character fornula for Sn. The idea is to use integration to conmpute Wyl's
character fornmula for the conpact subgroup Un1of unitary matrices in
GLn$®)’ and then to translate that to Gln$®)' Finally one can use Lenma 2
to pass to characters of the symmetric group. See the details and the

di scussion in [Veyl].

Theorem The degree of ¢A’ t he di nensi on of Ekl,...,A”$V), is

nlsi<jsn1(€'€) / ”15i<jsm(1")'
ProoF. For t € C set
X =1, x = et X = e2t X, = e(ml)t
m 7 "mi1l " Tm 2 : R
Then
[ Im it it

Ixt o x™ = My (e _elty

since it is the transpose of a Vandernonde natri x. The term of | owest

degree int is ni<j [(g-g)t]. Al so

anl Uni)t_emnj)t)

| 1l = g (e

and the termof |owest degree int is ni<j [(j-i)t].
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| f gt = diag(xl,...,xn?, then the degree of ¢A is

B = Mg (8D = Ty gam G T T g am D)

by Weyl's character fornula.

Theorem If two rational CGA.(V)-nobdul es have the sanme characters, then

they are isonorphic.

ProoF. As A varies, the rational functions in Wyl's character fornula

are linearly independent el enents of (D(xl, ce, er?'

Lemma 3. D, (M =D, uW

Proor. the character y of the left hand nodule is given by

-1 - [m - [m -1
B 1 B [ X y ey X | B [ X vy X |
N PR (RO
m 1- [m m1l-[1
| e, X |
= = ¢ (&)
KM , 1 K
where p = (—Am...,—hl). Thus the dual is isonorphic to Du(\/).

In the sane vein one has the following result, which is left as an

exerci se. W shall nmake extensive use of this fornmula |ater.

O ebsch-CGordan formula. If V = (132 and p,q € N then

mn(p, q)
Dp,o(v) ® Dq,o(v) = rio

Porgor, 1)

Remark. We list sone inportant rational G.(V)-nodul es.

c o Do,0,..., 0V
det =B W
Z”(\o z 21,0,... ,ozzz
n n,0,...,0 .
A*(V) = Dl,..,l,O,..,O(V) (n=m Wthn 1's and mn 0's)
Z”(\o* z E?,... ’0’_1E:2
n " 0,...,0,-n .
A (V) = DO,..,O,—l,...,—l(V) (n=m Wth mn 0 s and n -1'5s)
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8§11. SOME EXAMPLES OF | NVARI ANTS

The notion of an invariant enbraces nmany cl assical constructions: the
di scrimnant, the determ nant, the Hessian, etc..Presunably because of the
i mportance of these exanples, the idea of classifying all invariants arose.

In this section we shall examine in detail sonme of the inportant exanples

of invariants, and a few sinple cases in which all invariants can be
classified. In the next two sections we shall investigate the genera
probl em of classifying all invariants.

Definition. If Uis a finite dinensional vector space, then C[U denotes
the set of all polynomal maps U—C. This is an (infinite dinensional if
U#£0) comutative C-al gebra via

(Af)(u) = A f(u) (f+Hf")(u) = f(u) + f’(u)
(FF7)(u) = f(u)f’(u) 10:[U](“):1
for xeC, f,f’ eC[U and u € U

Remar ks.
(1) C[U is the ring of regular functions of the affine variety
_ dimu
Uz A .
(2) W have

0

o ® Hom. (UC)z e ” s'U)
n=0 nh,n 7T Tn=0

IR

cly

*
by polarization. This is the symmetric algebra on U

(3) If U* has basi s gl,...,gh, then the map
CIXp o X ] — U, X +— &

i s an isonorphi smof C-al gebras.

(4) If Uis a CGnodule then C[U is a CG nodul e via

(gf)(u) = f(g u) V geG fec[U, uel.

If geG then the map C[U —C[U], f——gf, is a C-al gebra autonorphi sm

[g(ff)]1(u) = (Ff)(g tu) = (g twr (g ty =
= [(gf) (WIL(gf")(uw] = [(gf)(gf’)](u)
_ 1
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Definition. A function f:U—Wbetween CG npdules is a conconitant if
f(gu) = gf(u) YVueUandgeG

Exanpl es.
(1) A linear conconitant is precisely a CG nodul e nap.

(2) A UHS”U, UUuv...Vvu i s a honpgeneous n-ic conconitant.

Definition. An invariant for a CGnodule Uis a concomtant f: U—C, so
f(gu) =f(u) YueUandgeG

Lemma 1. The set

G
cfuy ~={f ecfy | gf =1 }.
of polynom al invariants for Uis a C-subal gebra of C[U].

ProoF. Trivi al .
Remark. The main problem of invariant theory can now be fornul ated as
conputi ng (D[U]G. Some i nportant general results which | shall not cover

are:

(1) If Gis finite then (D[U]Gis a finitely generated C-al gebra
(E. Noether).

(2) If Uis a rational CG(V)-nodul e then (D[U]G'(V) and (D[U]SL(V) are
finitely generated C-al gebras (Hilbert) and Cohen-Macaul ay rings (Hochster
and Roberts [Adv. vath. 13(1974) 115-175]). Mbreover (D[U]SL(V) is a UD, so

a Gorenstein ring.

(3) One can conpute an explicit bound on the nunber of generators needed
for (D[U]SL(V) (V. Popov [Asterisque vol 87/88]).

Instead we consider in this section sone sinple exanples.

Exanpl e (Synmetric pol ynom al s).

A vector space U wth basis fl,...,fn becones a (I:Sn—rrodule Vi a
ofi :fo(i)' | f gl""’gn is the dual basis of U, the isonorphism
C[Xp, . X1 — C[U, X — &.
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enables us to identify C[U wth @[Xl,...,Xn]. The action of Sn on this is

gi ven by oXi = Xo The set of polynom al invariants of the @Sn—nDduIe ]

()"
is thus

Sn _ . .
@[Xl,...,Xn] ={ f e @[Xl,...,Xn] | f is symmetric in the Xi }.

Recal|l that the elenmentary synmetric pol ynom al s

Sn
Ei(xl""’xn) € @[Xl,...,xn]
are defined by
_.n n-1 n-2
(t+X1)...(t+Xn) =t + Elt + E2t + ...+ En
so
El(xl""’xn) = X1 + ...+ Xn
E(X,,....X) =Y. _ . . X X 00X
it n 1511<12<...<Jisn 11 12 ji
En(xl""’xn) = X1X2...Xn

The Fundanental Theorem of Symmetric Functions conputes the pol ynonia
invariants for Usince it states that the C-al gebra map
Sn
@[Yl,...,Yn] — @[Xl,...,xn] , Yi — Ei(xl""’xn)

i s an i sonorphi sm

Bef ore nmoving on to other exanples, recall that if f(t) € C[t] is a

noni ¢ pol ynom al of degree n
F(t) =t" + alt”'l $owa it = (teg) . (T,

then its discrimnant is

dise(f) =1 (Ai-hj)z.

Since the pol ynom a

n-1 2 _ 2
X = ..., 1" = ”i<j (Xi-xi)
is symmetric in the Xi’ it can be expressed as a polynonmial in the
el ementary symetric polynom als El""’En’ say
2 _
Since al so Ei(Al,...,An) =a, it follows that disc(f) is a polynomal in
A For exanpl e

2

di sc(t24bt+c) = b2 - 4c , disc(to+bt+c) = -4b°> - 27¢?

Exanpl e (The alternating group).
In the previous exanple, restriction enables us to consider U as a

representation of the alternating group Ah (here we suppose nz2). The set
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of polynom al invariants is then @[Xl,...,Xn]Am.

In this case there is another polynom al invariant, the Vandernonde

n-1

|X LAl (X))

Now IXn_l,...,ll2 is an Sn—invariant, so is a pol ynom al EKEl,...,En) in

the elenentary symmetric pol ynom al s.

The C-al gebra map

e:a:[Yl,..,Yn,Z]—>a:[x1,..,xn]A”, o(Y,)=E, o(2)=1x"1 1)

is surjective, and the kernel is the ideal (ZZ—EKYl,...,Yn)).

PRoOF.
(1) e is surjective. Let reSn be a transposition. (Here we use that

nz2!') If f € @[Xl,...,Xn]Am, t hen fs = f+tf is a symetric pol ynom al since

of = of + 1(T Sor)f = f + 7f = f
S S

for f e A, while
: 2
of = tf+tf = of +f = f .
s s
Simlarly fa = f-f is an alternating pol ynoni al

Now fa(Xl,...,Xn) = 0 whenever X1 = X2, so by Hilbert’'s Nullstellensatz

fa € V(Xl-XZ) = (Xl-XZ).
Thus fa is divisible by X -X,. Sinmlarly fa i s divisible by Xi-xi (i<j),

172
and hence
f o= X" 1
a
for sone polynomal h. Cearly his a symetric polynonial. Thus
1 n-1
f = E(fs + IX 7,...,1].h).

Si nce fs and h are symmetric they are in the inmage of 6, and hence so is f.

Thus 6 is onto.

(2) (ZZ-EKYi)) < Ker(8). This is clear since

oZ-o(v)) = XL 12 - oE....E) =0

(3) Ker(@) < (ZZ—EKYi)). By pol ynoni al division, any pol ynoni al

P(Y .,Yn,Z) is of the form

o P(Y,.2) = QY,.2) [ZZ-D(Yi)] + [A(Yi) + B(Yi)Z]
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To prove the assertion it thus suffices to show that if PeKer(8) has form
A(Yi)+B(Yi)Z, t hen P=0.

If a,,...,a € C, let
L n n n-1
f(t) =t +a1t +...+an = (t+A1)...(t+An).
Then
P(a a, At 11) = a(P) (A A) =0
1,..,n, y oo ey - 1,...,n -
since PeKer(8). Exchanging Al and AZ changes the sign of the Vandernonde,
so
P(aj,...,a , +8) = 0 where & = [disc(tn+a1tn_1+...+an)]1/2.
Using the special formof P this becones
+ =
A(al,...,an) * B(al,...,an)é 0
and hence A = B = 0 on the Zari ski-dense open subset
n . n n-1
] {(al,...,an) e C | disc(t +a1t +...+an) = 0}
of C. A Zariski topology argunent now shows that A = B = 0 everywhere on

¢". Thus P = 0, as required.

Exanpl e (Characteristic polynonal).
Let V be a vector space of dinension m Recall that the natural action
of GL(V) on U = EndB(V) is given by
-1
(ge6)(v) = ge(g "v)
SO g®o = geg_l.lf
xe(t) = det(tlV + 0)
denotes the characteristic polynonmal of @ (nore or |less), and cn(e) is the

coefficient of t™" in xe(t), t hen
_ -1, _ -1 _
xg.e(t) = det(th + geg ) = det g(th + 0)g = xe(t)

and so C, U—— C is an honpgeneous n-ic invariant. Note that if 6 has

ei genval ues Al""’hni then putting 6 into Jordan Normal Form we have
_ m
Xe(t) - n] =1 (t + A])
o) cn(e) = En(Al,...,An?, o)
cl(e) = A1+...+An1: tr(o), Cn$9) = Al"'hn1 =det (09).

The C-al gebra map
) Ga(Vv)
C : @[Yi,..., YnJ — C[ Y] , Yn —

i s an i sonorphi sm

Proor. It suffices to observe that if f is a polynonmal invariant for U
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then f(8) is a symretric polynom al function of the eigenvalues of 8. The
proof of this is the sane as the proof that the characters of rational
CGA.(V)-nodul es are symetric rational functions in the eigenval ues of
geG(V), 810 Lenmmm 1.

Exanpl e (Di scrimnant of a quadratic forn).
Let V = (Dm, and let U= Horrb 2(V,(I:) be the set of quadratic forns on V.
By polarization U can be identified with the set of symetric mum matrices
Awith
f(x) :xTAx (x a colum vector in (Dmﬁ.
We define the discrimnant disc(f) of f by
disc(f) = det(A).
Now U is a (I:G_m((D)-rroduIe Vi a
(o) () = (g %) = x'(g" 'Ag" H)x
for xe(Dm, geGLm((D), o)
disc(gf) = det(g 'Ag %) = det(g) 2disc(f).
Thus disc: U—C is an SLm((D)-invariant (but not an G_m((D)-invariant).

The C-al gebra map (D[X]—MD[U]SLZ((D), X+—di sc is an isonorphism

Proor. The nap is injective since if there is a polynonial P wth
P(disc(f)) =0 for all feU then P(A) = 0 for all AeC, since the quadratic
form

_ 2.2 2
fx(xl""’xn? = X1+X2+...+AXm

has discrimnant A. Thus P = 0.

Now | et 8: U—C be a pol ynomi al SLm((D)—i nvari ant, and define
F: C—2C, Fa = O(fh)'
This is a polynom al function since 8 is a polynonial map. W want to show
that o(f) = F(disc(f)).

In fact we need only prove this for f with disc(f)=0, for if this case
i s known, then
U= {f | disc(f) =0} u{f | e(f) = F(disc(f))}
is a union of two Zariski-closed subsets, so by the irreducibility of U we
deduce that U = {f | o(f) = F(disc(f))}.
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Recall that any matrix is congruent (over C) to a matriXx
diag(1,...,1,0,...,0).
Thus if f € U corresponds to matrix A and

A = disc(f) = det(A = 0,
T

then there is sone B € GLn$®) with BAB=1. If now
C = diag(l,...,1,det(B) )
then BC € SLn$®) and
(BO) 'ABC = C'B'ABC = diag(1,...,1,det(B) ) = diag(1,...,1,2)

so o(f) = O(fh) = F(A) as required.

Exanpl e (Discrimnant of a binary formn
Let U= Honh n(®2,®) be the set of honbgeneous pol ynonials of degree nzl

in two variabl es Xl’XZ' If f e U say
fzax' +ax"Ix + +a X! =b (A X+, X)) (A X, +1_X.)
01 11 2 Y n 2 11 "1727 nnl"n 2

defi ne
2n

. _ -2 2
disc(f) = b ni<j (Aiuj-hjui) .
This is well-defined since it is unchanged if two terns are exchanged or if

one termis enlarged and anot her reduced by the sane factor

For exanpl e, when n=3 one can check that

. _ 2.2 3 3 2.2
disc(f) = -27 a0a3+18 a0a1a2a3-4 a0a2—4 a1a3+a1a2.

The map disc: U—C i s a honbgeneous (2n-2)-ic SL2(®)—invariant.

PROOF.
(1) disc:U—C is an SL2(®)—invariant. | f geGLZ(B) and g_lz [; g] t hen
n
(gf)(Xl,XZ) = f(aX1+BX2,7X1+6X2) = bigl[hi(aX1+BX2) + ui(7x1+axz)]
so
. _ ,2n-2 2
dise(af) = b™" % [(Ai iy 1) (A B 3) (A @t 9) (3 B, a)]
_ ,2n-2 2 2
=b nl<] (Aluj - Ajul) (065- B’J)
_ : -n(n-1)
= disc(f) det(g) .
(2) There is a honogeneous pol ynoni al CXZO,...,Zn) of degree 2n-2 with
disc(f) = CXaO,...,an) when a, # 0. Let EKYl,...,Yn) be the polynomal with
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_ 2 - -y =
D(El(xi)""’En(Xi)) =TI <i (Xi-Xj) LI f a0¢0, t hen taki ng Al—...—hn—l and
b:ao, we see that

. _.2n-2 _ _-S
disc(f) = a, D(allao,...,an/ao) = a, Q(ao,...,an)
wher e Q(ZO,...,Zn) is a polynonmal and we arrange things so that s is

non- negative, but otherwise is as small as possible. Dually, if a, # 0 then

2n-2 -t
a D(an_llan,...,aolan) =a, Q’(ao,...,an).

disc(f) =

Si nce
a Q(ay,...a) =a Qa a )
0 0,--- n - n 0,---, n

on the Zariski-dense open subset of U defined by aya,, # 0, we have

s ot
Z0 Q’(ZO,...,Zn) = Zn Q(ZO,...,Zn).
Thus 28 divides Q and so s = 0 by minimality. Finally observe that
_ 2n-2 . 2n-2
QOLZO,...,ocZn) —(ocZo) D(ochlocZO,...) =« qZO""’Zn)’

so that Q i s honpbgeneous of degree 2n-2.

(3) The map Q U—C, f »—)Q(ao, Ce, an) is an SLZ((D)—i nvariant. |f
g € SLZ((D) then on the Zariski-dense open subset
{f € U a, # 0 and gf has non-zero coefficient of Xg}

of Uwe have Qf) = disc(f) = disc(gf) = Qgf). Thus Qf) = Qgf) on U

(4) disc(f) = Qf). If f =0this is clear, so suppose that f # 0. There

is g e SLZ((D) such that gf has non-zero coefficient of X,. Then

disc(f) = disc(gf) = Qgf) = Qf).

n
1

For a CSL(V)-nodule, as well as the usual invariants, one wants to

consi der anot her construction:

Definition. A covariant for a CSL(V)-nodule Uis a polynom al invariant

Ue V— C.
Exanpl es.
(1) Every invariant e for U gives a covariant

Ue V—C, (u,x) — 6(u).

(2) If U= HorrzD n(V,(I:) then there is a trivial "evaluation" covariant
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defined by

ev: UeV—EC, (f,v) — f(v).

Exanpl e (Hessi an).

If f is a function of variables Xl""’Xni t hen the Hessi an
2
_ o f
H(f) = det [5?;5?;]
is another function of X ,...,X
1 m

Let U= anh n(®n1®) be the set of honbgeneous n-ic polynomals in
Xl""’Xni The Hessi an defines a pol ynoni al map
Ue C" — € (f,x) —> H(f)(x)
Now U is naturally a @GLn$®)-nDdule Vi a
(o) (x) =f(gx) (f ey ged (o), xech.
By the chain rule for differentiation
H(gf) (gx) = det(g)'ZH(f)(X) (f €U ge@ (0O, xce ",

so that His an SLn$®)—covariant.
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8§12. THE FI RST FUNDAMENTAL THEOREM OF | NVARI ANT THEORY

The First Fundanental Theorem of Invariant Theory (for G(V) or SL(V))
gives generators for the set of polynonmial invariants in the inportant
speci al case when the nodule is a direct sum of copies of V and V*. This is
i mportant because in principle one is supposed to be able to use the FFT to
conpute the invariants for an arbitrary rational nodule. In fact history
has shown that such a transition is not possible, but the idea will be

denonstrated with an exanple in the next section.

Let V be a vector space with basis € €
Theorem (Mul tilinear First Fundanental Theoren). If n,r € N then
(1) Honb:GL(V)(T”(V) ® TV, C =0ifn=r.
n,* n .
(2) m%&(W(T (V) @ TV, C is spanned by the naps M. (o € Sn)
defined by

uo( ¢1®. .. ®¢n®v1®. .. ®vn) = ¢0( 1) (Vl) c ¢0( n) (vn) .

Proor. |f X and Y are CG nodul es, then
HonHX ®Y,C) = (X aY) = X oY = XoY = HorTID(Y,X)
and taking the Gfixed points, we obtain
HO”IDG(X ®Y,C) = HorrzDG(Y,X)

Using this and the isonorphism Tn(V) = (Tn\/) we have an i sonorphi sm

w Honb:GL(V)(Trv, ™) — m%&(w(Tn(V*) ® TV, C).

Explicitly, this sends a honmonorphismf to the map

B0 0 © x 1 (dro... 0 ) (F(X) (4 e V and x € T'V).

r no. _ . , P , .
(1) m%&(W(T V, TV) =0, since m%&(w(s ,S) =0 if S (resp. S is
a sinple honogeneous r-ic (resp. n-ic) CG(V)-nodule.

(2) This is a restatenment of Schur-Wyl duality. Recall that
n .
End(DGL(V)(T V) is spanned by the maps AO (o € Sn) wher e

Ao(v1®. .. ®vn) = Vo-l( 1) ® .8V -1

(n)’

Now m sends A_to u .
(o) (o)
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Notation. If U and Ware CG nodul es, we denote by HO”IDG n(U’W t he
vector space of all honbgeneous n-ic conconitants U—W Note that

HorrzD n(U, W is a CG nodul e by conjugation:
-1
(gf)(u) =gf(g° W) (geG uel f eHom (UW),

and Hom. (UW = Hom, n(U,V\)G.

0

Lemma 1. If Uis a CG nodule, then (D[U]Gscanzo HO"IDGn(U’(D)'

0

Proor. C[ U] = ®1-0 HorrzD n(U, C). This is an isonorphi smof CG nodul es.
Now take G fixed points.

Lemma 2. If U and Ware CG nodul es, then there are inverse isonorphisns

of vector spaces
Y > Yol
Hom, s"u w Homp (U W

f s 1 pf
n!

where A: UHS”U, ur—uv...vu and Pf is the total polarization of f.

Proor. These maps i nduce inverse isonorphi sns between HorrzD( SnU,V\) and
Horrb n(U’W’ so it suffices to prove

(a) if Yy is a conconmtant, then so is yoA, and

(b) if f is a concomtant, then so is %'Pf.

Now (a) is obvious, since Ais a conconitant. There are 3 ways to prove

(b).
1st way. Use the fornula for Pf. This is very |ong.

2nd way. If f Honb:G(s”u,vv, then f = (%'Pf)oA, so
(= P)(g(uv...vu)) = (5 Pf)(gA(u)) = (5 Pf)A(gu) = f(gu)
= gf (u) = g(%'Pf)(uv...vu)

for all ueU and geG Now the el enents of the formuv...vu span s"u
3rd way. HorrzD(SnU,V\) and HorrzD n(U’W are CG nodules with G acting by

conjugation, and yr—yoA is a CG nodule map and an isonorphism Thus its

i nverse fH%le is also a CG nodul e map. Now these nmaps restrict to
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i sonor phi sns between the sets of G fixed points.

Remark. The map A factors as U —§9 U ﬂﬁg s"U where d(u)=ue...®u, SO

conposition with 8 i nduces a surjection

n
m%G(T uw —» HO[TIDG, n(U’W'
It isinthis formthat we shall use Lemma 2.

Theorem (First Fundanental Theorem for Gln?' | f

* *
U=Ve...eaV @ V &...aV ,

o) el
P 4

t hen @[U]GL(V) is generated as a C-al gebra by el enments

(o | 1si=p, 1550 )

defined by

pij(vl,vz,...,vp,¢1,...,¢q) = ¢j(vi).

Proor. Note first that the pij are pol ynom al invariants:
-1
(9¢,)(gv;) = ¢,(9 "ov;) = ¢ (V).

By Lemma 1 it suffices to prove that any honbgeneous n-ic invariant f is a

| i near conbination of products of pij' By Lenmma 2 we have a surjection

m%&(W(TnU, €) —> Homyg () (U0

Let
* *
vV, =V, , V. =V, V =V, .,V =V,
1 p p+l p+q
so that
- P*d
U= ®i:1 Vi' ]
This deconposition of U gives a deconposition of T U
n p+q p+q p+q
TU = ® ® ) Vi ®. ...6V.
|1:1 |2:1 |n:1 1 n
so
n -
HO[TIDGL(V)(T Uc) = i ® i HO”IDGL(V)(Vi 1®"'®Vi n,(D).
oy

We consider one of the sunmmands. By the nultilinear version of the FFT,

ei t her anhGL(v)(Vi1@....®Vin,®) =0 or

n = 2k,
k of the |j are =p, say for j = Cgyoves O
k of the ij are >p, say for j = Bl""’BW
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and in this case HO”IDG_(V)(Vi .8 ..®Vi o C) is spanned by the k! naps T

(c € S,) given by

)
) = v (v. ) ... v (v ).

o O(,k

Bo(1) %1 B k)

Tracki ng back, the honpbgeneous n-ic invariant of U corresponding to T is

T (V,®. ..6V
0‘(1 n

o} . .. P

i -p i -p
% Bac1y % Backy
and the assertion follows.
Theorem If r € N, and
U=End (V) ... @ End_(V) (r copies),
a(v) . c c . .
then C[ U] is generated as a C-al gebra by the invariants
ti i U — C, (91""’9r) |—>Tr((5)i Oi ...Oi ),
I 4 12 k
where k =2 1 and 1 = b =,
Remark. In fact (D[U]G'(V) is generated by the til . with k =2M1.

See [Procesi, The invariant theory of nxn nmatrices, Adv. Math. 19 (1976),
306-381] .

Remar k. Regardi ng Schur-Wyl duality as hard (since it fails in
characteristic p>0), Procesi shows that this theoremis equivalent to the
FFT. Thus invariant theory is about representations of quivers: the quivers

with one vertex and n | oops.

Proor. By polarization (Lemmas 1 and 2) we need to conpute
n
. m%&(W(T(EndB(W),B).
Si nce Endq:(\/) =~ VeV this is isonorphic to
n,* n
I—b%&(v)(T (V)eT V,0)
which, by the nultilinear FFT, is spanned by the maps M. (o € Sn)
uo_( ¢1®. .. ®¢n®v1®. .. ®vn) = ¢O_( 1) (Vl)' .. ¢0( n) (vn).
We conpute the correspondi ng map
. oh
v T (Endq:(\/)) — C.

*
Let V have basis el,...,em and V dual basis Nyseeos M If 6 € Endq:(\/)

has matri x Aij with respect to this basis, then

o(v) = 3, m (V) e

A .
1]
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*
so the corresponding elenent of VeVis

N Apmoee

Now i f 6, has matrix A:(j, then 6 ®...®9n corresponds to

k 1
1 2 n,x n
Y A A ... oM. ® .. e_®€e_®... e T(V) TV
a1, .. an 21P1 P> by~ by 2
b1,.., bn
so we have
v(6,0..80) = T A A n (e ) m, (e )
o1 A T an P1 3P br(1) 21 Pe(2) 22
b1,.., bn
1 2
= Z
bi,..,bn Abo~(1)’b1 Abo~(2)’b2
Ifo:(|1|2...|k)(1112...11)... we can reorder this to get
_ i1 i2 i k j1
T L Ao b M b P b P b
1,..,bn i2" i1 i3 iz i1 ik Tj2" )1

= Tr(eik...eil) Tr(ejl...ejl)...

The assertion foll ows.

Before we nove on to the FFT for SLmvve need to know a little about how
rati onal CGAE.(V)-nodul es behave when regarded as CSL(V)-nodul es by

restriction. First we nake a non-standard definition

Definition. If reZ and Uis a f.d rational CGA(V)-nodule, we shall say
that U has rational degree r provided that (Alv)u =2"u for all u e U,
A€ (DX, wher e MV e A(V).

Exer ci ses.

(1) If Uis honogeneous r-ic, then it has rational degree r.

(2) If Uhas rational degree r, then U* has rational degree -r.

(3) If Uand Whave rational degrees r and n, then UsWhas rational
degree n+r.

(4) DM, . Am(\/) has rational degree Zi :‘1 Ai .

Lemma 3. If Uand Ware rational CA(V)-nodules, with rational degrees r

and n respectively, then

(1) If m/} r-n then m%SL(W(U’W =0

(2) If r-n =nk and 0 = d edet_k, then the map

T Honb:&(v)(det'kcau,vv—wlorrb:SL(v)(u,w, a(f)(u) = f(deu)
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i s an isonorphi smof vector spaces.

Proor. Any element g € GL(V) can be witten as g = As where A is an mth

root of det(g) and s € SL(V). Now

(AlV)UZAru, (AlV)W:AnW (uelU weW
If 6 € m%SL(W(U,W, t hen
o(gu) = 6((As)u) = s B((AL)u) = s oA u) = s A" e(u)

=" s(A1,) e(u) = A" g e(u).

If 8(u) # 0 then m | r-n, otherwi se choosing a different mth root of det(g)

woul d give a different answer. Hence (1).

Now let r-n = nk. The map mw i s defined since gd = d for geSL(V), and =

is injective, so we only need to prove that it is surjective. Let

0 € m%SL(W(U’W’ and define

fo: det_k®U—>W deu > 6(u).

If f is a CA&(V)-nodule map, then (2) is proved since 6 = w(f). Now

UL det(nv)k = (det @)%
so
f (gdegu) = f((det g)_kd®gu) = (det g)_ke(gu) = go(u) = gf (deu).
Exer ci ses.
(1) DM,...,Am(V) is sinple as a CSL(V)-nodul e.
(2) DM,...,Am(V) = Dul,---,um(v) as CSL(V)-nodules if and only if
A- — —

1M T Ak, = A B

Remar k. Al though we have not done so, one can develop a theory of

rati onal CSL(V)-nodul es, and can prove that every rational CSL(V)-nodule is
the restriction of a rational CG.(V)-nodule. Thus the DM Am(\/) with

Am:O are a conplete set of non-isonorphic sinple rational CSL(V)-nodul es.

Theorem (First Fundanental Theorem for Ser?'

*
Let V be a vector space with basis €0 €y and et V have dual basis
| f

nlianm

* *
U=Ve...eaV @ V &...aV ,

D el
P 4

then C[ U] SL(V) is generated as a C-al gebra by the polynom al invariants

whi ch send (vl,vz,...,vp,¢1,...,¢q) e Uto
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¢J (VI) (1=i =p, 1=j=q),
[vipo-ooov ] (A=ig << =p),
[¢j1,...,¢jm] (15j1<"'<jm5q)’

wher e [vil,...,vim] is the determ nant of the matrix whose nth colum is

17 8y

t he coordi nates of vinvw'threspect to e e and[¢j1,...,¢jnl is the
determ nant of the matrix whose nth columm is the coordi nates of ¢jn with

respect to my, ..., m.

Proor. Clearly the indicated functions are SL(V)-invariants. Moreover,

the restrictions on ik and jk can be repl aced by
15|1,...,|m5p and 1511,...,Jmsq.

By polarization (Lenmmas 1 and 2) we reduce to having to conpute
Ho (T,C) where
"bsL(v) - .
T=T(V) ¢ T W
Now T has rational degree r-n, so by Lenma 3, anb:SL(V)(T’(FI)( =0 if
m }t r-n. Thus we may suppose that r-n = nk. If 0 #d € det ~, then by Lenma

3 the map
I—bnb:g_(v)(det'kcaT,(D) — HO"b:SL(V)(T’(D)’ f —(t —f(det))

i s an isonorphism
We shall consider the case k=0, the case k<O is simlar.

I denti fying det_1 wi th the sunmand Tn}V)anti of TnIV), we can identify
det_k®va'thasumTand of
k * r, x r
TMV) e T2T (V) o TV.
Thus we have a restriction map

res : Honb:GL(V)(Tr(v*) ® TV, C) —>» m%&(w(det_k o T, C)

which is surjective since det_k ® Tis a sumand. By the nultilinear FFT
the I eft hand Hom space i s spanned by the maps M. (o € Sr) defined by
uo( ¢1®. .. ®¢r oV, ®. . . ®Vr) = ¢1(v0-1( 1)). .. ¢n(v0-1( n))'

Setting

_ * _ -1
S = ZreSm €. n_L_( 1) ®. ..®nT(m € Tn’kV )anti = det 7,
d=50... 066ecdet X

and if t = ¢1®. .. ®¢n®v1®. .oV € T, then we have
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res(p ) (det) = [Vo_-l(l)...Vo-l(m][vo-l(ml)...Vo-l(zm]...

< Vot kmen)) 220Ve Y kmez))
The correspondi ng pol ynom al SL(V)-invariant is thus a product of ¢j (Vi)

and brackets [vi . ..vim].

In the sinmlar case when k<O one obtains a product of ¢j (Vi) and

brackets [qu 1"'¢jm]’ and the assertion of the theoremfoll ows.
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§13. COVARI ANTS OF Bl NARY FORMS

Not ati on. Throughout this section the following notation will be fixed:
V=05 G=sL(V) = SL,(0), and
_ o n * o n *
Cn_kb%,n(vaﬁ) _(S\/) _S(V)!
which can be identified with the set of honbgeneous pol ynonials of degree n
in variables Xl’ X2.
Remar ks.

(1) The Ch (n=0) are non-isonorphic sinple CG nodul es

(2) q j (V) 2 C . as CG nodules, so Ch = s, In particular V

IR
<

(3) The d ebsch-Gordan Fornul a becones

mn(p, q)
C © C = ® C .
p q r=0 p+q- 2r

Fix neN. Recall that a covariant for Ch is a polynomal CSL(V)-invariant

Ch®V——eE. W have already nmet sone of these covariants:

ev(f,v) = f(v) t he eval uati on nap,
di sc(f,v) = disc(f) the discrimnant,
H(f,v) = Hf)(v) t he Hessi an

Qur aimis to conpute generators for @[Ch@V]G, or, stated nore grandly,

to

conpute all covariants of binary forns of degree n

In general this problemis not solved, but it is answered for snmall n. In
this section we prove a useful theorem due to Gordan, and then solve the

cases n=3 and n=4.

Exanple. Cassically this problemwas tackled with the synbolic nethod:

using polarization to reduce it to the FFT. For exanple we shall conpute

Hom . ,(C,eV, ©).

DL , 2, . *
I denti fying Cé with T7(V )synn1me have naps

Hom. g H(CpoV, ©) <« Hom. 2(T2V*®V, 0) « Hom. T2(T°V V), ©)

65



* * *
= Hom. (T2(T?V') @ T2V oV o VeTV o T2V, ©)
ale

Now
but the

2 .
(1) anhch V,C) is spanned by the map v F—%[Vl,V

1%V2 2l

correspondi ng covariant is (f,v)+—[v,v]=0.

*
V', o) =o.

(2) Hom, T2V eV, C) = Horm, ( VeT
(3) an&x§12(T2Vﬁ),®) i s spanned by the maps which send a tensor
(¢,06,) o(¢589,) O
The correspondi ng covariants send (f,v) to
0 - %disc(f) %disc(f)
Thus HombG,Z(C2®V’®) i s spanned by the discrinmnant. Mre generally one can

show t hat @[CZ@V] is generated as a C-al gebra by ev and disc.

We shall not use the synbolic nethod, however, since we have not found

it necessary.

1,X2 and r eN,

Definition. If f and g are functions of two variables X
then the r-th transvectant (Uberschiebung) of f and g, denoted by rr(f,g),

i s defined by
r (_1)i 5 f arg
T (f,g9) = Y - — — . . —
r i <o it(r-i)! axi’ U axa' axy axo’
r

1 8 8 8 8

= [mm mm] [f(xrxz) 9(Y1’Yz)] Y1=X1, Y2=Xe
Exanpl es.
(0) To(f.9) = fg;
(1) rl(f,g) = a(f,g)la(Xl,XZ) is the Jacobian of f and g;
(2) rz(f,f) = H(f) is the Hessian of f.
(r) rr(f,g) = (—1)r rr(g,f), o) rr(f,f) =0if r is odd.

Remark. If f and g are honpbgeneous pol ynom als of degrees p, g, then

rr(f,g) = 0 unless r =mn(p,qg), in which case it is a honbgeneous
pol ynom al of degree p+qg-2r. The nornali zation used for rr(f,g) is nmy own;

usually the definition is
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(f’g)r _ r!(p-;?;fq—r)!

7.(1,9).

Qur first I emmmn shows how transvectants are related to the

d ebsch- Gordan formul a.

Lemma 1.

(1) If r =mn(p,q) then the map

T, Cp ® Cq — Cp+q—2r’ feg — rr(f,g)
is non-zero map of CG nodul es

(2) Any(DGrroduIerrapCpcaC — C is amltiple of T,

q p+q- 2r
(3) The T, conbine to give an isonorphi smof CG nodul es
(t,) :
r mn(p, q)
Cb ® Cﬁ ——— ®r:0 Cb+q—2f
PRoOF.

(1) The map is certainly a vector space nmap, so we need to show that it

conmutes with the action of seG Let s_1 = [; g] and xe@z. I ntroduce new
vari abl es
. X1 = aX1+BX , X2 = 7X1+6X,
ie (X ,X2) =s (Xl,XZ). Thus (sf)(Xl,XZ) = f(X ,X2). Now
6/6X1 = 6X1/6X1.6/6X1 + 6X2/6X1.6/6X2 = a.@/@Xl + 7.6/6X2
6/6X2 = B.6/6X1 + 8.6/6X2

+8Y,, we have simlar fornulae for

Al so, introducing Y! = aY1+BY , Y. = 7Y1 5

1 2
t he o/ 8Yi and

8 8 8 @ :(aa_m)[a a 9 a]
6X1 6Y2 6X2 aYl 6X1 6Y2 6X2 aYl
and ad-By = 1. Thus rr(sf,sg)(x) is equal to
r
1 [ o) o) o) o) ] [
= - f (X, X)) g(Y’,Y’)] ‘
| = =
r! 6X1 6Y2 6X2 aYl 2 2 (Xl,XZ) (Yl’YZ) X
which is the sane as
1 (a8 o a o)
_|[ 7 7 7 I] [f(xl’xl) g(YI!YI)]‘ 7 7\ = 7 7\ = _1
r! 6X1 6Y2 6X2 aYl 2 2 (X ,X2) (Y ,Y2) S X

and hence equal to rr(f,g)(s_lx) = (STr(f,g))(X), as required.

The map T, is non-zero since if
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— P -4
f(Xl,XZ) = X, and g(Xl,XZ) =X

1 2
t hen
8 f1ax1" = p(p-1)..(p-r+1) xaP"" and
8 gl ax2" = q(g-1)..(g-r+1) x°"
so that
_ p-r Q-1
rr(f,g) = 1/r! p(p-1)..(p-r+1)q(g-1)..(g-r+1) X1 X2 # 0.

(2) By d ebsch- Gordan
C o C = @nln(p,q) :
p q r=0 p+q- 2r

Since the sunmmands on the RHS are sinple and non-i sonor phic,

du%km%(c ®C %szﬂ = 1,
so any map is a multiple of T,

(3) Conbine (2) with C ebsch-Gordan
We shall need the follow ng technical |enma |ater

Lemma 2. If p,g,n,r e Nand r = mn(q,n) then setting N=nmax(0,r-p),

there are aN, C ar e C,with ar # 0, such that
_ r
for(oh) =5 ya T (T  (f.9),h

for all f eC, ge C, heC.
p q n

Remark. Realizing that the |l eft hand side can be rewitten as

ro(f,rr(g,h)) this |l emma expresses a sort of associativity for the T In
fact there are many fornulae of this nature; see the chapter on Gordan’'s
Series in [Grace and Young]. In particular one may al so find expressions

for the coefficients ak t here.

Proor. W have an i sonorphi sm of CG nodul es

(7, 1) mn(p, Qq)

C eC o®C —— ® C . o C
p q n i =0 p+g- 2i n
() mn(p,a) mn(n, p+q-2i)
; iiO kiO C;p+q+n-2i-2k
By Schur’s Lenmm, any CG nodul e map
Cp ® Cq ® C e Cb+q+n or

is a linear conbination of the naps rko(ri®1) with
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itk = r, 0 =i =mn(p,q) and 0 = k = mn(n,p+qg-2i).
Wth our assunptions this condition is just
N=k=randi =r-Kk
In particular this holds for the map
Cb ® Cﬁ ® Ch —>

Corqen-2rs  fegeh — fz (g.h),

so there are a € C as required.

Now suppose t hat a, = 0. Set

— P — 4 —
f = X1 g = X1 h = X2.
Then
xﬁ*q (i =0)
T (f,9) =
0 (el se)
so the right hand side is zero. On the other hand
r r
1 g9 ah 1 q-r n-r
rr(g,h) =5 — < r—lq(q—l)...(q—r+1)X1 n(n—1)...(n—q+1))<2
T aX1  aXe ’

o) frr(g,h) # 0, a contradiction

Not ati on. Fix nel.

(1) Let R= @[Ch@V]. Thus RG is the set of covariants of Ch.

(2) If ¢ e Rand f € Ch, define ¢(f) e C[V] by ¢(f)(x) = ¢(f,x).
(3) If reN and ¢,¥y € R then rr(¢,w) denotes the map

CoV—C,  (f,%) Fot ((f), ¥(f))(%).
(4) If d,ieN et Rdi be the set of ¢ € R which are honpbgeneous, of
degree d in Ch and degree i in V. Thus the el enents of Rdo are invariants

and ev € le

Lemma 3. If reN and ¢,y : Ch@V——eE are covariants, then so is
T (oY) 1 CooV-—C (f,x) r> 7 (g(f),¥(g)(x).

Proor. Fol lows from Lemmma 1.

Lenma 4.
® G_ ? G
(1) The R,. are CG subnmodules of RR, and R= @ R,., so R"T= @ R .
di - di - di
d,i=0 d,i=0
(2) RdiRej < Rd+e,i+j and rr(R i’Rej) < Rd+e,i+j—2r for r=mn(i,j).

(3) The assignment ¢ +—— (f —=¢(f)) induces an isonorphi sm
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G .
Rai = MMy ¢(Gy G-
In particular

G _ [ C1rR (i=0) G _ ([C.ev (i=n)
Roi { and Ry ‘{o (i #n)°

0 (i #0) 1
PRoOF.
(1),(2) dear.

(3) The assignment ¢ —— (f —>¢(f)) induces an isonorphism

Rdi —>Hor‘rzD d(cn’Cl) of CG nodul es, and the assertion follows after taking

fixed points. Now

G G G

Roi =G = Hom(C G) = Hm(Cy. G) and R = Hom,(C. G)

R

and t he di mensi ons of these are known since the CI are non-i sonor phic

si mpl e CG nodul es.

Lemma 5. Any covari ant OERdGi (d=1) can be expressed as a linear

conbi nati on

_ mn(n,i)
G 0 =X =0 Tnr (80 8V)
with ¢r < Rd-1, n+i-2r°

Proor. Using the correspondence in Lenma 4, we need to prove the
surjectivity of the map
mn(n,i)

® rio HO”IDG d- 1(Cn’ Cn+i - 2r) - HO"IDG d(Cn’ CI )

whi ch sends ¢ € HO”IDG d- 1(Cn,Cn+i -2r) to the map

f — rn_r(qb(f),f).

| f ad—l : Cn—>Td_ 1Cn’ f — fe...ef denotes the diagonal map, then
conposition wth Sd- 1 gi ves a hononor phi sm
mn(n,i) d-1 mn(n,i)
B o PTG Guig) 2 0 PG gl Gy G 2r)

and it suffices to prove that aofB is surjective.

For r=i we have non-zero CG nodul e nmaps
Cn+i-2r — HonrzD(Cn,Cl), f — (g»—nn_r(f,g))

and since by O ebsch-Gordan we have an i sonorphi sm
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. mn(n,i)
HO”ID( Cn’ CI) = Cn®C| = Cn®C| = rio Cn+i -2r’
it follows that these maps conbine to give an i sonorphism

mn(n,i)
rio Crti-2r m%(cn’q)'

Appl yi ng Hon]D(Td_ 1Cn,—) to this and using the isonorphism

IR

Hom (11, Hon(C,, ¢))

d
Honrb:(T Cn, C|)
gi ves an i sonor phi sm
mn(n,i) d-1 d
rio Honrb:(T Cn’Cn+i-2r) —H—b"b:(T Cn’C|)'

whi ch sends y € Hon]D(Td_ 1Cn,Cn+i _o) to the map

f1®...®fd |—>rn_r(w(flca...@fd_l),fd).

Taking G fixed points now gives an isonorphi sm
mn(n,i) d-1 d
LA rio HO”IDG(T G Cnai 2r) - HO"IDG(T G G ).

By pol arization, conposition wth 8d i nduces a surjection
. d
Z HorTb:G(T Cn’C|) —> Honb:Gd(Cn’Cl)'

Now «aof3 = Loy IS surjective, as required.

Theorem (Gordan. A weak form of Gordan’s fanpus theorem.

If Tis a C-subal gebra of RGV\,ith the property that rr(qb, ev) € T

whenever r e Nand ¢ € T, then T = RG.

Proor. By definition 1ReT, so each R(()si T |If RdG-li cTfor all i,
then by Lemma 5, RdGi €T for all i. Thus RGQT.

Remark. W shall use this to find a set of generators of RG in case n=3

and n=4, but we need to be nore precise, and we need a prelinmnary | emma.

G G .

Lemma 6. If ¢ € de, Y € Req and r = mn(qg,n), then
— r-1

T (¥ ev) = agT (Y.ev) + § _\ T, (8. ev)

~ G
where N = max(0,r-p), for sonme « € C and 0 Rite. p+q+2k- 2r°
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ProoF. By Lenma 2, ¢rr(w,ev) is a linear conbination of the covariants
rk(rr_k(¢,w),ev) with N =k =r, and the coefficient of the termwth k=r
is non-zero. This termis rr(¢w,ev), SO we can turn the equation around,
and wite

_ r-1
Tr ( ¢w! eV) - (X‘¢Tr ( l/h eV) + Zk:N (x‘k’rk( Tr _ k( ¢! l/’) 1 eV) .
Setting
Ok = ock’tl'- k( ¢! lll)
the assertion foll ows.

Rd+e,p+q+2k-2r’

Exanpl e (Covariants of cubic forns). If n=3, then RG is generated by the

covari ants

ev e RG
13 G
H= t,(ev,ev), the Hessian, in R2 .
2 G 2
t = rl(H,ev) € R33 .
D = rs(t,ev), the discrimnant (x48), in R

40°

Proor. Let T be the C-subal gebra of RG generated by ev, H t and D. W

nmust show that T = RG As before, R& €T for all i. Suppose by induction
t hat

G . ,

Rd, i € Tfor all i and all d’<d.
W have to show t hat Rg € Tfor all i. By Lenmma 5, it suffices to prove
for all 0 =r =n the property

G , .

(Pr) rr(¢,ev) e T for all ¢ € Rd—l,j withij =r

(PO) is trivial: by the induction on d we have ¢ € T. Thus

ro(¢,ev) = ¢.ev € T.

Now suppose that 0 < r = n and that (Pr’) is true for all r’<r. W have

to prove (Pr)' Again ¢ € T, so ¢ is a linear conbination of nonomals

X zZ W G
ev' W t? D" e R‘x+2y+3z+4w,3x+2y+3w

and it suffices to prove (Pr) when ¢ is a nononial. There are two cases.

Case 1. |If the nonomi al deconposes as a product

_ G . - )
¢ = ¢1¢2 wher e ¢2 € Req with q=r and e < d-1

By Lemma 6 we have
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G

_ r-1
Tr(¢! ev) -« ¢1Tr(¢2’ ev) + Zk:N Tk( Ok’ EV) (Ok < Rd' 1,] +2k- 2r) '

Now rk(ek,ev) € T by property (P

G
and rr(¢2,ev) € Re € T by the

k)’ +1, q+n-2r

i nduction on d. Thus rr(¢,ev) e T.

Case 2. |If ¢ does not deconpose, there are only the foll ow ng cases

(a)
(b)
(c)
(d)

¢ =ev, r =1,2,3.
$=H r =102
p=t, r =123
¢ = FE r = 3.

Nanel y, suppose that ¢ is not one of these. Since r=n=3, if ev, t or FF

occurs in ¢ this factor can be renoved. Thus ¢ = D" or ¢ = H DY In the

first case r=0, but this has been dealt with; in the second case r=2, so

this deconposes unl ess w=0.

Now
(al)
(a2)
(al)
(b1)
(b2)
(cl1)
(c2)
(c3)
(d3)

rl(ev,ev) = 0 since 1 is odd.

rz(ev,ev) He T by definition.

rs(ev,ev) = 0 since 3 is odd.

rl(H,ev) =t €T by definition.

T,(H ev) = 0 by calculation

2

rl(t,ev) =-3/2 FF € T by cal cul ation
rz(t,ev) = 0 by cal cul ation.

rg(t,ev) = D e T by definition.

rs(FF,ev) = 0 by calculation

The cal cul ations are tedious, but not "difficult". For exanple, if

t hen

H(f)

so
H

_ 3 2 2 3
f = aOX1 + a1X1X2 + a2X1X2 + a3X2,

6a0X1+2a1X2 2a1X1+2a2X2

2a1X1+2a2X2 6a3X2+2a2X1

2,2 2,2
(12a0a2-4a1)X1+ (36a0a -4a1a2)X1X2 + (12a1a -4a2)X2.

3 3

ev) (f) = 7,(H(f),f)
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2 2 2

1 8°H 8% 8°H 8%

B L 1 3°H 8%
2.2 2 2 2 .2

6X1 6X2 6X16X2 6X16X2 6X2 6X1
B 2
= (12a0a2—4a1)(2a2X1+6a3X2) (36a0a3-4a1a2)(2a1X1+2a2X2)

2
+ (12a1a3—4a2)(6a0X1+2a1X2)

= 0.

Remar k. Associated with the synbolic nmethod there is a synbolic notation

whi ch makes the cal cul ati ons easier, but still non-trivial. See [G ace and

Young], or indeed any old text on invariant theory.

Exerci se (Covariants of quartic forns). Take n=4, and consider the
covariants

ev, H= rz(ev,ev), i = 14(ev,ev), t = rl(H,ev), j = 14(H,ev).

Whi ch Rdi do they lie in? Show that they generate Rq usi ng the
cal cul ati ons

TZ(H,EV) is anultiple of i.ev.

T,(H ev) = 0.

3 2

rl(t,ev) is a linear conbination of FF and i.ev".

Tz(t,EV) = 0.

rg(t,ev) is alinear conbination of i.H and j.ev.

14(t,ev) = 0.

Remark. In Sylvester’s Collected Wrks one can find tables of details

about hi gher degree forns. For exanple one has

Degree of binary form | O 1 2 3 4 5 6 7 8 9 10

Nunmber of generators

. 0 1 2 4 5 23| 26|124| 69(415|475
needed for covariants
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