LECTURES ON REPRESENTATION THEORY AND INVARIANT THEORY

These are the notes for a lecture course on the symmetric group, the general linear group and invariant theory. The aim of the course was to cover as much of the beautiful classical theory as time allowed, so, for example, I have always restricted to working over the complex numbers. The result is a course which requires no previous knowledge beyond a smattering of rings and modules, character theory, and affine varieties.

These are certainly not the first notes on this topic, but I hope they may still be useful, for [Dieudonné and Carrell] has a number of flaws, and [Weyl], although beautifully written, requires a lot of hard work to read. The only new part of these notes is our treatment of Gordan's Theorem in §13: the only reference I found for this was [Grace and Young] where it was proved using the symbolic method.

The lectures were given at Bielefeld University in the winter semester 1989-90, and this is a more or less faithful copy of the notes I prepared for that course. I have, however, reordered some of the parts, and rewritten the section on semisimple algebras.

The references I found most useful were:
[H. Boerner] "Darstellungen von Gruppen" (1955). English translation "Representations of groups" (North-Holland, 1962,1969).
[J. A. Dieudonné and J. B. Carrell] "Invariant Theory, Old and New," Advances in Mathematics 4 (1970) 1-80. Also published as a book (1971).
[J. H. Grace and A. Young] "The algebra of invariants" (1903, Reprinted by Chelsea).
[H. Weyl] "The classical groups" (Princeton University Press, 1946).

My thanks go to A. J. Wassermann who suggested that I give such a course and explained some of the central ideas to me, and also to my students, both for their patience and for pointing out many inaccuracies in the original version of these notes.

William Crawley-Boevey, April 1990

Fakultät für Mathematik	Mathematical Institute
Universität Bielefeld	Oxford University
Postfach 8640	$24-29 \mathrm{St}$. Giles
4800 Bielefeld	Oxford OX1 $3 L B$
West Germany	England

The Symmetric Group

1. Semisimple algebras 1
2. Young symmetrizers 7
3. Standard Tableaux 13
4. A Character Formula 17
5. The Hook Length Formula 26
The General Linear Group
6. Multilinear and Polynomial Algebra 28
7. Schur-Weyl Duality 33
8. Decomposition of Tensors 36
9. Rational Representations of $G L(V)$ 40
10. Weyl's Character Formula 44
Invariant Theory
11. Some Examples of Invariants 48
12. The First Fundamental Theorem of Invariant Theory 57
13. Covariants of Bilinear Forms 65

The facts about semisimple algebras which we shall need for the symmetric group should be well-known, and need not be repeated here. For the general linear group, however, we shall need some more delicate results, so some presentation is necessary. Not knowing what to include and what to exclude, we give a very quick development of the whole theory here.

All rings R are associative and have an identity which is denoted by 1 or 1_{R}. By "module" we always mean left module.

Definition. A \mathbb{C}-algebra is ring R which is also a \mathbb{C}-vector space with the same addition, satisfying

$$
\lambda\left(r r^{\prime}\right)=(\lambda r) r^{\prime}=r\left(\lambda r^{\prime}\right) \quad \forall r, r^{\prime} \in R \text { and } \lambda \in \mathbb{C} .
$$

One has the obvious notions of subalgebras and algebra homomorphisms. We shall be particularly interested in the case when R is finite dimensional.

Remarks and Examples.

(1) \mathbb{C} is a \mathbb{C}-algebra. $M_{n}(\mathbb{C})$ is a \mathbb{C}-algebra. If G is a group, then the group algebra $\mathbb{C G}$ is the \mathbb{C}-algebra with basis the elements of G and multiplication lifted from G.
(2) If R and S are \mathbb{C}-algebras, then so is $R \times S$. Here the vector space structure comes from the identification of $R \times S$ with $R \oplus S$.
(3) If $1=0$ in R then R is the zero ring. Otherwise, for $\lambda, \mu \in \mathbb{C}$ we have $\lambda 1_{\mathrm{R}}=\mu 1_{\mathrm{R}} \Leftrightarrow \lambda=\mu$ so we can identify $\lambda \in \mathbb{C}$ with $\lambda 1_{\mathrm{R}} \in \mathrm{R}$. This makes \mathbb{C} a subalgebra of R.
(4) If M is an R-module, then it becomes a \mathbb{C}-vector space via

$$
\lambda m=\left(\lambda 1_{R}\right) m \quad \forall \lambda \in \mathbb{C}, \quad m \in M .
$$

If N is another R-module, then $\operatorname{Hom}_{R}(M, N)$ is a \mathbb{C}-subspace of $\operatorname{Hom}_{\mathbb{C}}(M, N)$. In particular it is a \mathbb{C}-vector space. The structure is given by $(\lambda f)(m)=\lambda f(m)=f(\lambda m)$ for $m \in M, \lambda \in \mathbb{C}$ and $f \in \operatorname{Hom}_{R}(M, N)$.
(5) If M is an R-module, then $E n d_{R}(M)$ is a \mathbb{C}-algebra, with multiplication given by composition

```
(fg) (m) = f(g(m)) for m f M, f,g f End
```

In particular, if V is a \mathbb{C}-vector space, then End $\mathbb{C}^{(V)}$ is a \mathbb{C}-algebra. Of course $\operatorname{End}_{\mathbb{C}}(V) \cong M_{\operatorname{dim}}(\mathbb{C})$.
(6) If R is a \mathbb{C}-algebra and $X \subseteq R$ is a subset, then the centralizer

$$
c_{R}(X)=\{r \in R \quad \mid \quad x=x r \quad \forall x \in X \quad\}
$$

of X in R is a \mathbb{C}-subalgebra of R. In particular this holds for the centre $c_{R}(R)$ of R.
(7) If R is a \mathbb{C}-algebra and M is an R-module, then the map

$$
\alpha: \mathrm{R} \longrightarrow \operatorname{End}_{\mathbb{C}}(\mathrm{M}), \quad r \vdash(\mathrm{~m} \longmapsto \mathrm{rm})
$$

is a \mathbb{C}-algebra map. By definition

$$
\operatorname{End}_{R}(M)=C_{\operatorname{End}_{\mathbb{C}}}(M)(\alpha(R))
$$

so that

$$
\alpha(R) \subseteq C_{\operatorname{End}_{\mathbb{C}}(M)}\left(\operatorname{End}_{R}(M)\right)
$$

(8) If M is an R-module, then it is naturally an End ${ }_{R}(M)$-module with the action given by evaluation, and this action commutes with that of R. The inclusion above says that the elements of R act as End ${ }_{R}(M)$-module endomorphisms of M. If N is another R-module, then $\operatorname{Hom}_{R}(N, M)$ is also an End $R_{R}(M)$-module, with the action given by composition.

Lemma 1. If R is a finite dimensional \mathbb{C}-algebra, then there are only finitely many isomorphism classes of simple R-modules, and they are finite dimensional.

Proof. If S is a simple module, pick $0 \neq S \in S$ and define a map $R \longrightarrow S$ sending r to rs. This is an R-module map, and the image is non-zero, so it is all of S. Thus dim $\mathbb{C}^{S} \leq \operatorname{dim}_{\mathbb{C}} R<\infty$. Moreover, S must occur in any composition series of R, so by the Jordan-Hölder Theorem there are only finitely many isomorphism classes of simple modules.

Schur's Lemma. Let R be a finite dimensional \mathbb{C}-algebra.
(1) If $S \nsubseteq T$ are non-isomorphic simple modules then $\operatorname{Hom}_{R}(S, T)=0$.
(2) If S is a simple R-module, then $\operatorname{End}_{R}(S) \cong \mathbb{C}$.

PROOF. (2) The usual arguments show that $D=E_{R}(S)$ is a division ring.

Since S is finite dimensional, so also is D, and therefore if $d \in D$ the elements $1, d, d^{2}, \ldots$ cannot all be linearly independant, and so there is some non-zero polynomial $p(X)$ over \mathbb{C} with $p(d)=0$. Since \mathbb{C} is algebraically closed this polynomial is a product of linear factors

$$
p(X)=c\left(X-a_{1}\right) \ldots\left(X-a_{n}\right), \quad 0 \neq c \in \mathbb{C}, a_{1}, \ldots, a_{n} \in \mathbb{C}
$$

so $\left(d-a_{1} 1_{D}\right) \ldots\left(d-a_{n} 1_{D}\right)=0$. Now D has no zero-divisors, so one of the terms must be zero. Thus $d=a_{i} 1_{D} \in \mathbb{C} 1_{D}$. Since d was arbitrary, $D=\mathbb{C} 1_{D}$.

Definition. An R-module is semisimple if it is a direct sum of simple submodules.

Lemma 2. Submodules, quotients and direct sums of semisimple modules are again semisimple. Every submodule of a semisimple module is a summand.

Proof. Omitted.

Definition. If R and S are \mathbb{C}-algebras, and M and N are an R-module and an S-module, then $M \otimes N$ (the tensor product over \mathbb{C}) has the structure of an R-module given by

$$
r(m \otimes n)=r m \otimes n \text { for } r \in R, m \in M, n \in N \text {. }
$$

and the structure of an S-module given by $s(m \otimes n)=m \otimes s n$ for $s \in S, m \in M, n \in N$.

Remarks.
(1) This is completely different to the tensor product of two $\mathbb{C} G-m o d u l e s$ which we shall consider later.
(2) These two actions commute, since

$$
r(s(m \otimes n))=r(m \otimes s n)=r m \otimes s n=s(r m \otimes n)=s(r(m \otimes n)) .
$$

Thus the images of R and S in $E n d_{\mathbb{C}}(M \otimes N)$ commute.
(3) If N has basis e_{1}, \ldots, e_{m} then the map

$$
M \oplus \ldots \oplus M \longrightarrow M \otimes N, \quad\left(m_{1}, \ldots, m_{m}\right) \longmapsto m_{1} \otimes e_{1}+\ldots+m_{m}{ }_{m}^{\otimes e}{ }_{m}
$$

is an isomorphism of R-modules. Similarly, if M has basis f_{1}, \ldots, f_{f} then the map

$$
\mathrm{N} \oplus \ldots \oplus \mathrm{~N} \longrightarrow \mathrm{M} \otimes \mathrm{~N}, \quad\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{l}\right) \longmapsto \mathrm{f}_{1} \otimes \mathrm{n}_{1}+\ldots+\mathrm{f}_{\ell}^{\otimes \mathrm{n}_{l}}
$$

is an isomorphism of S-modules.

Lemma 3. If M is a semisimple R-module, then the evaluation map

$$
\underset{S}{\oplus} S \otimes \operatorname{Hom}_{R}(S, M) \longrightarrow M
$$

is an isomorphism of R-modules and of $E_{R}(M)$-modules. Here S runs over a complete set of non-isomorphic simple R-modules, and we are using the action of R on S and of $E n d_{R}(M)$ on $\operatorname{Hom}_{R}(S, M)$.

Proof. The map is indeed an R-module map and an $E_{R}(M)$-module map. To see that it is an isomorphism of vector spaces, one can reduce to the case when M is simple, in which case it follows from Schur's Lemma.

Lemma 4. If M is a finite dimensional semisimple R-module, then

$$
\operatorname{End}_{R}(M) \cong \prod_{S} \operatorname{End}_{\mathbb{C}}\left(\operatorname{Hom}_{R}(S, M)\right)
$$

where S runs over a complete set of non-isomorphic simple R-modules.

Proof. The product $E=\Pi_{S}$ End $_{\mathbb{C}}\left(\operatorname{Hom}_{R}(S, M)\right)$ acts naturally on ${ }_{\mathrm{S}} \mathrm{S} \otimes \mathrm{Hom}_{\mathrm{R}}(\mathrm{S}, \mathrm{M})$, and since this action commutes with that of R , there is a homomorphism $E \longrightarrow$ End $_{R}(M)$ which is in fact injective. To show that it is an isomorphism we count dimensions. By Lemma 3, M is isomorphic to the direct sum of $\operatorname{dim}_{\mathbb{C}}{ }^{H o m}(S, M)$ copies of each simple module S, and so by Schur's Lemma,

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{End}_{R}(M) \cong \sum_{S}\left(\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}(S, M)\right)^{2}
$$

which is also the dimension of E.

Definition. A finite dimensional \mathbb{C}-algebra R is semisimple if R is a semisimple R-module.

Remarks

(1) If R is a semisimple algebra, then any R-module is semisimple, for any module is a quotient of a free module, but these are semisimple.
(2) If G is a finite group then $\mathbb{C} G$ is semisimple by Maschke's Theorem.

Artin-Wedderburn Theorem. Any finite dimensional semisimple \mathbb{C}-algebra is isomorphic to a product

$$
R=\prod_{i=1}^{h} \operatorname{End}_{\mathbb{C}}\left(V_{i}\right)
$$

where the V_{i} are finite dimensional vector spaces. Conversely, if R has this form it is semisimple, the non-zero V_{i} form a complete set of
non-isomorphic simple R-modules, and as an R-module, R is isomorphic to the direct sum of $\operatorname{dim}_{\mathbb{C}}\left(\mathrm{V}_{\mathrm{i}}\right)$ copies of each V_{i}.

Proof. We prove the assertions about the product first. Clearly we may suppose that all $\mathrm{V}_{\mathrm{i}} \neq 0$.

The V_{i} are naturally R-modules, with the factors other than End $\left.\mathbb{C}^{(} V_{i}\right)$ acting as zero. Now $G L\left(V_{i}\right)$, and hence also R, acts transitively on $V_{i} \backslash\{0\}$, and it follows that the V_{i} are simple R -modules.

If the V_{i} have bases $\left(e_{i, 1}, \ldots, e_{i, m_{i}}\right)$, then the map

$$
\begin{gathered}
R \quad \longrightarrow V_{1} \oplus \ldots \oplus V_{1} \oplus \ldots V_{h} \oplus \ldots \oplus V_{h}^{\prime} \\
\left(f_{1}, \ldots, f_{h}\right) \longmapsto\left(f_{1}\left(e_{1,1}\right), \ldots, f_{1}\left(e_{1, m_{1}}\right), \ldots, f_{h}\left(e_{h, 1}\right), \ldots, f_{h}\left(e_{h, m_{h}}\right)\right)
\end{gathered}
$$

is an R-module map, and is injective, so is an isomorphism by dimensions. Thus R is semisimple.

The V_{i} are a complete set of simple R-modules by the Jordan-Hölder Theorem, as in Lemma 1, and they are non-isomorphic since if i$\ddagger j$ then the element $(0, \ldots, 0,1,0, \ldots, 0) \in R$ (with the 1 in the i-th place) annihilates V_{j} but not V_{i}.

If R is any ring then the natural map

$$
\alpha: R \longrightarrow \operatorname{End}_{E^{n d}}^{R}(R)(R), \quad r \longmapsto(x \longmapsto r x)
$$

is an isomorphism, for it is certainly injective, and if θ lies in the right hand side, then it commutes with the endomorphisms

$$
f_{r} \in \operatorname{End}_{R}(R), f_{r}(x)=x r .
$$

Now if $r \in R$ then

$$
\theta(r)=\theta(1 r)=\theta\left(f_{r}(1)\right)=f_{r}(\theta(1))=\theta(1) r,
$$

so θ acts as left multiplication by $\theta(1) \in R$, and hence $\theta=\alpha(\theta(1)) \in \alpha(R)$, so α is surjective.

If now R is a semisimple \mathbb{C}-algebra then End $_{R}(R)$ is semisimple by Lemma 4 and the proof above, so R is a semisimple $E n d_{R}(R)$-module. A second application of Lemma 4 and the isomorphism α shows that R has the required form.

Lemma 5. If R is semisimple and M is a finite dimensional R-module then the natural map

$$
\alpha: R \longrightarrow \operatorname{End}_{\operatorname{End}_{R}(M)}(M), \quad r \longmapsto(m \vdash r m)
$$

is surjective.

PRoof. The kernel of this map is the annihilator

$$
I=\{r \in R \quad \mid r M=0\}
$$

of M. Now R/I is semisimple, M is an $R / I-m o d u l e ~ a n d$

$$
\operatorname{End}_{R}(M)=\operatorname{End}_{R / I}(M)
$$

so we can replace R by R / I and hence we may suppose that M is faithful and that α is injective.

By Lemma 4, End $(M) \cong \prod_{S} \operatorname{End}_{\mathbb{C}}\left(\operatorname{Hom}_{R}(S, M)\right)$, and since M is faithful, all the spaces $\operatorname{Hom}_{R}(S, M)$ are non-zero, so they are precisely the simple End $_{R}(M)$-modules.

By Lemma 3, M is isomorphic as an End $R_{R}(M)$-module to $\oplus_{S} S \otimes H o m_{R}(S, M)$, so it is the direct sum of $\operatorname{dim}_{\mathbb{C}} S$ copies of the simple module $H_{R}(S, M)$ for each S. As in Lemma 4 this implies that

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{End}_{\operatorname{End}_{R}(M)}(M)=\sum_{S}\left(\operatorname{dim}_{\mathbb{C}} S\right)^{2}
$$

but this is the dimension of R, so α is an isomorphism.

Finally, we note the following fact

Lemma 6. If R is a \mathbb{C}-algebra and $h \in R$ is an element with $h^{2}=\lambda h$ for some non-zero $\lambda \in \mathbb{C}$, then for any R-module M we have an isomorphism

$$
\operatorname{Hom}_{R}(R h, M) \cong h M
$$

of End $_{R}(M)$-modules.

Proof. Note first that $h M$ is an $E_{R}(M)$-submodule of M, since if $\theta \in \operatorname{End}_{R}(M)$ and $h m \in h M$ then $\theta(h m)=h \theta(m) \in h M$. Replacing h by h / λ we may suppose that h is idempotent. Now we have an End (M)-module map

$$
\operatorname{Hom}_{R}(\mathrm{Rh}, \mathrm{M}) \longrightarrow \mathrm{hM}, \mathrm{f} \longmapsto \mathrm{f}(\mathrm{~h})
$$

with inverse

$$
h M \longrightarrow \operatorname{Hom}_{R}(R h, M), \quad m \longmapsto(r \longmapsto r m),
$$

as required.

Recall that the representations $\rho: G \longrightarrow G L(V)$ of a group G correspond to $\mathbb{C} G$-modules by setting $g v=\rho(g)(v)$ for $g \in G$ and $v \in V$. The trivial representation is the map $G \longrightarrow \mathbb{C}^{\times}$sending all $g \in G$ to 1 ; the corresponding $\mathbb{C} G$-module is denoted by \mathbb{C}.

The symmetric group is

$$
S_{n}=\{\text { bijections }\{1, \ldots n\} \longrightarrow\{1, \ldots, n\}\}
$$

with multiplication given by composition. In this section we compute its representations using certain elements of the group algebra $\mathbb{C S}_{n}$ called Young Symmetrizers. One representation, the signature

$$
\varepsilon: S_{n} \longrightarrow\{ \pm 1\} \text { given by } \varepsilon_{\sigma}=\prod_{1 \leq i<j \leq n} \frac{(\sigma i-\sigma j)}{(i-j)},
$$

is of course well-known.

For convenience, in this section we set $A=\mathbb{C} S_{n}$. This is a finite dimensional semisimple \mathbb{C}-algebra by Maschke's Theorem.

Definition. A partition of n is a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ with $\lambda_{i} \in \mathbb{N}$, $\lambda_{1} \geq \lambda_{2} \geq \ldots$ and $\sum_{i=1}^{\infty} \lambda_{i}=n$. The partitions of n are ordered lexicographically, so that

$$
\lambda<\mu \Leftrightarrow \exists i \in \mathbb{N} \text { such that } \lambda_{j}=\mu_{j} \text { for } j<i \text { and } \lambda_{i}<\mu_{i}
$$

This is a total ordering on the set of partitions of n.

Example. The partitions of 5 are

$$
\left(1^{5}\right)<\left(2,1^{3}\right)<\left(2^{2}, 1\right)<\left(3,1^{2}\right)<(3,2)<(4,1)<(5) .
$$

Definition. If λ is a partition of n, then the Young frame $[\lambda]$ of λ is the subset

$$
\left\{(i, j) \mid i \geq 1,1 \leq j \leq \lambda_{i}\right\} \subset \mathbb{N} \times \mathbb{N}
$$

We draw a picture for this. For example

$$
\left[\left(5,2^{2}, 1\right)\right]=
$$

Definition. A Young tableau Σ_{λ} is a bijection $[\lambda] \longrightarrow\{1, \ldots, n\}$. For example we might have

$$
\Sigma_{\left(5,2^{2}, 1\right)}=\begin{array}{|r|r|r|l|l|}
\hline 9 & 5 & 2 & 7 & 10 \\
\hline 8 & 1 & & \\
\hline 4 & 6 \\
\hline 3 & &
\end{array}
$$

If Σ_{λ} is a Young tableau and $\sigma \in S_{n}$ we define a Young tableau $\sigma \Sigma_{\lambda}$ by $\left(\sigma \Sigma_{\lambda}\right)(x)=\sigma\left(\Sigma_{\lambda}(x)\right)$ for $x \in[\lambda]$.

For each partition we need to pick one representative of all the corresponding tableaux, so for definiteness we denote by Σ_{λ}^{0} the Young tableau numbered in the order that one reads a book. For example

$$
\Sigma_{\left(5,2^{2}, 1\right)}^{0}=\begin{array}{|r|r|r|r|r|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & & & \\
\hline 8 & 9 \\
\hline 10 & &
\end{array}
$$

We define subgroups $\operatorname{Row}\left(\Sigma_{\lambda}\right)$ and $\operatorname{Col}\left(\Sigma_{\lambda}\right)$ of S_{n} by
$\sigma \in \operatorname{Row}\left(\Sigma_{\lambda}\right) \Leftrightarrow$ each $i \in\{1, \ldots, n\}$ is in the same row of Σ_{λ} and $\sigma \Sigma_{\lambda}$.
$\sigma \in \operatorname{Col}\left(\Sigma_{\lambda}\right) \Leftrightarrow$ each $i \in\{1, \ldots, n\}$ is in the same column of Σ_{λ} and $\sigma \Sigma_{\lambda}$.

Definition. If Σ_{λ} is a Young tableau, then the Young symmetrizer is the element

$$
\mathrm{h}\left(\Sigma_{\lambda}\right)=\sum_{\mathrm{r} \in \operatorname{Row}\left(\Sigma_{\lambda}\right) \operatorname{c\in \operatorname {Col}(\Sigma _{\lambda })} \varepsilon_{\mathrm{C}} \mathrm{rc} .}
$$

of A. We also set $h_{\lambda}=h\left(\Sigma_{\lambda}^{0}\right)$. The rest of this section is devoted to showing that the left ideals in A of the form $A h{ }_{\lambda}$ with λ running through the partitions of n, are a complete set of non-isomorphic simple A-modules.

Examples.

(1) If $\lambda=(\mathrm{n})$ then $\mathrm{h}=\mathrm{h}\left(\Sigma_{\lambda}\right)=\sum_{\sigma \in \mathrm{Sn}} \sigma$ is the symmetrizer in A. Clearly $g h=h$ for all $g \in S_{n}$, so $A h=\mathbb{C h}$ is the trivial representation of S_{n}.
(2) If $\lambda=\left(1^{n}\right)$ then $h=h\left(\Sigma_{\lambda}\right)=\sum_{\sigma \in S n} \varepsilon_{\sigma} \sigma$ is the alternizer in A. Now $g h=\varepsilon_{g} h$ for all $g \in S_{n}$, so $A h=\mathbb{C h}$ is the signature representation of S_{n}.

Lemma 1. Let λ be a partition of n, Σ_{λ} a Young tableau and $\sigma \in S_{n}$
(1) $\operatorname{Row}\left(\Sigma_{\lambda}\right) \cap \operatorname{Col}\left(\Sigma_{\lambda}\right)=\{1\}$.
(2) The coefficient of 1 in $h\left(\Sigma_{\lambda}\right)$ is 1 .
(3) Row $\left(\sigma \Sigma_{\lambda}\right)=\sigma \operatorname{Row}\left(\Sigma_{\lambda}\right) \sigma^{-1}$ and $\operatorname{Col}\left(\sigma \Sigma_{\lambda}\right)=\sigma \operatorname{Col}\left(\Sigma_{\lambda}\right) \sigma^{-1}$.
(4) $h\left(\sigma \Sigma_{\lambda}\right)=\sigma \mathrm{h}\left(\Sigma_{\lambda}\right) \sigma^{-1}$.
(5) The A-modules $\mathrm{Ah}\left(\Sigma_{\lambda}\right)$ and $A h{ }_{\lambda}$ are isomorphic.

Proof. (5) $\Sigma_{\lambda}=\sigma \Sigma_{\lambda}^{0}$ for some $\sigma \in S_{n}$. Postmultiplication by σ defines an isomorphism $\mathrm{Ah}\left(\Sigma_{\lambda}\right) \longrightarrow A{ }_{\lambda}$.

Lemma 2. If $\lambda \geq \mu$ are partitions of n and Σ_{λ} and Σ_{μ}^{\prime} are Young tableaux with frames $[\lambda]$ and [$\mu]$, then one of the following is true
(1) there are distinct integers i,j which occur in the same row of Σ_{λ} and the same column of Σ_{μ}^{\prime}.
(2) $\lambda=\mu$ and $\Sigma_{\mu}^{\prime}=r c \Sigma_{\lambda}$ for some $r \in \operatorname{Row}\left(\Sigma_{\lambda}\right)$ and $c \in \operatorname{Col}\left(\Sigma_{\lambda}\right)$.

Proof. Suppose (1) fails.

If $\lambda_{1} \neq \mu_{1}$ then $\lambda_{1}>\mu_{1}$, so $[\mu]$ has fewer columns than $[\lambda]$, and hence two of the numbers in the first row of Σ_{λ} are in the same column of $\Sigma_{\mu^{\prime}}^{\prime}$ so (1) holds, contrary to the assumption.

Thus $\lambda_{1}=\mu_{1}$, and since (1) fails some $c_{1} \in \operatorname{Col}\left(\Sigma_{\mu}^{\prime}\right)$ ensures that $c_{1} \Sigma_{\mu}^{\prime}$ has the same elements numbers in the first row as Σ_{λ}.

Now ignore the first rows of Σ_{λ} and $c_{1} \Sigma_{\mu}^{\prime}$. By the same argument we find $\lambda_{2}=\mu_{2}$ and can find c_{2} such that $c_{2} c_{1} \Sigma_{\mu}^{\prime}$ have the same numbers in each of the first two rows.

Eventually we find $\lambda=\mu$ and some $c^{\prime} \in \operatorname{Col}\left(\Sigma_{\mu}^{\prime}\right)$ such that $\Sigma_{\lambda}=c^{\prime} \Sigma_{\mu}^{\prime}$ have the same numbers in each row. Then $r \Sigma_{\lambda}=c^{\prime} \Sigma_{\mu}^{\prime}$ for some $r \in \operatorname{Row}\left(\Sigma_{\lambda}\right)$. Finally $\Sigma_{\mu}^{\prime}=\operatorname{rc} \Sigma_{\lambda}$ where

$$
c=r^{-1} c^{\prime} r_{r} \in r^{-1} c^{\prime} \operatorname{Col}\left(\Sigma_{\mu}^{\prime}\right) c^{\prime-1} r=r^{-1} \operatorname{Col}\left(c^{\prime} \Sigma_{\mu}^{\prime}\right) r=\operatorname{Col}\left(\Sigma_{\lambda}\right)
$$

since $c^{\prime} \in \operatorname{Col}\left(\Sigma_{\mu}^{\prime}\right)$.

Lemma 3. If $\sigma \in S_{n}$ cannot be written as $r c$ for any $r \in \operatorname{Row}\left(\Sigma_{\lambda}\right)$ and $\mathrm{c} \in \operatorname{Col}\left(\Sigma_{\lambda}\right)$ then there are transpositions $u \in \operatorname{Row}\left(\Sigma_{\lambda}\right)$ and $v \in \operatorname{Col}\left(\Sigma_{\lambda}\right)$ with $u \sigma=\sigma v$.

Proof. (2) fails for Σ_{λ} and $\sigma \Sigma_{\lambda}$, so there are $i \neq j$ in the same row in Σ_{λ} and in the same column in $\sigma \Sigma_{\lambda}$. Let $u=\left(\begin{array}{ll}i & j\end{array}\right)$ and $v=\sigma^{-1} u \sigma$.

Lemma 4. Let Σ_{λ} be a Young tableau and $a \in A$. The following are equivalent
(1) $\operatorname{rac}=\varepsilon_{C}$ a for all $r \in \operatorname{Row}\left(\Sigma_{\lambda}\right)$ and $c \in \operatorname{Col}\left(\Sigma_{\lambda}\right)$.
(2) $a=\alpha h\left(\Sigma_{\lambda}\right)$ for some $\alpha \in \mathbb{C}$.

Proof.
$(2) \Rightarrow(1) \operatorname{rh}\left(\Sigma_{\lambda}\right) c=\varepsilon_{\sigma} h\left(\Sigma_{\lambda}\right)$ since as r^{\prime} runs through Row $\left(\Sigma_{\lambda}\right)$ so does rr',

(1) \Rightarrow (2) Say $a=\sum_{\sigma \in S n} a_{\sigma} \sigma$. If σ is not of the form rc then there are transpositions $u \in \operatorname{Row}\left(\Sigma_{\lambda}\right)$ and $v \in \operatorname{Col}\left(\Sigma_{\lambda}\right)$ with $u \sigma v=\sigma$. By assumption uav $=\varepsilon_{v} a^{\prime}$, and the coefficient of σ gives $a_{u \sigma v}=\varepsilon_{v} a_{\sigma^{\prime}}$ so $a_{\sigma}=-a_{\sigma^{\prime}}$ and hence $a_{\sigma}=0$. Now the coefficient of $r c$ in (1) gives $a_{1}=\varepsilon_{c} a_{r c}$. Thus

$$
a=\sum_{r, c} a_{r c} r c=\sum_{r, c} \varepsilon_{c} a_{1} r c=a_{1} h\left(\Sigma_{\lambda}\right) .
$$

Lemma 5. If $a \in A$ then $h\left(\Sigma_{\lambda}\right)$ a $h\left(\Sigma_{\lambda}\right)=\alpha h\left(\Sigma_{\lambda}\right)$ for some $\alpha \in \mathbb{C}$.

Proof. Let $\mathrm{x}=\mathrm{h}\left(\Sigma_{\lambda}\right)$ a $\mathrm{h}\left(\Sigma_{\lambda}\right)$. This has property (1) above.

Definition. Let $\mathrm{f}_{\lambda}=\operatorname{dim}_{\mathbb{C}}\left(\mathrm{Ah}_{\lambda}\right)$.

Lemma 6.
(1) $h\left(\Sigma_{\lambda}\right)^{2}=\left(n!/ f_{\lambda}\right) h\left(\Sigma_{\lambda}\right)$
(2) f_{λ} divides n !
(3) $h\left(\Sigma_{\lambda}\right) A h\left(\Sigma_{\lambda}\right)=\mathbb{C} h\left(\Sigma_{\lambda}\right)$.

In particular $\left(f_{\lambda} / n!\right) h\left(\Sigma_{\lambda}\right)$ is an idempotent.

Proof.
(1) Let $h=h\left(\Sigma_{\lambda}\right)$. We know that $h^{2}=\alpha h$ for some $\alpha \in \mathbb{C}$. Right multiplication by h induces a linear map $h: A \rightarrow A$. For $a \in A$ we have $(a h) h=\alpha(a h)$, so $\left.h\right|_{\text {Ah }}$ acts as multiplication by α. Take a basis of Ah and extend it to a basis of A. With respect to this h has matrix

$$
\left(\begin{array}{cc}
\alpha I_{f} & * \\
0 & 0
\end{array}\right)
$$

$\left(f_{\lambda}\right.$ since $\left.\operatorname{dim}_{\mathbb{C}}{ }^{\text {Ah }}=\operatorname{dim}_{\mathbb{C}}{ }^{\text {Ah }} \lambda_{\lambda}\right)$, so $\operatorname{Trace}(h)=\alpha f_{\lambda}$.

With respect to the basis S_{n} of A, h has matrix H with

$$
H_{\sigma \tau}=\text { coefficient of } \sigma \text { in } \tau \text { h. }
$$

Now $H_{\sigma \sigma}=1$ so Trace $(h)=n!$.
(2) The coefficient of 1 in $h^{2}=\alpha h$ is

$$
\alpha=r_{1}, r_{2} \in \operatorname{Row}\left(\Sigma_{\lambda}\right) c_{1}, c_{2} \in \operatorname{Col}\left(\Sigma_{\lambda}\right) r_{1} c_{1} r_{2} c_{2}=1 \varepsilon_{c_{1}} \varepsilon_{c_{2}} \in \mathbb{Z}
$$

(3) By Lemma 5 the only other possibility is hAh $=0$. But $^{2} \neq 0$.

Lemma 7. Ah $\left(\Sigma_{\lambda}\right)$ is a simple A-module.

Proof. Let $h=h\left(\Sigma_{\lambda}\right)$. Since Ah is non-zero, and A is semisimple, it suffices to prove that $A h$ is indecomposable. Say $A h=U \oplus V$. Then

$$
\mathbb{C h}=\mathrm{hAh}=\mathrm{hU}+\mathrm{hV},
$$

so one of hU and hV is non-zero. Without loss of generality hU $\neq 0$, but then $h U=\mathbb{C h}$, so $A h=A h U \subseteq U$, and hence $U=A h$ and $V=0$.

Lemma 8. If $\lambda>\mu$ are partitions and Σ_{λ} and Σ_{μ}^{\prime} are Young tableau, then $\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right)$ A $\mathrm{h}\left(\Sigma_{\lambda}\right)=0$.

Proof. Since $\lambda>\mu$, by Lemma 2 there are be two integers in the same row of Σ_{λ} and in the same column of Σ_{μ}. The corresponding transposition $\tau \in \operatorname{Row}\left(\Sigma_{\lambda}\right) \cap \operatorname{Col}\left(\Sigma_{\mu}^{\prime}\right)$. Then
$\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \mathrm{h}\left(\Sigma_{\lambda}\right)=\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \quad \tau \operatorname{h}\left(\Sigma_{\lambda}\right)=-\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \mathrm{h}\left(\Sigma_{\lambda}\right)$,
so $h\left(\Sigma_{\mu}^{\prime}\right) h\left(\Sigma_{\lambda}\right)=0$.

Applying this to $\sigma \Sigma_{\lambda}$ and Σ_{μ}^{\prime} for $\sigma \in S_{n}$ gives

$$
0=\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \mathrm{h}\left(\sigma \Sigma_{\lambda}\right)=\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \sigma \mathrm{h}\left(\Sigma_{\lambda}\right) \sigma^{-1}
$$

so $h\left(\Sigma_{\mu}^{\prime}\right) \sigma \mathrm{h}\left(\Sigma_{\lambda}\right)=0$. Thus $h\left(\Sigma_{\mu}^{\prime}\right)$ Ah $\left(\Sigma_{\lambda}\right)=0$.

Lemma 9. If $\lambda \neq \mu$ are partitions and Σ_{λ} and Σ_{μ}^{\prime} are Young tableau, then $\operatorname{Ah}\left(\Sigma_{\lambda}\right)$ and $\operatorname{Ah}\left(\Sigma_{\mu}^{\prime}\right)$ are not isomorphic.

Proof. We may assume that $\lambda>\mu$. If there is an isomorphism

$$
\mathrm{f}: \operatorname{Ah}\left(\Sigma_{\mu}^{\prime}\right) \longrightarrow \operatorname{Ah}\left(\Sigma_{\lambda}\right)
$$

of A-modules, then

$$
\mathrm{f}\left(\mathbb{C h}\left(\Sigma_{\mu}^{\prime}\right)\right)=\mathrm{f}\left(\mathrm{~h}\left(\Sigma_{\mu}^{\prime}\right) \mathrm{Ah}\left(\Sigma_{\mu}^{\prime}\right)\right)=\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \mathrm{f}\left(\operatorname{Ah}\left(\Sigma_{\mu}^{\prime}\right)\right)=\mathrm{h}\left(\Sigma_{\mu}^{\prime}\right) \operatorname{Ah}\left(\Sigma_{\lambda}\right)=0
$$

a contradiction.

Remark. The partitions of n correspond to conjugacy classes in S_{n}, with say $\left(5,2^{2}, 1\right)$ corresponding to the permutations in S_{10} of the form

$$
(\ldots . .)(\ldots)(\ldots)(.) .
$$

Theorem. The left ideals Ah λ with λ running through the partitions of n are a complete set of non-isomorphic simple A-modules.

Proof. They are simple, non-isomorphic, and the number of them is equal to the number of conjugacy classes in S_{n}, which we know from character theory is the number of simple A-modules.

This section is not really necessary for the main development, but is included because of its cleverness, and because the standard tableaux give an explicit decomposition of tensor space into simple submodules.

Definition. A Young tableau Σ_{λ} is standard if the numbers increase from left to right in each row and from top to bottom in each column. The standard tableaux with frame $[\lambda]$ are ordered so that Σ_{λ} is smaller than $\Sigma_{\lambda}^{\prime}$ if it is smaller in the first place that they differ when you read [λ] like a book.

Example. For $\lambda=(3,2)$ the standard tableaux are

$123<124$
45
35
:---
24

We denote by F_{λ} the number of standard tableaux with frame $[\lambda]$. We shall show that $F_{\lambda}=f_{\lambda}$ and as a first step we prove that $\sum^{F_{\lambda}^{2}}=n$!. In the next few lemmas we write λ / μ to mean that λ is a partition of m and μ is a partition of $m-1$ for some m, and that $[\mu] \subset[\lambda]$.

Lemma 1. If λ is a partition of m then $F_{\lambda}=\sum_{\mu \text { st } \lambda / \mu} F_{\mu}$.
PROOF. If Σ_{λ} is a standard tableau, then $\Sigma_{\lambda}{ }^{-1}(\{1, \ldots, m-1\})$ is the frame of a partition μ of $m-1$, and $\left.\sum_{\lambda}\right|_{[\mu]}$ is a standard tableau. And conversely.

Lemma 2. If $\lambda \neq \pi$ are partitions of m, then

$$
\mid\{\nu \mid \nu / \lambda \text { and } \nu / \pi\}|=|\{\tau \mid \lambda / \tau \text { and } \pi / \tau\} \mid \in\{0,1\}
$$

Proof. If ν / λ and ν / π then $[\nu] \supseteq[\lambda] \cup[\pi]$, so there must be equality here. Similarly if λ / τ and π / τ then $[\tau]=[\lambda] \cap[\pi]$.

Now $[\boldsymbol{\lambda}] \cup[\pi]$ and $[\boldsymbol{\lambda}] \cap[\pi]$ are always frames of partitions, so there is a $\nu \Leftrightarrow|[\boldsymbol{\lambda}] \cup[\pi]|=m+1 \Leftrightarrow|[\lambda] \cap[\pi]|=m-1 \Leftrightarrow$ there is a τ.

Lemma 3. If λ is a partition of m then $(m+1) \mathrm{F}_{\lambda}=\sum_{\nu \operatorname{st} \nu / \lambda}{ }^{\mathrm{F}} \nu_{\nu}$.

Proof. This is true for $m=1$. We prove it by induction, so suppose it is true for all partitions of $m-1$. Now
$\sum_{\nu \mathrm{st} \nu / \lambda}^{\mathrm{F}_{\nu}}=\quad \sum_{\nu \mathrm{st} \nu / \lambda} \quad \sum_{\pi \text { st } \nu / \pi}{ }^{\mathrm{F}} \pi \quad$ by Lemma 1

$$
=|\{\nu \mid \nu / \lambda\}| \mathrm{F}_{\lambda}+\sum_{\nu, \pi \text { st } \nu / \lambda, \quad \nu / \pi, \quad \pi \neq \lambda}{ }^{\mathrm{F}} \pi
$$

By inspecting the Young frames one sees that

$$
|\{\nu \mid \nu / \lambda\}|=|\{\tau \mid \lambda / \tau\}|+1
$$

and using Lemma 2 we get

$$
\begin{aligned}
& =(|\{\tau \mid \lambda / \tau\}|+1){ }^{\mathrm{F}_{\lambda}}{ }^{+} \sum_{\tau, \pi \text { st } \lambda / \tau, \pi / \tau, \pi \neq \lambda}{ }^{\mathrm{F}} \pi \\
& ={ }^{\mathrm{F}} \boldsymbol{\lambda}+\sum_{\tau, \pi \text { st } \lambda / \tau, \pi / \tau}{ }^{\mathrm{F}} \pi \\
& =\mathrm{F}_{\boldsymbol{\lambda}}+\quad \sum_{\boldsymbol{\tau} \mathrm{st}_{\lambda / \tau}}{ }^{\mathrm{mF}} \boldsymbol{\tau} \text { by the induction } \\
& =\mathrm{F}_{\boldsymbol{\lambda}}+\mathrm{mF}_{\boldsymbol{\lambda}}=(\mathrm{m}+1) \mathrm{F}_{\boldsymbol{\lambda}} \quad \text { by Lemma } 1 .
\end{aligned}
$$

Lemma 4. $\sum_{\lambda \text { a partition of } m} F^{2}=m$!

Proof. It is true for $m=1$. We prove it by induction on m. Now

$$
\begin{aligned}
& =\quad \sum_{\tau} \quad{ }^{m} \mathrm{mF}^{2} \\
& =m!\quad \text { bartition of } \mathrm{m}-1
\end{aligned} \quad \text { by Lemma } 3 .
$$

Lemma 5. If $\Sigma_{\lambda}>\Sigma_{\lambda}^{\prime}$ are standard tableaux then $h\left(\Sigma_{\lambda}\right) h\left(\Sigma_{\lambda}^{\prime}\right)=0$.

Proof. It suffices to show that there are two numbers ifj in the same row in $\Sigma_{\lambda}^{\prime}$ and in the same column in Σ_{λ}, for then the transposition $t=(i \quad j)$ is in $\operatorname{Row}\left(\Sigma_{\lambda}^{\prime}\right)$ and in $\operatorname{Col}\left(\Sigma_{\lambda}\right)$. Thus

$$
\mathrm{h}\left(\Sigma_{\lambda}^{\prime}\right)=\mathrm{t} \mathrm{~h}\left(\Sigma_{\lambda}^{\prime}\right) \text { and } \mathrm{h}\left(\Sigma_{\lambda}\right)=-\mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{t}
$$

so

$$
\mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{h}\left(\Sigma_{\lambda}^{\prime}\right)=\mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{t} \mathrm{t} \mathrm{~h}\left(\Sigma_{\lambda}^{\prime}\right)=-\mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{h}\left(\Sigma_{\lambda}^{\prime}\right)
$$

so this product is zero.

Consider where Σ_{λ} and \sum_{λ}^{\prime} first differ. Pictorially we have

where an "=" means that the two tableaux are the same at that box, and x is the first place where they differ. Let $\Sigma_{\lambda}^{\prime}(x)=i$ and $y=\Sigma_{\lambda}^{-1}$ (i). By the assumptions, y must be below and to the left of x; in particular x cannot be in the first column or the last row. Let z be the element of $[\lambda]$ in the same row as x and the same column as y, and let j be the common value of Σ_{λ} and $\Sigma_{\lambda}^{\prime}$ at z. Now i and j satisfy the assumptions above.

Theorem. $\mathbb{C} S_{n}=\oplus \mathbb{C S}_{\mathrm{n}} \mathrm{h}\left(\Sigma_{\lambda}\right)$ with Σ_{λ} running over all standard tableaux for all partitions λ of n.

Proof. We show first that the sum is direct, so suppose that there is a non-trivial relation

$$
\begin{equation*}
\sum \mathrm{a}\left(\Sigma_{\lambda}\right) \mathrm{h}\left(\Sigma_{\lambda}\right)=0 \tag{*}
\end{equation*}
$$

with $a\left(\Sigma_{\lambda}\right) \in \mathbb{C S}_{n}$. Pick μ maximal such that some $a\left(\Sigma_{\mu}\right) h\left(\Sigma_{\lambda}\right) \neq 0$, and then pick Σ_{μ}^{\prime} minimal with respect to a $\left(\Sigma_{\mu}^{\prime}\right) h\left(\Sigma_{\mu}^{\prime}\right) \neq 0$. Multiplying (*) on the right by $h\left(\Sigma_{\mu}^{\prime}\right)$ we obtain $a\left(\Sigma_{\mu}^{\prime}\right) h\left(\Sigma_{\mu}^{\prime}\right)^{2}=0$ by Lemma 5 and $\$ 2$ Lemma 8 , so a $\left(\Sigma_{\mu}^{\prime}\right) \mathrm{h}\left(\Sigma_{\mu}^{\prime}\right)=0$. A contradiction.

Now $\mathbb{C S}_{\mathrm{n}}$ contains $\oplus \mathbb{C S}_{\mathrm{n}} \mathrm{h}\left(\Sigma_{\lambda}\right)$. By the Artin-Weddurburn Theorem, $\mathbb{C} S_{\mathrm{n}}$ is isomorphic as an $\mathbb{C} S_{n}$-module to the direct sum of f_{λ} copies of each $\mathbb{C} S_{n}{ }^{h} \lambda^{\prime}$ while in this direct sum there are F_{λ} copies of $\mathbb{C} S_{n} h^{\prime} \lambda^{\prime}$ so by the Jordan Hölder Theorem, $F_{\lambda} \leq f_{\lambda}$. On the other hand

$$
\Sigma_{\lambda} \mathrm{F}_{\lambda}^{2}=\mathrm{n}!=\Sigma_{\lambda} \mathrm{f}_{\lambda}^{2}
$$

so we must have $F_{\lambda}=f_{\lambda}$ for each λ. But this means that the direct sum is equal to $\mathbb{C} S_{n}$.

Corollary. $f_{\lambda}=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C} S_{n}{ }^{h} \lambda^{\prime}\right)$ is equal to the number F_{λ} of standard tableaux with frame [λ].

Lemma 6. If M is a finite dimensional $\mathbb{C S}_{n}$-module, then

$$
\mathrm{M}=\oplus \mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{M},
$$

where Σ_{λ} runs over all standard tableaux for all partitions of n.

Proof. If $\sum \mathrm{m}\left(\Sigma_{\lambda}\right)=0$ is a non-trivial relation with $m\left(\Sigma_{\lambda}\right) \in h\left(\Sigma_{\lambda}\right) M$, choose μ minimal and then Σ_{μ}^{\prime} maximal, such that $m\left(\Sigma_{\mu}^{\prime}\right) \neq 0$. Now premultiply the relation by $h\left(\Sigma_{\mu}^{\prime}\right)$ to obtain a contradiction by Lemma 5 and $\$ 2$ Lemma 8. Thus the sum is direct. Now

$$
\begin{aligned}
& \oplus \mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{M} \cong \oplus \operatorname{Hom}_{\mathbb{C} S_{n}}\left(\mathbb{C S}_{\mathrm{n}} \mathrm{~h}\left(\Sigma_{\lambda}\right), \mathrm{M}\right) \quad \text { by } \$ 1 \text { Lemma } 6 \\
& \cong \operatorname{Hom}_{\mathbb{C} S_{n}}\left(\oplus \mathbb{C S}_{n} h\left(\Sigma_{\lambda}\right), M\right) \cong \operatorname{Hom}_{\mathbb{C S}}{ }_{n}\left(\mathbb{C S}{ }_{n}, M\right) \cong M,
\end{aligned}
$$

and all we need is that the dimensions are equal.

Exercise. If $R=M_{2}(\mathbb{C})$ and h, g are idempotents in R with $R=R h \oplus R g$, the argument used in the proof above shows that R is isomorphic to the external direct sum of hR and gR. Show, however, that it is still possible that $R \neq h R+g R$.

§4. A CHARACTER FORMULA

Recall that if M is a finite dimensional $\mathbb{C} G$-module, then the corresponding character is

$$
\chi_{M}(g)=\text { trace of the map } M \longrightarrow M, m \vdash \rightarrow g m
$$

It is a class function $G \longrightarrow \mathbb{C}$, so if α is a conjugacy class in G we can write $\chi_{M}(\alpha)$.

If λ is a partition of n, the character of the $\mathbb{C} S_{n}$-module $\mathbb{C} S_{n} h \lambda$ is denoted by χ_{λ}. In this section we derive a very useful formula which enables one to compute the $\chi_{\lambda}(\alpha)$. In the present course we shall not use this formula to compute any characters explicitly; instead we use it later to derive Weyl's character formula for the general linear group.

If α is a conjugacy class in S_{n}, then α consists of all the permutations with a fixed cycle type, which we denote by

$$
n^{\alpha n} \ldots 2^{\alpha 2} 1_{1}^{\alpha 1}
$$

meaning that the permutations involve α_{n} n-cycles,..,$\alpha_{2} 2$-cycles and α_{1} 1-cycles. The number of permutations in α is denoted by n_{α}.

Lemma $1 \cdot n_{\alpha}=\frac{n!}{{ }_{1}^{\alpha_{1}} \alpha_{2} \ldots \alpha_{1}!\alpha_{2}!\ldots}$.

Proof. Any permutation in α is one of the n ! of the form

$$
\frac{(*)(*) \ldots(*)}{\alpha_{1}} \frac{(* *) \ldots(* *)}{\alpha_{2}} \quad \frac{(* * *) \ldots}{\ldots}
$$

with the *'s replaced by the numbers 1,..., n. However, each such permutation can be represented in $\alpha_{1}!\alpha_{2}!\ldots 1_{2}^{\alpha_{1}} \alpha_{2} \ldots$ ways by permuting the α_{i} i-cycles in α_{i} ! ways, or rotating an i-cycle in i ways.

Orthogonality relations.
(1) If λ and μ are partitions of n then
(2) If α and β are conjugacy classes in S_{n}, then

$$
\sum_{\lambda} \text { partition of } n \quad \chi_{\lambda}(\alpha) \quad \chi_{\lambda}(\beta)=\left\{\begin{array}{cl}
n!/ n_{\alpha} & (\alpha=\beta) \\
0 & (\text { else })
\end{array}\right.
$$

Proof. Every element in S_{n} is conjugate to its inverse, so

$$
\overline{\chi_{\lambda}(g)}=\chi_{\lambda}\left(g^{-1}\right)=\chi_{\lambda}(g)
$$

for $g \in S_{n}$. With this observation these relations become the standard orthogonality relations for finite groups.

Notation. Given $x_{1}, \ldots, x_{m} \in \mathbb{C}$ and $\mathcal{l}_{1}, \ldots, \mathcal{l}_{m} \in \mathbb{Z}$ define

$$
\left|x^{C_{1}}, \ldots, x^{\mathcal{C m}_{m}}\right|=\operatorname{det}\left(x_{i}^{\mathcal{C}_{j}}\right) 1 \leq i, j \leq m
$$

Usually the $\mathcal{l}_{i} \geq 0$, in which case it is a homogeneous polynomial of degree $l_{1}+\ldots+l_{m}$ in the x_{i}.

Example. The Vandermonde $\left|x^{m-1}, \ldots, x, 1\right|$.

Lemma 2. The Vandermonde $=\prod_{i<j}\left(x_{i}-x_{j}\right)$.

Proof. Subtracting the second row from the first, the element in position $(1, j)$ is

$$
x_{1}^{j}-x_{2}^{j}=\left(x_{1}-x_{2}\right)\left(x_{1}^{j-1}+x_{1}^{j-2} x_{2}+\ldots+x_{2}^{j-1}\right)
$$

so the entire first row is divisible by $x_{1}-x_{2}$. Thus the determinant V is divisible by $x_{1}-x_{2}$ in $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$. Similarly for $x_{i}-x_{j}$ with i<j. Since polynomial rings are UFDs, V is divisible by the product P. Now V is a polynomial of degree $1+2+\ldots+(m-1)$, which is the degree of the product, so $V=a P$ for some $a \in \mathbb{C}$. We show by induction on m that $a=1$. If $m=1$ then this is clear. In general, if $x_{m}=0$ then expanding the determinant and using the induction $V=x_{1} x_{2} \ldots x_{m-1} \prod_{i<j<m}\left(x_{i}-x_{j}\right)$, so $a=1$.

Remark. The same argument shows that if $\mathcal{l}_{i} \geq 0$ then $\left|x^{l_{1}}, \ldots, x^{l m}\right|$ is divisible by the Vandermonde, so that

$$
\frac{\left|x^{l_{1}}, \ldots, x^{\ell_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|}
$$

is a polynomial in x_{1}, \ldots, x_{m}.

Cauchy's Lemma. If $x_{i}, Y_{i} \in \mathbb{C}(1 \leq i \leq m)$ and always $x_{i} Y_{j} \neq 1$ then $\operatorname{det}\left(\frac{1}{1-x_{i} y_{j}}\right)=\left|x^{m-1}, \ldots, 1\right| \cdot\left|y^{m-1}, \ldots, 1\right| \cdot \Pi_{i, j}\left(\frac{1}{1-x_{i} Y_{j}}\right)$

Proof. By induction on m. True for $m=1$. Now

$$
\frac{1}{1-x_{i} y_{j}}-\frac{1}{1-x_{1} y_{j}}=\frac{x_{i}-x_{1}}{1-x_{1} y_{j}} \cdot \frac{y_{j}}{1-x_{i} y_{j}}
$$

so subtracting the first row from each other row in the determinant one can remove the factor $x_{i}-x_{1}$ from each row $i \neq 1$ and $1 /\left(1-x_{1} Y_{j}\right)$ from each column, and the determinant equals

$$
\Pi_{i>1}\left(x_{i}-x_{1}\right) \cdot \Pi_{j}\left(\frac{1}{1-x_{1} y_{j}}\right) \cdot \operatorname{det}\left(\begin{array}{lll}
1 & 1 & \cdots \tag{*}\\
y_{1} /\left(1-x 2 y_{1}\right) & y_{2} /(1-x 2 y 2) & \ldots \\
y_{1} /(1-x 3 y 1) & y_{2} /\left(1-x 3 y_{2}\right) & \ldots \\
\cdots & \ldots & \ldots
\end{array}\right)
$$

Now subtract the first column from each other, and use

$$
\frac{Y_{j}}{1-x_{i} Y_{j}}-\frac{Y_{1}}{1-x_{i} Y_{1}}=\frac{Y_{j}-Y_{1}}{1-x_{i} Y_{1}} \cdot \frac{1}{1-x_{i} Y_{j}}
$$

so the determinant in (*) becomes

$$
\prod_{j>1}\left(y_{j}-y_{1}\right) \cdot \prod_{i>1}\left(\frac{1}{1-x_{i} y_{1}}\right) \cdot \operatorname{det}\left(\begin{array}{llll}
1 & 0 & 0 & \ldots \\
\star & 1 /\left(1-x 2 y^{2}\right) & 1 /(1-x 2 y 3) & \ldots \\
\star & 1 /\left(1-x 3 y^{2}\right) & 1 /(1-x 3 y 3) & \ldots \\
\cdots & \ldots & \ldots & \ldots
\end{array}\right)
$$

and the assertion follows.

Lemma 3. If x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} have modulus <1, then

Proof. The determinant is

$$
\sum_{\pi \in S m} \varepsilon_{\pi} \prod_{i=1}^{m}\left(1+x_{i} y_{\pi(i)}+x_{i}^{2} y_{\pi(i)}^{2}+\ldots\right)
$$

and the monomial $x_{1}^{\mathcal{l}_{1}} \ldots x_{m}^{\ell_{m}}$ (with $\mathcal{l}_{i} \in \mathbb{N}$) occurs with coefficient

$$
\sum_{\pi \in S m} \varepsilon_{\pi} \prod_{i=1}^{m} y_{\pi(i)}^{\ell_{i}}=\left|y^{\mathcal{l}_{1}}, \ldots, y^{\mathcal{l}_{\mathrm{m}}}\right|
$$

In particular it zero unless the \mathcal{l}_{i} are distinct, so the determinant is

$$
\begin{aligned}
& \sum_{\mathcal{C}_{1}, \ldots, l_{m}} \text { distinct }{ }^{x_{1}} \mathcal{l}_{1} \ldots x_{m}^{\mathcal{l}_{m}}\left|y^{\mathcal{l}_{1}}, \ldots, y^{\ell_{m}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{C_{1}>} \ldots>l_{m}\left|x^{C_{1}}, \ldots, x^{l_{m}}\right| .\left|y^{C_{1}}, \ldots, y^{l_{m}}\right| .
\end{aligned}
$$

Notation. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{Z}^{m}$ (for example if λ is a partition with $\leq m$ parts), we set

$$
\ell_{i}=\lambda_{i}+m-i
$$

so $l_{1}=\lambda_{1}+m-1, \ldots, l_{m}=\lambda_{m}$.

Remarks.
(1) $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m} \Leftrightarrow l_{1}>l_{2}>\ldots>l_{m}$.
(2) If $\sum_{i} \lambda_{i}=n, \lambda_{i} \geq 0$, then the polynomial

$$
\frac{\left|x^{l_{1}}, \ldots, x^{l_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|}
$$

has degree n in the x_{i}.

Notation. If x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} are complex numbers, for $i \in \mathbb{N}$ we set

$$
s_{i}=x_{1}^{i}+x_{2}^{i}+\ldots+x_{m}^{i} \quad \text { and } \quad t_{i}=y_{1}^{i}+y_{2}^{i}+\ldots+y_{m}^{i}
$$

the power sums of the x_{i} and the y_{i}.

Lemma 4.

$$
\sum \frac{\left|x^{l_{1}}, \ldots, x^{l_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|} \cdot \frac{\left|y^{l_{1}}, \ldots, y^{l_{m}}\right|}{\left|y^{m-1}, \ldots, 1\right|}=\frac{1}{n!} \sum_{\alpha} n_{\alpha} s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}} t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}}
$$

where the first sum is over the partitions λ of n with $\leq m$ parts, and the second sum is over the conjugacy classes α in S_{n}.

Remark. The quotients on the left are polynomials, so this makes sense even if the x_{i} or y_{i} are not distinct.

Proof. Since both sides are polynomials, we need only prove this when the x_{i} and y_{i} have modulus < 1 . Now

$$
\left.\begin{array}{rl}
\log \left(\Pi_{i, j=1}^{m}\left(\frac{1}{1-x_{i} y_{j}}\right)\right.
\end{array}\right)=\sum_{i, j}\left(\frac{x_{i} y_{j}}{1}+\frac{x_{i}^{2} y_{j}^{2}}{2}+\frac{x_{i}^{3} y_{j}^{3}}{3}+\ldots\right) .
$$

so

$$
\begin{aligned}
\prod_{i, j=1}^{m}\left(\frac{1}{1-x_{i} y_{j}}\right) & =\exp \left(\frac{s_{1} t_{1}}{1}+\frac{s_{2} t_{2}}{2}+\frac{s_{3} t_{3}}{3}+\ldots\right) \\
& =\sum \frac{1}{n!}\left(\frac{s_{1} t_{1}}{1}+\frac{s_{2} t_{2}}{2}+\frac{s_{3} t_{3}}{3}+\ldots\right)^{n}
\end{aligned}
$$

By the multinomial theorem this is

$$
=\sum \frac{1}{n!} \frac{n!}{\alpha_{1}!\alpha_{2}!\cdots}\left(\frac{s_{1}^{t} 1}{1}\right)^{\alpha_{1}}\left(\frac{s_{2}^{t} 2}{2}\right)^{\alpha_{2}} \ldots
$$

where the sum extends over all sequences $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ of non-negative integers with only finitely many non-zero terms.

$$
=\sum \frac{s_{1}^{\alpha_{1}} s_{2}^{\alpha 2} \ldots t_{1}^{\alpha_{1}} t_{2}^{\alpha 2} \ldots}{1_{1}^{\alpha_{1}} 2_{2}^{\alpha_{2}} \ldots \alpha_{1}!\alpha_{2}!\ldots}
$$

By Lemma 3 and Cauchy's Lemma,

$$
\sum \frac{\left|x^{\ell_{1}}, \ldots, x^{\ell_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|} \cdot \frac{\left|y^{\ell_{1}}, \ldots, y^{\ell_{m}}\right|}{\left|y^{m-1}, \ldots, 1\right|}=\prod_{i, j=1}^{m}\left(\frac{1}{1-x_{i} Y_{j}}\right)
$$

where the sum is over all $l_{1}>\ldots>l_{m} \geq 0$. So

$$
\sum \frac{\left|x^{l_{1}}, \ldots, x^{l_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|} \cdot \frac{\left|y^{l_{1}}, \ldots, y^{l_{m}}\right|}{\left|y^{m-1}, \ldots, 1\right|} \quad=\quad \sum_{\sum_{1} \left\lvert\, \frac{s_{1}^{\alpha_{1}} s_{2}^{\alpha_{2}}}{1_{1}^{\alpha_{1}} \alpha_{2}} \ldots t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \ldots \alpha_{1}!\alpha 2!\ldots\right.}^{1}
$$

We can now equate the terms in this which are of degree n in the X_{i}, getting the required equality.

Definition. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{Z}^{m}$ and α a conjugacy class in S_{n}, let $\psi_{\lambda}(\alpha)$ be the coefficient of the monomial $x_{1}^{\lambda_{1}} \ldots x_{m}^{\lambda_{m}}$ in $s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}}$. Thus

$$
s_{1}^{\alpha 1} \ldots s_{\mathrm{n}}^{\alpha_{\mathrm{n}}}=\sum_{\lambda_{1}, \ldots, \lambda_{m}} \psi_{\lambda}(\alpha){ }_{x_{1}^{\lambda_{1}}}^{\lambda_{1}} \ldots \mathrm{x}_{\mathrm{m}}^{\lambda_{m}}
$$

Equivalently we can think of the ψ_{λ} as class functions $\psi_{\lambda}: S_{n} \longrightarrow \mathbb{N}$.

Remarks.
(1) $\psi_{\lambda}(\alpha)=0$ if any $\lambda_{i}<0$ or if $\lambda_{1}+\ldots+\lambda_{m} \neq n$.
(2) $\psi_{\lambda}(\alpha)$ is a symmetric function of the λ_{i}.

Definition. Set $\omega_{\lambda}(\alpha)=\sum_{\pi \in S m} \varepsilon_{\pi} \psi_{\left(\mathcal{l}_{\pi(1)}+1-m, \ldots, \ell_{\pi(m)}\right)}(\alpha)$.

We are eventually going to show that $\omega_{\lambda}=\chi_{\lambda}$, but first we need to verify the orthogonality relations for the ω_{λ}. To do this we need the following lemma, which will eventually be our character formula.

Lemma 5.

$$
s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}}\left|x^{m-1}, \ldots, 1\right|=\sum_{\lambda} \omega_{\lambda}(\alpha)\left|x^{\ell_{1}}, \ldots, x^{\ell_{m}}\right|
$$

with summation over the partitions λ of n with $\leq m$ parts.

PROOF. $s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}}\left|x^{m-1}, \ldots, 1\right|=$

$$
\begin{aligned}
& =\sum_{\lambda \in \mathbb{Z}^{m}, \tau \in S m} \varepsilon_{\tau} \psi_{\lambda}(\alpha){x_{1}}_{\lambda_{1}} \ldots x_{m}^{\lambda_{m}} x_{\tau(1)}^{m-1} \ldots x_{\tau(m)}^{0} \\
& =\sum_{\lambda \in \mathbb{Z}^{m}, \tau \in S m} \varepsilon_{\tau} \psi_{\lambda}(\alpha) x_{\tau(1)}^{\lambda}{ }_{\tau(1)}^{+m-1} \ldots x_{\tau(m)}^{\lambda_{\tau(m)}}
\end{aligned}
$$

Let $l_{i}=\lambda_{\tau(i)}{ }^{+m-i}$ instead of the usual convention. Since $\psi_{\lambda}(\alpha)$ is symmetric in the λ_{i}, we get

$$
\begin{aligned}
& =\sum_{\ell_{1}, \ldots, \ell_{m} \in \mathbb{Z}, \tau \in S m} \varepsilon_{\tau} \psi_{\left(\mathfrak{C}_{1}+1-m, \ldots, \ell_{m}\right)}(\alpha) x_{\tau(1)}^{\ell_{1}} \cdots x_{\tau(m)}^{\ell_{m}} \\
& \left.=\sum_{\mathfrak{l}_{1}, \ldots, \mathfrak{C}_{\mathrm{m}} \in \mathbb{Z}} \psi_{\left(\mathfrak{C}_{1}+1-m\right.}, \ldots, \mathfrak{C}_{\mathrm{m}}\right)(\alpha)\left|\mathrm{x}^{\ell_{1}}, \ldots, \mathrm{x}^{\mathfrak{l}_{m}}\right|
\end{aligned}
$$

Since the terms with the \mathcal{l}_{i} not distinct are zero, this becomes

$$
=\sum_{l_{1}>\ldots>\ell_{m},} \quad \pi \in \operatorname{Sm} \psi_{\left(\ell_{\pi(1)}+1-m, \ldots, l_{\pi(m)}\right)}(\alpha) \varepsilon_{\pi}\left|x^{l_{1}}, \ldots, x^{\ell_{m}}\right|
$$

Now setting $\lambda_{i}=l_{i}+i-m$ as usual, it becomes

$$
=\sum_{\lambda, \quad \pi \in S m} \psi_{\left(\mathcal{l}_{\pi(1)}+1-m, \ldots, \ell_{\pi(m)}\right)}(\alpha) \varepsilon_{\pi}\left|x^{\mathcal{l}_{1}}, \ldots, x^{\mathcal{l}_{m}}\right|
$$

where the sum is over all $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{Z}^{m}$ with $\lambda_{1} \geq \ldots \geq \lambda_{m}$. Now the terms for which this is not a partition of n are zero by the remarks above, for if $\lambda_{m}<0$ then certainly $l_{m}+\pi^{-1}(m)-m<0$.

Lemma 6. If λ and λ^{\prime} are partitions of n with $\leq m$ parts then

$$
\sum_{\alpha \text { conj class }}{ }_{\alpha} \omega_{\lambda}(\alpha) \omega_{\lambda^{\prime}}(\alpha)= \begin{cases}n! & \left(\lambda=\lambda^{\prime}\right) \\ 0 & (\mathrm{else})\end{cases}
$$

Proof. By Lemma 4, the sum

$$
\sum_{\lambda}\left|x^{l_{1}}, \ldots, x^{\mathcal{l}_{m}}\right|\left|y^{\mathcal{l}_{1}}, \ldots, y^{\mathcal{l}_{m}}\right|
$$

over the partitions λ of n with $\leq m$ parts is equal to

$$
\frac{1}{n}!\sum_{\alpha} n_{\alpha} s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}} t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}}\left|x^{m-1}, \ldots, 1\right|\left|y^{m-1}, \ldots, 1\right|
$$

By Lemma 5, this is

$$
\frac{1}{n}!\sum_{\alpha, \lambda, \lambda^{\prime}} n_{\alpha} \omega_{\lambda}(\alpha) \omega_{\lambda^{\prime}}(\alpha)\left|x^{l_{1}}, \ldots, x^{\operatorname{lm}_{m}}\right| y^{l_{1}}, \ldots, y^{\ln ^{\prime}} \mid
$$

with summation over the partitions $\lambda, \lambda^{\prime}$ of n with $\leq m$ parts and conjugacy classes α. The assertion follows since as λ and λ^{\prime} vary, the polynomials

$$
\left|x^{l_{1}}, \ldots, x^{l_{m}}\right|\left|y^{l_{1}^{\prime}}, \ldots, y^{\operatorname{lm}^{\prime}}\right|
$$

are linearly independent in $\mathbb{C}\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right]$.

We now start to relate these ideas with the symmetric group (which has, so far, played no role). The key result is:

Lemma 7. If λ is a partition of n with $\leq m$ parts then ψ_{λ} is the character of the $\mathbb{C} S_{n}$-module $\mathbb{C} S_{n}{ }^{r} \lambda$ where $r_{\lambda}=\sum_{\sigma \in \operatorname{Row}\left(\Sigma_{\lambda}\right)} \sigma$.

Proof. Let θ be the character of $\mathbb{C S}{ }_{n}{ }^{r} \lambda^{\prime}$ let $\sigma \in S_{n}$ be in the conjugacy class α, let $R=\operatorname{Row}\left(\Sigma_{\lambda}^{0}\right)$, and let

$$
S_{n}=U_{i=1}^{N} g_{i} R
$$

be a coset decomposition. Then $\mathbb{C} S_{n}{ }^{r} \lambda$ has basis $\left(g_{i}{ }^{r} \lambda^{\prime}{ }_{1 \leq i \leq N}\right.$. We use this basis to compute traces. Now

$$
\sigma g_{i} r \lambda=g_{j} r_{\lambda} \quad \text { if } \quad \sigma g_{i} \in g_{j} R
$$

Thus

$$
\theta(\alpha)=\left|\left\{1 \leq i \leq N \mid g_{i}^{-1} \sigma g_{i} \in R\right\}\right| .
$$

Now $g \sigma g^{-1} \in R$ if and only g is in a coset $g_{i} R$ with $g_{i} \sigma g_{i}^{-1} \in R$, and $|R|=\lambda_{1}!\lambda_{2}!\ldots$, so

$$
\theta(\alpha)=1 / \lambda_{1}!\lambda_{2}!\ldots\left|\left\{g \in S_{n} \mid g \sigma g^{-1} \in R\right\}\right| .
$$

Since $g \sigma g^{-1}=g^{\prime} \sigma g^{\prime-1} \Leftrightarrow g^{\prime-1} g \in c_{S n}(\sigma)$, each value taken by $g \sigma g^{-1}$ is taken by $\left|c_{S_{n}}(\sigma)\right|$ elements $g \in S_{n}$. Now

$$
\left|c_{S n}(\sigma)\right|=\frac{n!}{n_{\alpha}}=1^{\alpha_{1}} 2^{\alpha 2} \ldots \alpha_{1}!\alpha_{2}!\ldots
$$

so

$$
\theta(\alpha)=1^{\alpha_{1}} 2^{\alpha_{2}} \ldots \alpha_{1}!\alpha_{2}!\ldots / \lambda_{1}!\lambda_{2}!\ldots|\alpha \cap \mathrm{R}| .
$$

Now a permutation $\tau \in \alpha \cap \mathrm{R}$ restricts to a permutation of the numbers in the i-th row of Σ_{λ}^{0}. If this restriction involves say $\alpha_{i j} j$-cycles, then the $\alpha_{i j}$ satisfy (*):

$$
\begin{array}{ll}
\alpha_{i 1}+2 \alpha_{i 2}+3 \alpha_{i 3}+\ldots=\lambda_{i} & (1 \leq i \leq m) \\
\alpha_{1 j}+\alpha_{2 j}+\alpha_{3 j}+\ldots=\alpha_{j} & (1 \leq j \leq n)
\end{array}
$$

The number of permutations in R of this type is

$$
\left(\lambda_{1}!/ 1^{\alpha 11} 2^{\alpha_{12}} \ldots \alpha_{11}!\alpha_{12}!\ldots\right)\left(\lambda_{2}!/ 1_{2}^{\alpha_{21}}{ }^{\alpha 22} \ldots \alpha_{21}!\alpha_{22}!\ldots\right) \ldots
$$

$$
\theta(\alpha)=\sum \frac{\alpha_{1}!}{\alpha_{11}!\alpha_{21}!\ldots} \frac{\alpha_{2}!}{\alpha_{12}!\alpha_{22}!\ldots} \ldots
$$

where the summation is over all $\alpha_{i j}$ satisfying (*).

By the multinomial theorem $s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}}$ is equal to

$$
\sum\left(\frac{\alpha_{1}!}{\alpha_{11}!\alpha_{21}!\ldots} x_{1}^{\alpha_{11}}{ }_{x_{2}}^{\alpha_{21}} \ldots x_{m}^{\alpha_{m 1}}\right)\left(\frac{\alpha_{2}!}{\alpha_{12}!\alpha_{22}!\ldots} x_{1}^{2 \alpha_{12}}{ }_{x_{2}}^{2 \alpha_{22}} \ldots x_{m}^{2 \alpha_{m}}\right) \ldots
$$

where the sum is over all $\alpha_{i j} \in \mathbb{N}(1 \leq i \leq m, 1 \leq j \leq n)$ satisfying

$$
\alpha_{1 j}+\alpha_{2 j}+\ldots+\alpha_{m j}=\alpha_{j} \quad(1 \leq j \leq n)
$$

Thus $\psi_{\lambda}(\alpha)$ (the coefficient of the monomial $x_{1}^{\lambda_{1}} \ldots x_{m}^{\lambda_{m}}$) is equal to

$$
\sum \frac{\alpha_{1}!}{\alpha_{11}!\alpha_{21}!\cdots} \frac{\alpha_{2}!^{1}}{\alpha_{12}!\alpha_{22}!\cdots} \cdots
$$

where the summation is over all $\alpha_{i j}$ satisfying (*), and hence is equal to $\theta(\alpha)$.

Lemma 8. Let $\mu \leq \lambda$ be partitions of n. The simple module $\mathbb{C} S_{n}{ }^{h} \mu$ is a submodule of $\mathbb{C S}{ }_{n}{ }^{r} \lambda$ if and only if $\mu=\lambda$.

Proof. If $\mu<\lambda$ and $\sigma \in S_{n}$, then by $\$ 2$ Lemma 2 there are two integers in the same row of Σ_{λ}^{0} and in the same column of $\sigma^{-1} \Sigma_{\mu}^{0}$, so if τ is their transposition then $\sigma \tau \sigma^{-1} \in \operatorname{Col}\left(\Sigma_{\mu}^{0}\right)$ and

$$
\mathrm{h}_{\mu} \sigma \mathrm{r}_{\lambda}=\mathrm{h}_{\mu} \sigma \tau \sigma^{-1} \sigma \tau \mathrm{r}_{\lambda}=-\mathrm{h}_{\mu} \sigma \mathrm{r}_{\lambda}=0 .
$$

Thus $0=h_{\mu} \mathbb{C} S_{n} r^{r} \cong \operatorname{Hom}_{\mathbb{C S n}}\left(\mathbb{C S}{ }_{n} h_{\mu}, \mathbb{C S}_{n}{ }^{r} \lambda\right)$. Conversely

$$
{ }^{h} \lambda^{r} \lambda\left(\sum_{\sigma \in \operatorname{Col}}\left(\Sigma_{\lambda}^{0}\right) \quad \varepsilon_{\sigma} \sigma\right)=h_{\lambda}^{2} \neq 0
$$

so $0 \neq h_{\lambda} \mathbb{C S}_{n}{ }^{r} \lambda \cong \operatorname{Hom}_{\mathbb{C S n}}\left(\mathbb{C S}_{n} h_{\lambda}, \mathbb{C} S_{n} r_{\lambda}\right)$.

Lemma 9. If λ is a partition of n with $\leq m$ parts, then $\omega_{\lambda}=\chi_{\lambda}$.

Proof.
(i) If $\pi \in S_{n}$, let μ_{π} be the partition with parts

$$
\ell_{\pi(1)}+1-m, \quad \ldots, \ell_{\pi(m)}
$$

in the appropriate order, so with parts

$$
\lambda_{i}+\pi^{-1}(i)-i
$$

Since $\psi_{\lambda}(\alpha)$ is symmetric in the λ_{i}, we can write

$$
\omega_{\lambda}=\sum_{\pi \in S m} \varepsilon_{\pi} \psi_{\mu}
$$

If $\pi \neq 1$ then $\mu_{\pi}>\lambda$, for $\lambda_{1}+\pi^{-1}(1)-1 \geq \lambda_{1}$, with equality only if $\pi^{-1}(1)=1$. Then $\lambda_{2}+\pi^{-1}(2)-2 \geq \lambda_{2}$, with equality only if $\pi^{-1}(2)=2$, etc.. If $\pi=1$ then $\mu_{\pi}=\lambda$. Thus ω_{λ} is a \mathbb{Z}-linear combination of ψ_{ν} with $\nu \geq \lambda$ and with coefficient of ψ_{λ} equal to 1 .
(ii) By Lemmas 7 and $8, \psi_{\lambda}$ is an \mathbb{N}-linear combination of $\chi_{\mu}{ }^{\prime}$ s with $\mu \geq \lambda$, and with non-zero coefficient of χ_{λ}. Thus ω_{λ} is a \mathbb{Z}-linear combination of χ_{ν}^{\prime} s with $\nu \geq \lambda$ and with positive coefficient of χ_{λ}. Say

$$
\omega_{\lambda}=\sum_{v} \text { partition of } \mathrm{n}{ }^{\mathrm{k}} \lambda_{\nu} \chi_{\nu}
$$

with the ${ }_{\lambda \nu} \in \mathbb{Z}_{,}{ }^{k_{\lambda \lambda}}>0$ and $\mathrm{k}_{\lambda \nu}=0$ if $\nu<\lambda$.
(iii) We know that

$$
\sum_{\alpha \text { conj class }} n_{\alpha} \omega_{\lambda}(\alpha) \omega_{\mu}(\alpha)= \begin{cases}n! & (\lambda=\mu) \\ 0 & \text { (else) }\end{cases}
$$

In the case $\lambda=\mu$ the orthogonality of the χ_{λ} gives $\sum_{\nu} \mathrm{k}_{\lambda \nu}^{2}=1$, so ${ }^{\mathrm{k}}{ }_{\lambda \nu}=0$ if $\lambda \neq \nu$ and ${ }_{\lambda \lambda}=1$, as required.

At last our character formula! Recall that $m \in \mathbb{N}$ and $x_{1}, \ldots, x_{m} \in \mathbb{C}$ are arbitrary, $l_{i}=\lambda_{i}+m-i$ and $s_{i}=x_{1}^{i}+\ldots+x_{m}^{i}$.

Theorem.

$$
s_{1}^{\alpha 1} \ldots s_{n}^{\alpha_{n}}\left|x^{m-1}, \ldots, 1\right|=\sum_{\lambda} \chi_{\lambda}(\alpha)\left|x^{l_{1}}, \ldots, x^{l_{m}}\right|
$$

with summation over partitions λ of n with $\leq m$ parts.

Proof. Follows from Lemmas 5 and 9.

Remark. In particular, taking $m \geq n$, we can ensure that the right hand side involves all partitions of n.

Remark. If λ is a partition of n with \leq_{m} parts, then $\chi_{\lambda}(\alpha)$ is the coefficient of the monomial $x_{1}^{\mathcal{l}_{1}} \ldots x_{m}^{\mathcal{l}_{m}}$ in the expansion of

$$
s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}}\left|x^{m-1}, \ldots, 1\right| .
$$

§5. THE HOOK LENGTH FORMULA

We already have one formula for the dimension of the simple $\mathbb{C} S_{n}$-modules, the number of standard tableaux. In this section we derive two more formulae, one of which is easy to use.

Theorem. If λ is a partition of n with exactly m parts then the degree f_{λ} of χ_{λ} is equal to

$$
n!\prod_{1 \leq i<j \leq m}\left(\mathcal{L}_{i}-\mathcal{L}_{j}\right) / \mathcal{l}_{1}!\ldots \mathcal{l}_{m}!
$$

PROOF. $\mathrm{f}_{\lambda}=\chi_{\lambda}(1)$, which is the coefficient of $\mathrm{x}_{1} \mathcal{L}_{1} \ldots \mathrm{x}_{\mathrm{m}}^{\mathcal{L}_{\mathrm{m}}}$ in the expansion of

$$
\left(x_{1}+\ldots+x_{m}\right)^{n}\left|x^{m-1}, \ldots, 1\right|=\sum_{\tau \in S m}\left(x_{1}+\ldots+x_{m}\right)^{n} \varepsilon_{\tau} x_{1}^{\tau(1)-1} \ldots x_{m}^{\tau(m)-1}
$$

By the multinomial theorem this coefficient is equal to

$$
\sum_{\tau \in S m} \varepsilon_{\tau} \frac{\mathrm{n}!}{\left(l_{1}+1-\tau(1)\right)!\ldots\left(l_{\mathrm{m}}+1-\tau(\mathrm{m})\right)!}
$$

where, by convention $1 / x!=0$ if $x<0$. Now this is equal to

$$
\begin{aligned}
& =n!|1 /(l-m+1)!, \ldots 1 /(l-1)!, 1 / l!| \\
& =n!/ l_{1}!\ldots l_{m}!|\ldots, l(l-1), l, 1| \\
& =n!/ l_{1}!\ldots l_{m}!\left|l^{m-1}, \ldots, l^{2}, l, 1\right|
\end{aligned}
$$

by adding appropriate columns, and this is what we want since the last determinant is the Vandermonde.

Definition. If λ is a partition of n then the hook at $(i, j) \in[\lambda]$ is the set of $(a, b) \in[\lambda]$ with $(a \geq i$ and $b=j)$ or $(a=i$ and $b \geq j)$. The hook length $h i j$ is the number of elements of the hook at (i,j), so that if [λ] has column lengths μ_{1}, μ_{2}, \ldots then $h_{i j}=\lambda_{i}+\mu_{j}-i-j+1$.

Example. If $\lambda=\left(7,5^{2}, 3,1\right)$ then the hook at $(2,2)$ is the shaded part of

so $h_{22}=6$.

$$
\underline{\text { Theorem }} \text { (Hook length formula). } f_{\lambda}=\frac{n!}{\prod_{(i, j) \in[\lambda]} h_{i j}}
$$

Proof. Let λ have m parts. By the previous theorem it suffices to show that

$$
\prod_{k=i+1}^{m}\left(\ell_{i}-\ell_{k}\right) \cdot \prod_{j=1}^{\lambda_{i}} h_{i j}={l_{i}!}
$$

for each i. Now the product on the left is a product of $\lambda_{i}+m-i=l_{i}$ terms, so it suffices to show that the terms are precisely $1,2, \ldots, l_{i}$ in some order. Now

$$
\begin{aligned}
l_{i}-l_{m} & >l_{i}-l_{m-1}>l_{i}-l_{m-2}>\ldots \\
h_{i 1} & >h_{i 2}>h_{i 3}>\ldots
\end{aligned}
$$

Since λ has exactly m parts, $\mu_{1}=m$ and $h_{i 1}=\ell_{i}$, so each term is $\leq \ell_{i}$. Thus it suffices to show that no $h_{i j}$ is equal to any $l_{i}-l_{k}$. However, if $r=\mu_{j}$ then $\lambda_{r} \geq j$ and $\lambda_{r+1}<j$ so

$$
\begin{aligned}
& h_{i j}-l_{i}+l_{r}=\lambda_{i}+r-i-j+1-\lambda_{i}-m+i+\lambda_{r}+m-r=\lambda_{r}+1-j>0, \\
& h_{i j}-l_{i}+l_{r+1}=\lambda_{i}+r-i-j+1-\lambda_{i}-m+i+\lambda_{r+1}+m-r-1=\lambda_{r+1}-j<0,
\end{aligned}
$$

and hence $l_{i}-l_{r}<h_{i j}<l_{i}-l_{r+1}$.

Example. If $\mathrm{n}=11$ and $\lambda=(6,3,2)$ then

so that

$$
\mathrm{f}_{\lambda}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{8 \cdot 7 \cdot 5 \cdot 3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 1 \cdot 2 \cdot 1}=990 .
$$

In this section we recall some rather standard multilinear algebra for finite dimensional $\mathbb{C} G$-modules where G is a group, which may be infinite, or it may be 1 , so that we just deal with vector spaces.

Let V, W be finite dimensional $\mathbb{C} G$-modules.

Tensor products. The tensor product $V \otimes W$ (over \mathbb{C}) is a $\mathbb{C} G$-module via $g(v \otimes W)=(g v) \otimes(g w)$.

Properties. $V \otimes \mathbb{C} \cong \mathbb{C}, V \otimes W \cong W \otimes V,(V \otimes W) \otimes Z \cong V \otimes(W \otimes Z)$. If $\theta: V \longrightarrow V^{\prime}$ and $\phi: W \longrightarrow W^{\prime}$ are $\mathbb{C} G-m o d u l e$ maps, then so is $\theta \otimes \phi: V \otimes W \longrightarrow V^{\prime} \otimes W^{\prime}$.
$\underline{\text { Hom Spaces. }}$ Hom $_{\mathbb{C}}(V, W)$ is a $\mathbb{C G}$-module via $(g f)(v)=g f\left(g^{-1} v\right)$. In particular the dual of V is $V^{\star}=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$, so (gf) $(v)=f\left(g^{-1} V\right)$.

Properties. $(\mathrm{V} \otimes \mathrm{W})^{\star} \cong \mathrm{V}^{\star} \otimes \mathrm{W}^{\star}$. If V is one-dimensional then $\mathrm{V}^{\star} \otimes \mathrm{V} \cong \mathbb{C}$. If $\theta: V \longrightarrow W$ is a $\mathbb{C} G-m o d u l e ~ m a p, ~ t h e n ~ s o ~ i s ~ \theta^{*}: W^{*} \longrightarrow V^{*}$. The map $V * \otimes W \longrightarrow H o m ~(V, W)$ taking $f \otimes w$ to the map $v \longmapsto f(v) w$ is a $\mathbb{C} G$-module isomorphism.

Tensor powers. The n-th tensor power of V is

$$
\left.\mathrm{T}^{\mathrm{n} V}=\mathrm{V} \otimes \ldots \otimes \mathrm{~V} \text { (n copies, if } \mathrm{n}>0\right), \mathrm{T}^{0} \mathrm{~V}=\mathbb{C}
$$

Properties.

(1) If V has basis e_{1}, \ldots, e_{m} then $T^{n} V$ has basis $e_{i 1}^{\otimes} . . \otimes e_{i n}$ so it has dimension m^{n}.
(2) $\mathrm{T}^{\mathrm{n}} \mathrm{V}$ is a $\mathbb{C} \mathrm{S}_{\mathrm{n}}$-module via
and the actions of $\mathbb{C} S_{n}$ and $\mathbb{C} G$ commute: $g \sigma x=\sigma g x$ for $g \in G, \sigma \in S_{n}, x \in T^{n} V$.

Definition. The n-th exterior power of V is $\Lambda^{n} V=T^{n} V / X$ where

$$
\mathrm{X}=\mathbb{C}<\mathrm{x}-\varepsilon_{\sigma} \sigma \mathrm{x} \mid \mathrm{x} \in \mathrm{~T}^{\mathrm{n}} \mathrm{~V}, \quad \sigma \in \mathrm{~S}_{\mathrm{n}}>
$$

The image of $v_{1} \otimes \ldots \otimes v_{n}$ in $\Lambda^{n} V$ is denoted by $v_{1} \wedge \ldots \wedge v_{n}$. We also define $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {anti }}=\left\{\mathrm{x} \in \mathrm{T}^{\mathrm{n}} \mathrm{V} \mid \sigma \mathrm{x}=\varepsilon_{\sigma} \mathrm{x} \forall \sigma \in \mathrm{S}_{\mathrm{n}}\right\}$,
the set of antisymmetric tensors.

Properties.
(1) $\mathrm{v}_{1} \wedge \ldots \wedge \mathrm{v}_{\mathrm{n}}=\varepsilon_{\sigma} \mathrm{v}_{\sigma}{ }^{-1}(1) \wedge \ldots \wedge \mathrm{v}_{\sigma}{ }^{-1}(\mathrm{n})$ for $\sigma \in \mathrm{S}_{\mathrm{n}}$. In particular, considering a transposition, $v_{1} \wedge \ldots \wedge v_{n}=0$ whenever two of the v_{i} are equal.
(2) $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {anti }}$ and $\Lambda^{\mathrm{n}} \mathrm{V}$ are $\mathbb{C} G$-modules.
(3) $\Lambda^{n} V$ has basis $e_{i 1} \wedge . . e_{i n}$ with $i_{1}<\ldots<i_{n}$, so it has dimension $\binom{m}{n}$. In particular $\Lambda^{m} \mathrm{~V}$ is one-dimensional and $\Lambda^{\mathrm{m}+1} \mathrm{~V}=\Lambda^{\mathrm{m}+2} \mathrm{~V}=\ldots=0$.

Remark. For a vector space V over an arbitrary field k one should define the exterior powers by $\Lambda^{n} V=T V^{n} / X$ where X is spanned by the tensors of form $\mathrm{v}_{1} \otimes \mathrm{v}_{2} \otimes \ldots \otimes \mathrm{v}_{\mathrm{n}}$ with two of the v_{i} equal. If k has characteristic $\neq 2$ this reduces to the given definition.

Lemma 1. $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {anti }}=a \mathrm{~T}^{\mathrm{n}} \mathrm{V}$ where $\mathrm{a}=\sum_{\sigma \in S n} \varepsilon_{\sigma} \sigma$ is the alternizer. The natural map $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {anti }} \longrightarrow \Lambda^{\mathrm{n}} \mathrm{V}$ is an isomorphism of $\mathbb{C G}$-modules.

Proof. If x is antisymmetric, then $a x=(n!) x$, so $x \in a T^{n} V$. Conversely since $\sigma a=\varepsilon_{\sigma} a$, any element of $a T^{n} V$ is antisymmetric. The map

$$
\mathrm{aT}^{\mathrm{n}} \mathrm{~V} \longrightarrow \mathrm{~T}^{\mathrm{n}} \mathrm{~V} \longrightarrow \Lambda^{\mathrm{n}} \mathrm{~V}
$$

is a \mathbb{C}-module map with kernel $\mathrm{X} \cap \mathrm{aT}^{\mathrm{n}} \mathrm{V} \subseteq \mathrm{aX}$ since $\mathrm{x}=1 / \mathrm{n}$! ax for x antisymmetric. However $a X=0$ since for $y \in T^{n} V$ and $\sigma \in S_{n}$ we have $a\left(y-\varepsilon_{\sigma} \sigma y\right)=0$. The map is surjective since if $x \in \Lambda^{n} V$ is the image of $y \in T^{n} V$, then x is also the image of $1 / n!$ ay.

Lemma 2. $\Lambda^{\mathrm{n}}\left(\mathrm{V}^{*}\right) \cong\left(\Lambda^{\mathrm{n}} \mathrm{V}\right)^{*}$.

Proof. The natural map $\mathrm{T}^{\mathrm{n}} \mathrm{V} \longrightarrow \Lambda^{\mathrm{n}} \mathrm{V}$ gives an inclusion

$$
\left(\Lambda^{n} V\right)^{\star} \hookrightarrow\left(T^{n} V\right)^{\star} \cong T^{n}\left(V^{\star}\right)
$$

By the universal property of $\Lambda^{n} V$ - that any alternating multilinear map $V \times \ldots \times V \rightarrow \mathbb{C}$ factors through $\Lambda^{n} V$ - the image of this map is $T^{n}\left(V^{*}\right)$ anti' which is isomorphic to $\Lambda^{n}\left(V^{*}\right)$.

Definition. The n-th symmetric power of V is $S^{n} V=T^{n} V / Y$ where

$$
\mathrm{Y}=\mathbb{C}<\mathrm{x}-\sigma \mathrm{x} \mid \mathrm{x} \in \mathrm{~T}^{\mathrm{n}} \mathrm{~V}, \quad \sigma \in \mathrm{~S}_{\mathrm{n}}>
$$

The image of $v_{1} \otimes \ldots \otimes v_{n}$ in $S^{n} V$ is denoted by $v_{1} v \ldots v v_{n}$. We also define

$$
\mathrm{T}^{\mathrm{n}_{\mathrm{Symm}}^{\mathrm{n}}}=\left\{\mathrm{x} \in \mathrm{~T}^{\mathrm{n}} \mathrm{~V} \mid \sigma \mathrm{x}=\mathrm{x} \forall \sigma \in \mathrm{~S}_{\mathrm{n}}^{\mathrm{n}}\right\},
$$

the set of symmetric tensors.

Properties.
(1) For $\sigma \in S_{n}$ one has $v_{1} \vee \ldots v v_{n}=v_{\sigma^{-1}}(1) \vee \ldots \vee v_{\sigma^{-1}}(\mathrm{n})$.
(2) $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {symm }}$ and $\mathrm{S}^{\mathrm{n}} \mathrm{V}$ are a $\mathbb{C G}$-modules.
(3) $S^{n} V$ has basis $e_{i 1} v \ldots v e_{i n}$ with $i_{1} \leq \ldots \leq i_{n}$, so has dimension $\binom{m+n-1}{n}$. To see this, note that

$$
\left(1-X_{1}\right)^{-1} \ldots\left(1-X_{m}\right)^{-1}=\sum_{i 1, \ldots, i m} x_{1}^{i 1} \ldots x_{m}^{i m}
$$

so the number of terms with total degree n is the coefficient of x^{n} in $(1-X)^{-m}$, which is $(-1)^{n}\binom{-m}{n}=\binom{m+n-1}{n}$.

As in the case of exterior powers one has

Lemma 3. $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {symm }}=\mathrm{sT}^{\mathrm{n}} \mathrm{V}$ where $\mathrm{s}=\sum_{\sigma \in S n} \sigma$ is the symmetrizer. The natural map $\mathrm{T}^{\mathrm{n}} \mathrm{V}_{\text {symm }} \longrightarrow \mathrm{S}^{\mathrm{n}} \mathrm{V}$ is an isomorphism of \mathbb{C}-modules.

Lemma 4. $S^{n}\left(V^{*}\right) \cong\left(S^{n} V\right)^{*}$.

Next we consider polynomial maps between vector spaces. These generalize the usual notion of linear maps.

Definition. Let V and W be finite dimensional \mathbb{C}-vector spaces. A function $\phi: V \rightarrow W$ is a polynomial (resp. homogeneous n-ic) map provided that V and W have bases e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{h} such that for all $x_{1}, \ldots, x_{m} \in \mathbb{C}$ we have

$$
\phi\left(X_{1} e_{1}+\ldots+X_{m} e_{m}\right)=\phi_{1}\left(X_{1}, \ldots, X_{m}\right) f_{1}+\ldots+\phi_{h}\left(X_{1}, \ldots, X_{m}\right) f_{h}
$$

where the $\phi_{i}\left(X_{1}, \ldots, X_{m}\right)$ are polynomials (resp. homogeneous polynomials of degree n).

Lemma 5. If there are such functions ϕ_{i} with respect to some bases, then there are such functions with respect to any bases.

Proof. Suppose that $e_{i}^{\prime}=\sum_{j} p_{j i} e_{j}$ and $f_{i}=\sum_{j} q_{j i} f_{j}^{\prime}$. Then

$$
\begin{aligned}
\phi\left(\sum_{i} x_{i} e_{i}^{\prime}\right) & =\phi\left(\sum_{i, j} x_{i} p_{j i} e_{j}\right) \\
& =\sum_{r} \phi_{r}\left(\sum_{i_{1}} x_{i_{1}} p_{1 i_{1}}, \ldots, \sum_{i_{m}} x_{i_{m}} p_{m i_{m}}\right) f_{r} \\
& =\sum_{r, s} \phi_{r}\left(\sum_{i_{1}} x_{i_{1}} p_{1 i_{1}}, \ldots, \sum_{i_{m}} x_{i_{m}} p_{m i_{m}}\right) q_{s r} f_{s}^{\prime}
\end{aligned}
$$

and the functions

$$
\sum_{r} \phi_{r}\left(\sum_{i_{1}} x_{i_{1}} p_{1 i_{1}}, \ldots, \sum_{i_{m}} x_{i_{m}} p_{m i_{m}}\right) q_{s r}
$$

are polynomials or homogeneous polynomials of degree n like the ϕ_{i}.

Notation. We denote by Poly $\mathbb{C}_{\mathbb{C}}(V, W)$ and $\operatorname{Hom}_{\mathbb{C}, \mathrm{n}}(\mathrm{V}, \mathrm{W})$ the spaces of such maps. Clearly these are vector spaces.

Lemma 6. A composition of polynomial maps $X \longrightarrow W$ and $W \longrightarrow Z$ is a polynomial map. The composition of a homogeneous n-ic and a homogeneous $n^{\prime}-i c$ map is a homogeneous $n n^{\prime}-i c$ map.

Proof. $\left(x^{n}\right)^{n^{\prime}}=x^{n n^{\prime}}$.

Examples.
(1) $\operatorname{Hom}_{\mathbb{C}, 0}(V, W)=W$ and $\operatorname{Hom}_{\mathbb{C}, 1}(V, W)=\operatorname{Hom}_{\mathbb{C}}(V, W)$,
(2) The map $\Delta: v \longmapsto v \vee \ldots V$ lies in $\operatorname{Hom}_{\mathbb{C}, \mathrm{n}}\left(\mathrm{V}, \mathrm{S}^{\mathrm{n}} \mathrm{V}\right)$, since

$$
\begin{aligned}
\Delta\left(\sum x_{i} e_{i}\right) & =\sum_{i_{1}}, \ldots, i_{n} x_{i_{1}} \ldots x_{i_{n}} e_{i_{1}} v \ldots v e_{i_{n}} \\
& =\sum_{i_{1}} \leq \ldots \leq i_{n}{ }^{c_{i_{1}}} \ldots, i_{n} x_{i_{1}} \ldots x_{i_{n}} e_{i_{1}} v \ldots v e_{i_{n}}
\end{aligned}
$$

for suitable constants $c_{i_{1}}, \ldots, i_{n}$.

Theorem. If V and W are vector spaces, then $\psi \longmapsto \longrightarrow \psi \Delta \Delta$ induces an isomorphism $\operatorname{Hom}_{\mathbb{C}}\left(S^{n} V, W\right) \longrightarrow \operatorname{Hom}_{\mathbb{C}, n}(V, W)$.

Proof. To show that the map is injective, suppose that $\psi \circ \Delta=0$. We show by descending induction on i that $\psi\left(v_{1} \vee \ldots \vee v_{n}\right)=0$ whenever i of the terms are equal. The case $i=n$ is true by assumption, and the case $i=1$ is what we want. Suppose true for $i+1$, then for $\alpha \in \mathbb{C}$,

$$
\begin{aligned}
0 & =\psi\left((x+\alpha y) \vee \ldots v(x+\alpha y) \vee v_{i+2} \vee \ldots v v_{n}\right) \\
& \left.=\sum_{j=0}^{i+1} \alpha^{j} \underset{j}{i+1}\right) \psi\left(x \vee \ldots v x \vee y \vee \ldots v y \vee v_{i+2} \vee \ldots v v_{n}\right)
\end{aligned}
$$

Since this is zero for each $\alpha \in \mathbb{C}$, each term is zero. In particular

$$
\binom{i+1}{1} \psi\left(x \vee \ldots \vee x \vee y \vee v_{i+2} \vee \ldots \vee v_{n}\right)=0
$$

as required.

Now if $\operatorname{dim}_{\mathbb{C}} V=m, \operatorname{dim}_{\mathbb{C}} W=h$ then

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(S^{n} V, W\right)=h\binom{m+n-1}{n}=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}, n}(V, W)
$$

so the map is an isomorphism.

Lemma 7. The elements of the form $v \vee \ldots V v$ with $v \in V$ span $S^{n} V$.

PRoof. Take $W=\mathbb{C}$. If these elements do not $\operatorname{span} S^{n} V$ then there is a non-zero linear map $S^{n} V \longrightarrow \mathbb{C}$ whose composition with Δ is zero.

$$
\phi\left(X_{1} e_{1}+\ldots+X_{m} e_{m}\right)=\phi_{1}\left(X_{1}, \ldots, X_{m}\right) f_{1}+\ldots+\phi_{h}\left(X_{1}, \ldots, X_{m}\right) f_{h}
$$

with ϕ_{i} a homogeneous polynomial of degree n. We define the total polarization $\mathrm{P} \phi \in \operatorname{Hom}_{\mathbb{C}}\left(\mathrm{S}^{\mathrm{n}} \mathrm{V}, \mathrm{W}\right)$ of ϕ by

$$
(P \phi)\left(e_{i_{1}} \vee \ldots V e_{i_{n}}\right)=\sum_{j=1}^{h} \frac{\partial^{n} \phi_{j}}{\partial X_{i 1} \ldots \partial X_{i n}} f_{j}
$$

This makes sense since the right hand side is symmetric in i_{1}, \ldots, i_{n}. Note that the partial derivative is a complex number since ϕ_{j} has degree n. Now for $v \in V$ we have $(P \phi) \circ \Delta=n!\phi$. Namely,

$$
\begin{aligned}
(P \phi) \Delta\left(X_{1} e_{1}+\ldots+X_{m} e_{m}\right) & =\sum_{i 1, \ldots, i n} X_{i 1} \ldots X_{i n}(P \phi)\left(e_{i 1} V_{i n} \ldots e_{i n}\right) \\
& =\sum_{j} \sum_{i 1, \ldots, n_{i n}} X_{i 1} \ldots X_{i n} \frac{\partial_{j}}{\partial X_{i 1} \ldots \partial X_{i n}} f_{j}
\end{aligned}
$$

By iteration of Euler's Theorem, that if F is homogeneous of degree r in variables X_{i} then $\sum_{i} X_{i} \partial F / \partial X_{i}=r F$, we obtain

$$
=\sum_{j} n!\phi_{j}\left(X_{1}, \ldots, X_{n}\right) f_{j}=n!\phi\left(X_{1} e_{1}+\ldots+X_{m} e_{m}\right)
$$

Example. If $\phi: V \longrightarrow \mathbb{C}$ is a quadratic form, so

$$
\phi\left(X_{1} e_{1}+\ldots+X_{m} e_{m}\right)=\sum_{i, j} a_{i j} X_{i} X_{j}
$$

with $a_{i j}=a_{j i}$, then

$$
(P \phi)\left[\left(\sum_{i} X_{i} e_{i}\right) \vee\left(\sum_{j} Y_{j} e_{j}\right)\right]=2 \sum_{i, j} a_{i j} X_{i} Y_{j}
$$

is $(2 \times)$ the corresponding symmetric bilinear form.

Let V be a vector space of dimension m and let $n \in \mathbb{N}$. We know that $T^{n} V$ is a $\mathbb{C} S_{n}$-module, so we have a map

$$
\mathbb{C S}_{\mathrm{n}} \longrightarrow \operatorname{End}_{\mathbb{C}}\left(\mathrm{T}^{\mathrm{n} V}\right) \text { sending } \sigma \in S_{\mathrm{n}} \text { to }(\mathrm{x} \vdash \rightarrow \sigma x)
$$

Also, regarding V as a representation of $G L(V)$ in the natural way, $T^{n} V$ becomes a $\mathbb{C} G L(V)$-module, and we have a corresponding map

$$
\mathbb{C G L}(V) \longrightarrow \operatorname{End}_{\mathbb{C}}\left(T^{n} V\right) \quad \text { sending } \phi \in G L(V) \text { to } T^{n} \phi=\phi \otimes \ldots \otimes \phi
$$

Remark. In this section we prove Schur-Weyl duality, that the images of $\mathbb{C S}_{n}$ and $\mathbb{C G L}(V)$ in $E n d_{\mathbb{C}}\left(T^{n} V\right)$ are each others centralizers. Despite its innocuous appearance this result is absolutely fundamental. For example it is precisely this fact which explains why the symmetric group and the general linear group are related.

Definition. The algebra $A^{n}(V)$ of bisymmetric transformations is the subalgebra of End $\mathbb{C}\left(T^{n} V\right)$ consisting of the endomorphisms which commute with the image of $\mathbb{C S}_{n}$. Thus

$$
A^{n}(V)=\operatorname{End}_{\mathbb{C}}{ }_{n}\left(T^{n} V\right)
$$

Since $\mathbb{C} S_{n}$ is semisimple and $T^{n} V$ is a finite dimensional $\mathbb{C} S_{n}-m o d u l e, ~ A n(V)$ is a semisimple \mathbb{C}-algebra by $\$ 1$ Lemma 4.

We set $W=\operatorname{End}_{\mathbb{C}}(V)$, which is a $\mathbb{C} G L(V)$-module by conjugation.

Lemma 1. There is an isomorphism

$$
\alpha: T^{n} W \longrightarrow \operatorname{End}_{\mathbb{C}}\left(T^{n} V\right)
$$

sending $f_{1} \otimes \ldots \otimes f_{n}$ to the map

$$
\mathrm{v}_{1} \otimes \ldots \mathrm{v}_{\mathrm{n}} \stackrel{>}{ } \mathrm{f}_{1}\left(\mathrm{v}_{1}\right) \otimes \ldots \otimes \mathrm{f}_{\mathrm{n}}\left(\mathrm{v}_{\mathrm{n}}\right)
$$

This is an isomorphism of $\mathbb{C} G L(V)$-modules, and of $\mathbb{C} S_{n}$-modules.

$$
\begin{aligned}
\text { PROOF. } \mathrm{T}^{\mathrm{n}} \mathrm{~W}=\mathrm{W} \otimes \ldots \otimes \mathrm{~W} & \cong\left(\mathrm{~V} \otimes \mathrm{~V}^{\star}\right) \otimes \ldots \otimes\left(\mathrm{V} \otimes V^{\star}\right) \\
& \cong(\mathrm{V} \otimes \ldots \otimes V)^{\otimes}\left(V^{\star} \otimes \ldots \otimes V^{\star}\right) \\
& \cong T^{n} V \otimes\left(T^{n} V\right)^{\star} \cong \operatorname{End}_{\mathbb{C}}\left(T^{n} V\right) .
\end{aligned}
$$

 structure from $\mathrm{T}^{\mathrm{n}} \mathrm{V}$ (as conjugation). One can check that α is an $\mathbb{C} \mathrm{S}_{\mathrm{n}}$-module map (exercise).

Lemma 2. $A^{n}(V)=\alpha\left(T^{n} W_{\text {symm }}\right)$.

Proof. $A^{n}(V)$ is the set of $x \in E_{n d}\left(T^{n} V\right)$ fixed under the action of S_{n}, and $T^{n} W_{\text {symm }}$ is the set of $y \in T^{n} W$ fixed under the action of S_{n}.

Lemma 3. Affine n-space \mathbb{A}^{n} is irreducible, that is, if

$$
\mathbb{A}^{\mathrm{n}}=\mathrm{X} \cup Y
$$

and X and Y are Zariski-closed subsets, then $X=\mathbb{A}^{n}$ or $Y=\mathbb{A}^{n}$.

Proof. The ring of regular functions on \mathbb{A}^{n} is $R=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$. If X and Y are the zero sets of ideals I, J in R, then the assumption is that any maximal ideal contains either I or J. If I and J are both non-zero then we can pick $0 \neq i \in I$ and $0 \neq j \in J$. Now any maximal ideal contains ij, so

$$
(i j)\left(a_{1}, \ldots, a_{n}\right)=0
$$

for all $a_{1}, \ldots, a_{n} \in \mathbb{C}$. Thus by Hilbert's Nullstellensatz ij $\in \mathfrak{V}\{0\}=\{0\}$, which contradicts the fact that R is an integral domain.

Lemma 4. If Y is a subspace of \mathbb{C}^{d}, then identifying $\mathbb{C}^{d}=\mathbb{A}^{d}$, Y is Zariski-closed.

Proof. Choose a basis f_{1}, \ldots, f_{h} of $\operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}^{d} / Y, \mathbb{C}\right)$, and regard these as maps $\mathbb{C}^{d} \longrightarrow \mathbb{C}$. Then Y is the zero set of the f_{i}.

Lemma $5 . \mathrm{T}^{\mathrm{n}} \mathrm{W}_{\text {symm }}$ is spanned by the $\phi \otimes \ldots \otimes \phi$ with $\phi \in G L(\mathrm{~V})$.

Proof. Let X be the subspace of $T^{n} W_{\text {symm }}$ spanned by the $\phi \otimes \ldots \otimes \phi$ with $\phi \in G L(V)$. Now the map

$$
\mathrm{W} \xrightarrow{\alpha} \mathrm{~T}^{\mathrm{n}} \mathrm{~W}, \quad \phi \vdash \xrightarrow{ } \phi \otimes \ldots \otimes \phi
$$

is a regular map between the affine spaces

$$
W \cong \mathbb{A}^{m^{2}} \text { and } T^{n} W \cong \mathbb{A}^{m^{2 n}}
$$

Since X is a subspace, it is Zariski-closed by Lemma 4, and hence α^{-1} (X) is Zariski-closed. Thus

$$
W=\alpha^{-1}(X) \cup\{\text { the endomorphisms with determinant zero\} }
$$

is a union of Zariski-closed subsets. But $\mathbb{A}^{m^{2}}$ is irreducible, so $\alpha^{-1}(X)=W$. Thus X contains all maps of the form $\phi \otimes \ldots \otimes \phi$ with $\phi \in \mathrm{W}$. But these span
$\mathrm{T}^{\mathrm{n}} \mathrm{W}_{\text {symm }}$, since the $\phi \vee \ldots \vee \phi$ span $\mathrm{S}^{\mathrm{n}} \mathrm{W}$ by $\$ 6$ Lemma 7.

Restating this, we have

Theorem. $A^{n}(V)$ is spanned by the $\mathrm{T}^{\mathrm{n}} \phi$ with $\phi \in G L(V)$.

Finally, we have Schur-Weyl duality

Theorem. The images of $\mathbb{C} S_{n}$ and $\mathbb{C G L}(V)$ in $E_{\mathbb{C}}\left(T^{n} V\right)$ are each others centralizers.

Proof. The statement that the image of $\mathbb{C G L}(\mathrm{V})$ is the centralizer of the image of $\mathbb{C} S_{n}$ is just a reformulation of the assertion that $A^{n}(V)$ is spanned by the $\mathrm{T}^{\mathrm{n}} \phi$ with $\phi \in \mathrm{GL}(\mathrm{V})$, which was the last theorem.

Recall that $A^{n}(V)$ is a semisimple \mathbb{C}-algebra. By $\$ 1$ Lemma 5 we know that $\mathbb{C S}_{n}$ maps onto End $A^{n}(V)\left(T^{n} V\right)$, and since the image of $G L(V)$ spans $A^{n}(V)$ it follows that

$$
\operatorname{End}_{A}^{n}(V)\left(T^{n} V\right)=\operatorname{End}_{\mathbb{C G L}(V)}\left(T^{n} V\right)
$$

Thus $\mathbb{C S}_{n}$ maps onto End $\mathbb{C G L}(V)\left(T^{n} V\right)$, or in other words, the image of $\mathbb{C} S_{n}$ in End $_{\mathbb{C}}\left(\mathrm{T}^{\mathrm{n}} \mathrm{V}\right)$ is the centralizer of the image of $\mathbb{C} G L(V)$.

§8. DECOMPOSITION OF TENSORS

Still V is a vector space of dimension m.

One learns in school physics that any rank two tensor, ie any element of $\mathrm{V} \otimes \mathrm{V}$, can be written in a unique way as a sum of a symmetric and an antisymmetric tensor. The Young symmetrizers enable one to generalize this to higher rank tensors, namely by $\$ 3$ Lemma 6 we have

$$
\mathrm{T}^{\mathrm{n}} \mathrm{~V}=\quad \lambda \text { a partition of }{ }^{\oplus} \text { and } \Sigma_{\lambda} \text { standard }{ }^{\mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{T}^{\mathrm{n}} \mathrm{~V}}
$$

Example. $\left.{ }^{h}{ }_{(1}{ }^{n}\right) T^{n} V=T^{n} V_{\text {anti }} \cong \Lambda^{n} V$ and $h_{(n)} T^{n} V=T^{n} V_{\text {symm }} \cong S^{n} V$, so taking $\mathrm{n}=2$ this decomposition becomes

$$
\mathrm{T}^{2} \mathrm{~V}=\mathrm{T}^{2} \mathrm{~V}_{\text {anti }}{ }^{\oplus} \mathrm{T}^{2} \mathrm{~V}_{\text {symm }} \cong \Lambda^{2} \mathrm{~V} \oplus \mathrm{~S}^{2} \mathrm{~V}
$$

Since the actions of S_{n} and $G L(V)$ on $T^{n} V$ commute, if λ is a partition of n and Σ_{λ} is a Young tableau with frame $[\lambda]$, then $h\left(\sum_{\lambda}\right) T^{n} V$ is a $\mathbb{C} G L(V)$-submodule of $T^{n} V$. Note that $h\left(\Sigma_{\lambda}\right) T^{n} V \cong h^{n} T^{n} V$ as $\mathbb{C} G L(V)$-modules, for

$$
{ }^{\mathrm{h}} \lambda=\sigma \mathrm{h}\left(\Sigma_{\lambda}\right) \sigma^{-1}
$$

for some $\sigma \in S_{n}$, so premultiplication by σ induces an isomorphism

$$
\mathrm{h}\left(\Sigma_{\lambda}\right) \mathrm{T}^{\mathrm{n}} \mathrm{~V} \longrightarrow \mathrm{~h}_{\lambda} \mathrm{T}^{\mathrm{n}} \mathrm{~V}
$$

Lemma 1. The non-zero modules $h \lambda^{T} V$ with λ a partition of n, are non-isomorphic simple $\mathbb{C} G L(V)$-modules. If M is an $A^{n}(V)$-module, and M is regarded as a $\mathbb{C} G L(V)$-module by restriction via the natural map $\mathbb{C G L}(V) \longrightarrow A^{n}(V)$, then M is isomorphic to a direct sum of copies of the ${ }^{h} \lambda^{T}{ }^{n} V$.

Proof. Recall that

$$
A^{n}(V)=\operatorname{End}_{\mathbb{C} S n}\left(T^{n} V\right) \quad \text { and } \quad h_{\lambda} T^{n} V \cong \operatorname{Hom}_{\mathbb{C} S n}\left(\mathbb{C S} n_{n} \lambda^{\prime} \quad T^{n} V\right)
$$

by $\$ 1$ Lemma 6. By the Artin-Wedderburn Theorem and $\$ 1$ Lemma 4, the non-zero spaces $h_{\lambda} T^{n} V$ are a complete set of non-isomorphic simple $A^{n}(V)$-modules. Note also that $A^{n}(V)$ is semisimple, so the lemma follows from the next two assertions, which both follow immediately from the fact proved in $\S 7$ that the map $\mathbb{C G L}(V) \longrightarrow A^{n}(V)$ is onto.
(1) If M is an $A^{n}(V)$-module and N is a $\mathbb{C} G L(V)$-submodule of M, then N is
an $A^{n}(V)$-submodule, and
(2) If M and N are $A^{n}(V)$-modules and $\theta: M \longrightarrow N$ is a $\mathbb{C G L}(V)$-module map, then θ is an $A^{n}(V)$-module map.

Remark. Thus (*) is a decomposition of $\mathrm{T}^{\mathrm{n}} \mathrm{V}$ into $\mathbb{C G L}(\mathrm{V})$-submodules which are either zero or simple. Obviously it is important to know which of these submodules are non-zero, and that is what the rest of this section is devoted to. First we have a rather technical lemma.

Let λ be a partition and suppose that $[\lambda]$ is partitioned into two non-empty parts, say of i and $j=n$-i boxes, by a vertical bar.
i boxes

j boxes

Let Σ_{λ} be a tableau whose numbers in the left hand part are $\{1, \ldots, i\}$ and in the right hand part are $\{i+1, . ., n\}$. Let μ be the partition of i corresponding to the left hand part, and let Σ_{μ} be the restriction of Σ_{λ} to $[\mu]$. Let v be the partition of j corresponding to the right hand part, and let Σ_{ν} be the corresponding tableau. This is a map from $[\nu]$ to $\left\{1^{\prime}, \ldots, j^{\prime}\right\}$ if we set $1^{\prime}=i+1,2^{\prime}=i+2, \ldots, j^{\prime}=n$.

Lemma 2. There is a $\mathbb{C G L}(\mathrm{V})$-module surjection

$$
\left[h\left(\Sigma_{\mu}\right) T^{i} V^{i}\right] \otimes\left[h\left(\Sigma_{\nu}\right) T^{j_{V}}\right] \quad \longrightarrow \quad\left[h\left(\Sigma_{\lambda}\right) T^{n} V\right] .
$$

Proof. $S_{i}=\operatorname{Aut}\{1, \ldots, i\}$ and $S_{j}=\operatorname{Aut}\left\{1^{\prime}, \ldots, n^{\prime}\right\}$ are embedded in S_{n}, so we can regard $\mathbb{C} S_{i}$ and $\mathbb{C} S_{j}$ as subsets of $\mathbb{C} S_{n}$ which commute. Now $\operatorname{Col}\left(\Sigma_{\lambda}\right)=\operatorname{Col}\left(\Sigma_{\mu}\right) \times \operatorname{Col}\left(\Sigma_{\nu}\right)$ and $H=\operatorname{Row}\left(\Sigma_{\mu}\right) \times \operatorname{Row}\left(\Sigma_{\nu}\right)$ is the subgroup of Row $\left(\Sigma_{\lambda}\right)$ on the permutations which keep each number on the same side of the bar. Let Row $\left(\Sigma_{\lambda}\right)=U_{i} r_{i} H$ be a coset decomposition.

$$
\begin{aligned}
h\left(\Sigma_{\lambda}\right) & =\sum_{r \in \operatorname{Row}\left(\Sigma_{\lambda}\right)} \sum_{C \in \operatorname{Col}\left(\Sigma_{\lambda}\right)} \varepsilon_{c} r c \\
& =\sum_{i} \sum_{r^{\prime} \in \operatorname{Row}\left(\Sigma_{\mu}\right)} \sum_{r^{\prime \prime} \in \operatorname{Row}\left(\Sigma_{\nu}\right)} \sum_{C^{\prime} \in \operatorname{Col}\left(\Sigma_{\mu}\right)} \sum_{C} \prime \in \operatorname{Col}\left(\Sigma_{\nu}\right) \varepsilon_{c^{\prime}} \varepsilon_{c} \prime^{\prime r_{i} r^{\prime} r^{\prime \prime} c^{\prime} c^{\prime \prime}} \\
& =\sum_{i} r_{i} h\left(\Sigma_{\mu}\right) h\left(\Sigma_{\nu}\right) .
\end{aligned}
$$

Thus $h\left(\Sigma_{\lambda}\right) h\left(\Sigma_{\mu}\right) h\left(\Sigma_{\nu}\right)=\sum_{i} r_{i} h\left(\Sigma_{\mu}\right){ }^{2} h\left(\Sigma_{\nu}\right)^{2}=\alpha h\left(\Sigma_{\lambda}\right)$ where $\alpha=i!j!/ f_{\mu} f_{\nu}$.

We have a $\mathbb{C} G L(V)$-module map $T^{i} V \otimes T^{j} V \cong T^{n} V \longrightarrow h\left(\Sigma_{\lambda}\right) T^{n} V$ given by premultiplying by $h\left(\Sigma_{\lambda}\right)$. The restriction of this map to

$$
\left[h\left(\Sigma_{\mu}\right) T^{i} V\right] \otimes\left[h\left(\Sigma_{\nu}\right) T^{j} V_{V}\right]
$$

is onto, since

$$
\mathrm{h}\left(\Sigma_{\lambda}\right)(\mathrm{x} \otimes \mathrm{y})=1 / \alpha \mathrm{h}\left(\Sigma_{\lambda}\right)\left(\mathrm{h}\left(\Sigma_{\mu}\right) \mathrm{x} \otimes \mathrm{~h}\left(\Sigma_{\nu}\right) \mathrm{y}\right) .
$$

Lemma 3.

(1) If $\lambda_{m+1}=0$ then $h_{\lambda} \mathrm{T}^{\mathrm{n}} \mathrm{V} \neq 0$.
(2) If $\mathrm{n}>0$ and $\lambda_{\mathrm{m}}=0$ then $\operatorname{dim}_{\mathbb{C}}{ }^{h} \lambda^{\mathrm{T}^{\mathrm{n}} \mathrm{V}} \geq 2$.

Proof.
(1) Let $i_{j}=$ row in which j occurs in $\Sigma_{\lambda^{\prime}}^{0}$ and $x=e_{i 1} \otimes \ldots \otimes e_{i n}$. Then for $\sigma \in S_{n}$

$$
\begin{aligned}
\sigma x=x & \Leftrightarrow i_{j}=i_{\sigma^{-1}(j)} \text { for } 1 \leq j \leq n \\
& \Leftrightarrow j \text { and } \sigma^{-1}(j) \text { occur in the same row } \\
& \Leftrightarrow \sigma \in \operatorname{Row}\left(\Sigma_{\lambda}^{0}\right)
\end{aligned}
$$

Thus the coefficient of x in the decomposition of $h \lambda^{x}$ wrt the standard basis of $\mathrm{T}^{\mathrm{n}} \mathrm{V}$ is $\left|\operatorname{Row}\left(\Sigma_{\lambda}^{0}\right)\right| \neq 0$, so $h_{\lambda} \mathrm{x} \neq 0$.
(2) If $y=e_{1+i 1}{ }^{\otimes} \ldots \otimes e_{1+i n}$ then the argument above shows that $h \lambda^{x}$ and $h_{\lambda} y$ are linearly independent.

Lemma 4. If $\lambda_{m+1}=0$ and $\lambda_{m}>0$ then

$$
\left.{ }^{h} \lambda^{T^{n} V} \cong \Lambda^{m}(V) \otimes h_{\left(\lambda_{1}-1\right.}, \ldots, \lambda_{m}-1\right)^{T^{n-m}} V
$$

Proof. Divide $[\lambda]$ into the first column and the rest. Let Σ_{λ} be a tableau whose first column consists of the numbers \{1,....,m\}. By Lemma 2 there is a surjection

$$
\Lambda^{m}(V) \otimes h\left(\Sigma_{\nu}\right) T^{n-m} V \longrightarrow h\left(\Sigma_{\lambda}\right) T^{n} V,
$$

where $v=\left(\lambda_{1}-1, \lambda_{2}-1, \ldots, \lambda_{m}-1\right)$. Using the usual isomorphisms this gives a map

$$
\Lambda^{\mathrm{m}}(\mathrm{~V}) \otimes \mathrm{h}_{\nu} \mathrm{T}^{\mathrm{n}-\mathrm{m}_{V}} \longrightarrow \mathrm{~h}_{\lambda} \mathrm{T}^{\mathrm{n}} \mathrm{~V} .
$$

Now both $h \nu^{T}{ }^{n-m} V$ and $h \lambda^{T} V$ are non-zero, and hence are simple
$\mathbb{C} G L(V)$-modules by Lemma 1. Since $\Lambda^{m}(V)$ is one-dimensional, both sides are simple modules and the map must be an isomorphism.

Theorem. If λ is a partition of n and $m=\operatorname{dim}_{\mathbb{C}} V$, then

$$
\operatorname{dim}_{\mathbb{C}} h_{\lambda^{T}} \mathrm{~T}^{\mathrm{n}} \mathrm{~V}= \begin{cases}0 & \left(\lambda_{\mathrm{m}+1} \neq 0\right) \\ 1 & \left(\lambda_{1}=\lambda_{2}=\ldots=\lambda_{\mathrm{m}^{\prime}} \lambda_{\mathrm{m}+1}=0\right) \\ \geq 2 & (\mathrm{else})\end{cases}
$$

Proof. If $\lambda_{\mathrm{m}+1} \neq 0$ then $[\boldsymbol{\lambda}]$ has $i>m$ rows and as in the previous lemma there is a surjection $\Lambda^{i}(V) \otimes h \nu^{T^{n-i}} V \longrightarrow h \lambda^{T} V$. But $\Lambda^{i}(V)=0$.

On the other hand, if $\lambda_{m+1}=0$, then by iterating Lemma 4 we have

$$
\operatorname{dim}_{\mathbb{C}} h^{T^{T}}{ }^{n} V=\operatorname{dim}_{\mathbb{C}}{ }^{h}\left(\lambda_{1}-\lambda_{m}, \ldots, \lambda_{m-1}-\lambda_{m}\right) T^{n-m \lambda_{m}} V
$$

which is one if $\lambda_{1}=\ldots=\lambda_{m}$, and otherwise is ≥ 2 by Lemma 3 .

Throughout, V is a vector space with basis e_{1}, \ldots, e_{m}.

Definition. A finite dimensional $\mathbb{C G L}(V)$-module W with basis W_{1}, \ldots, w_{h} is said to be rational (resp. polynomial, resp. homogeneous n-ic) provided that there are rational functions (resp. polynomials, resp. homogeneous polynomials of degree n) $f_{i j}\left(X_{r s}\right)(1 \leq i, j \leq h)$ in the m^{2} variables $X_{r s}$ $(1 \leq r, s \leq m)$, such that the map

sends a matrix $\left(A_{r s}\right)_{r s} \in G L_{m}(\mathbb{C})$ to the matrix $\left(f_{i j}\left(A_{r s}\right)\right)_{i j}$.

Lemma 1. These notions do not depend on the bases e_{1}, \ldots, e_{m} and $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{h}}$.

Remark. W is a rational $\mathbb{C} G L(V)$-module if and only if the map $G L(V) \longrightarrow G L(W)$ is a regular map of affine varieties. Recall that a rational map of affine varieties is not everywhere defined: we definitely don't want that.

Examples.
(1) $\mathrm{T}^{\mathrm{n}} \mathrm{V}$ is a homogeneous n -ic $\mathbb{C} G L(\mathrm{~V})$-module.
(2) $\mathbb{C} \oplus \mathrm{V}$ is polynomial, but not homogeneous.
(3) V^{\star} is rational, but not polynomial.

Lemma 2.
(1) Submodules, quotient modules and direct sums of rational (resp. polynomial, resp. homogeneous n-ic) modules are of the same type.
(2) If U is rational, then so is U^{*}.
(3) If U and W are rational (resp. polynomial, resp homogeneous n-ic and $\left.n^{\prime}-i c\right)$ then $U \otimes W$ is rational (resp. polynomial, resp. homogeneous $n+n^{\prime}-i c$).
(4) If U is homogeneous n-ic and homogeneous $n^{\prime}-i c$, then $U=0$.

PROOF. For (2) note that the entries of A^{-1} are rational functions of the entries of A.

Definition. If $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m} \geq 0$ and $\sum_{i} \lambda_{i}=n$, we set

$$
{ }^{\mathrm{D}} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}(\mathrm{~V})=\mathrm{h}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{m}}\right) \mathrm{T}^{\mathrm{n}} \mathrm{~V}
$$

Theorem. Every homogeneous n-ic $\mathbb{C G L}(\mathrm{V})$-module is a direct sum of simple submodules. The modules $D_{\lambda_{1}, \ldots, \lambda_{m}}(V)$ with $\lambda_{1} \geq \ldots \geq \lambda_{m} \geq 0$ and $\sum_{i} \lambda_{i}=n$ are a complete set of non-isomorphic simple homogeneous n-ic $\mathbb{C G L}(\mathrm{V})$-modules.

Proof. In view of $\$ 8$ Lemma 1 , it suffices to show that any homogeneous n-ic $\mathbb{C G L}(V)$-module is obtained from some $A^{n}(V)$-module by restriction.

Let U be a homogeneous n-ic $\mathbb{C} G L(V)$-module, so U corresponds to a map $\rho: G L(V) \longrightarrow$ End $_{\mathbb{C}}(U)$. In the following diagram, the maps across the top are the natural maps, and their composite $\gamma: G L(V) \longrightarrow A^{n}(V)$ is in fact the natural map we use for restricting $A^{n}(V)$-modules to $\mathbb{C G L}(V)$-modules. We shall show that there are maps ρ_{i} making the diagram commute.

Since U is homogeneous n-ic, we can extend the domain of definition of ρ to obtain a homogeneous n-ic map ρ_{1}. By the property of symmetric powers there is a linear map ρ_{2}. Since the remaining maps across the top are isomorphisms there are certainly linear maps ρ_{3} and ρ_{4}, as required.

Now $\rho_{4}(1)=\rho_{4}(\gamma(1))=\rho(1)=1$ and

$$
\rho_{4}\left(\gamma\left(g g^{\prime}\right)\right)=\rho\left(g g^{\prime}\right)=\rho(g) \rho\left(g^{\prime}\right)=\rho_{4}(\gamma(g)) \rho_{4}\left(\gamma\left(g^{\prime}\right)\right)
$$

for $g, g^{\prime} \in G L(V)$. Since $\gamma(G L(V))$ spans $A^{n}(V)$ it follows that ρ_{4} is a \mathbb{C}-algebra map. This turns U into an $A^{n}(V)$-module, and the restriction to $\mathbb{C} G L(V)$ is the module we started with, as required.

Lemma 3. Every polynomial module for $G L(\mathbb{C})=\mathbb{C}^{\times}$decomposes as a direct sum of submodules on which $g \in \mathbb{C}^{\times}$acts as multiplication by g^{n} (some n).

Proof. Here is a silly proof. If $\rho: \mathbb{C}^{\times} \longrightarrow G L(U) \cong G L_{h}(\mathbb{C})$ is a polynomial representation, then each $\rho(g)_{i j}$ is a polynomial in g, and we can choose $N \in \mathbb{N}$ such that each $\rho()_{i j}$ has degree strictly less than N. By restriction, U becomes a \mathbb{C}-module where

$$
G=\{\exp 2 \pi i j / N \mid 0 \leq j<N\} \subset \mathbb{C}^{\times}
$$

is cyclic of order N. Now

$$
\mathrm{U}=\mathrm{U}_{1} \oplus \mathrm{U}_{2} \oplus \ldots \oplus \mathrm{U}_{\mathrm{h}}
$$

as a $\mathbb{C} G$-module, with each U_{i} one-dimensional and $g \in G$ acting as multiplication by $g^{n i}$ on $U_{i}\left(0 \leq n_{i}<N\right)$ (since these are the possible simple $\mathbb{C} G$-modules). Choosing non-zero elements of the U_{i} gives a basis of U, and if $\left(\rho(g)_{i j}\right)$ now denotes the matrix of $\rho(g)$ with respect to this basis then

$$
\rho(g)_{i j}= \begin{cases}g^{n i} & (i=j) \\ 0 & (i \neq j)\end{cases}
$$

for $g=\exp \{2 \pi i j / N\}$ with $0 \leq j<N$, and hence for all $g \in \mathbb{C}^{\times}$since the $\rho(g)_{i j}$ are polynomials of degree $<N$ in g.

Lemma 4. Every polynomial $\mathbb{C} G L(V)$-module decomposes as a direct sum of homogeneous n-ic modules.

Proof. Say $\rho: G L(V) \longrightarrow G L(U)$ is a polynomial representation of $G L(V)$. The inclusion $\mathbb{C}^{\times} \longrightarrow G L(V)$ enables us to regard U as a polynomial representation of \mathbb{C}^{\times}, so by Lemma 3,

$$
\mathrm{U}=\mathrm{U}_{0}{ }^{\oplus} \cdots \oplus \mathrm{U}_{\mathrm{N}}
$$

with $\alpha 1 \in G L(V)$ acting as multiplication by α^{n} on U_{n}. If $u \in U_{n}$ and $g \in G L(V)$, let

$$
g u=u_{0}+\ldots+u_{N}
$$

with $u_{i} \in U_{i}$. Now $(\alpha 1) g u=g(\alpha 1) u$ for $\alpha \in \mathbb{C}^{\times}$, so

$$
u_{0}+\alpha u_{1}+\alpha^{2} u_{2}+\ldots+\alpha^{N} u_{N}=\alpha^{i} u_{0}+\alpha^{i} u_{1}+\alpha^{i} u_{2}+\ldots+\alpha^{i} u_{N}
$$

and hence $u_{i}=0$ for $i \neq n$. Thus $g u \in U_{n}$ and the spaces U_{n} are $\mathbb{C} G L(V)$-submodules of U. Since $\alpha 1$ acts as multiplication by α^{n} on U_{n} it follows that U_{n} is a homogeneous n-ic $\mathbb{C} G L(V)$-module.

Theorem. Every polynomial $\mathbb{C G L}(V)$-module is a direct sum of simple submodules. The modules $\mathrm{D}_{\lambda_{1}, \ldots, \lambda_{m}}(\mathrm{~V})$ with $\lambda_{1} \geq \ldots \geq \lambda_{m} \geq 0$ are a complete set of non-isomorphic simple polynomial $\mathbb{C G L}(V)$-modules.

Definition. If $n \in \mathbb{Z}$ then the one-dimensional $\mathbb{C} G L(V)$-module corresponding to the representation

$$
G L(V) \longrightarrow \mathbb{C}^{\times}, \quad g \vdash \longrightarrow[\operatorname{det}(g)]^{n}
$$

is denoted by det^{n}. Thus det ${ }^{1} \cong \Lambda^{m}(V), \operatorname{det}^{n} \cong T^{n}\left(\operatorname{det}^{1}\right)$ if $n \geq 0$, and $\operatorname{det}^{n} \cong\left(\operatorname{det}^{-n}\right)^{*}$ if $n \leq 0$.

Definition. If $\lambda_{1} \geq \ldots \geq \lambda_{m}$ but $\lambda_{m}<0$, we define

$$
{ }^{\mathrm{D}} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}(\mathrm{~V})=\mathrm{D}_{\lambda_{1}}-\lambda_{\mathrm{m}}, \ldots, \lambda_{\mathrm{m}-1}-\lambda_{\mathrm{m}}, 0(\mathrm{~V}) \otimes \operatorname{det}^{\lambda_{\mathrm{m}}}
$$

Remark. If $\lambda_{1} \geq \ldots \geq \lambda_{m}>0$ then we have already seen that

$$
{ }^{\mathrm{D}} \lambda_{1}, \ldots, \lambda_{\mathrm{m}}^{\mathrm{m}}(\mathrm{~V}) \cong \mathrm{D}_{\lambda_{1}-\lambda_{m^{\prime}}, \ldots, \lambda_{\mathrm{m}-1}-\lambda_{\mathrm{m}}, 0}(\mathrm{~V}) \otimes \operatorname{det}^{\lambda_{\mathrm{m}}}
$$

Theorem. Every rational $\mathbb{C G L}(\mathrm{V})$-module is a direct sum of simple submodules. The modules $D_{\lambda_{1}, \ldots, \lambda_{m}}(V)$ with $\lambda_{1} \geq \ldots \geq \lambda_{m}$ are a complete set of non-isomorphic simple rational $\mathbb{C} G L(V)$-modules.

Proof. The rational functions $f: G L(V) \longrightarrow \mathbb{C}$ are all of the form $f=p / \operatorname{det}^{i}$ with p a polynomial function. Thus if U is a rational $\mathbb{C} G L(V)$-module, then $W=U \otimes \operatorname{det}^{N}$ is a polynomial $\mathbb{C} G L(V)$-module for some N. Since W decomposes as a direct sum of simples, so does U. If U is simple, then so is W, and thus $W \cong D_{\mu 1, \ldots, \mu_{m}}(V)$ for some $\mu_{1} \geq \ldots \geq \mu_{m}$. Finally $U \cong D_{\mu 1-N, \ldots, \mu_{m}-N}(V)$, using the remark above.

Theorem. The one-dimensional rational $\mathbb{C G L}(\mathrm{V})$-modules are precisely the $\operatorname{det}^{\mathrm{n}}$ with $\mathrm{n} \in \mathbb{Z}$.

Proof. After passing, as above, to polynomial modules, this follows from the theorem in $\$ 8$.

Notation. V is a vector space of dimension m. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{Z}^{m}$ and $\lambda_{1} \geq \ldots \geq \lambda_{m}$, then the character of the $\mathbb{C G L}(V)$-module

$$
\mathrm{D}_{\lambda_{1}, \ldots, \lambda_{\mathrm{m}}}(\mathrm{~V}) \quad\left(=\mathrm{h}_{\lambda} \mathrm{T}^{\mathrm{n}} \mathrm{~V} \text { if } \lambda_{\mathrm{m}}^{\geq 0}\right)
$$

is denoted by ϕ_{λ}.

Lemma 1. If ξ is an endomorphism of V then $\phi_{\lambda}(\xi)$ is a symmetric rational function of the eigenvalues of ξ.

PROOF. The function $P\left(x_{1}, \ldots, x_{m}\right)=\phi_{\lambda}\left(\operatorname{diag}\left(x_{1}, \ldots, x_{m}\right)\right)$ is a rational function of x_{1}, \ldots, x_{m}, and it is symmetric since diag (x_{1}, \ldots, x_{m}) is conjugate to $\operatorname{diag}\left(\mathrm{x}_{\tau(1)}, \ldots, \mathrm{x}_{\tau(\mathrm{m})}\right)$ for $\tau \in \mathrm{S}_{\mathrm{m}}$.

Now choose a basis of V so that the matrix A_{1} of ξ is in Jordan Normal Form, and for $t \in \mathbb{C}$, let A_{t} be the matrix obtained from A_{1} by changing the $1^{\prime} s$ on the upper diagonal into $t^{\prime} s$. Let ξ_{t} be the endomorphism corresponding to A_{t}. For $t \neq 0, A_{t}$ is conjugate to A_{1}, so $\phi_{\lambda}\left(\xi_{t}\right)=\phi_{\lambda}(\xi)$. Since ϕ_{λ} is a rational function it is continuous (where defined), so

$$
\phi_{\lambda}(\xi)=\lim _{t \rightarrow 0} \phi_{\lambda}\left(\xi_{t}\right)=\phi_{\lambda}\left(\lim _{t \rightarrow 0} \xi_{t}\right)=\phi_{\lambda}\left(\xi_{0}\right)=P\left(x_{1}, \ldots, x_{m}\right)
$$

Exercise. Phrase this using the Zariski topology, by means of the discriminant of the characteristic polynomial.

Lemma 2. Let α be a conjugacy class in S_{n} with cycle type $n^{\alpha n} \ldots 1^{\alpha 1}$ and let ξ be an endomorphism of V with eigenvalues x_{1}, \ldots, x_{m}. If $s_{i}=x_{1}^{i}+\ldots+x_{m}^{i}$, then

$$
s_{1}^{\alpha 1} \ldots s_{\mathrm{n}}^{\alpha_{n}}=\sum_{\lambda} \chi_{\lambda}(\alpha) \phi_{\lambda}(\xi)
$$

with summation over partitions λ of n with $\leq m$ parts

Proof. Let $g \in \alpha$. We may suppose that ξ has matrix diag (x_{1}, \ldots, x_{m}) with respect to the standard basis e_{1}, \ldots, e_{m} of V. Consider the endomorphism of $T^{n} V$ sending x to $g \xi x=\xi g x$. We compute its trace in two ways.

$$
\text { Considering } \mathrm{T}^{\mathrm{n}} \mathrm{~V} \text { as a } \mathbb{C} S_{\mathrm{n}} \text {-module, by } \$ 1 \text { Lemma 3, we have }
$$

$$
\mathrm{T}^{\mathrm{n}} \mathrm{~V}=\underset{\lambda}{\oplus} \quad \mathbb{C S}_{\mathrm{n}} \mathrm{~h}^{\mathrm{h}} \lambda^{\oplus \operatorname{Hom}_{\mathbb{C}}}\left(\mathbb{C} \mathrm{n}_{\mathrm{n}} \mathrm{~h}^{\prime}, \mathrm{T}^{\mathrm{n} V}\right)
$$

and then by §1 Lemma 6 this becomes

$$
T^{n} V \cong \underset{\lambda}{\oplus} \quad\left(\mathbb{C} S_{n} h_{\lambda}\right) \otimes\left(h^{\prime} T^{n} V\right)
$$

Now this is an isomorphism as both a $\mathbb{C} \mathrm{S}_{\mathrm{n}}$-module and an End $\mathbb{C S n}\left(\mathrm{T}^{\mathrm{n}} \mathrm{V}\right)$-module, and since the action of $G L(V)$ on $T^{n} V$ commutes with that of S_{n}, the corresponding action of $g \xi$ on the right hand side is given by the action of g on $\mathbb{C} S_{n}{ }^{h} \lambda$ and of ξ on $h_{\lambda} \mathrm{T}^{\mathrm{n}} \mathrm{V}$, so the trace of this action is $\sum_{\lambda} \chi_{\lambda}(\alpha) \quad \phi_{\lambda}(\xi)$.

On the other hand we can compute the trace directly:

$$
g \xi\left(e_{i_{1}}^{\otimes} \ldots \otimes e_{i_{n}}\right)=x_{i_{1}} \ldots x_{i_{n}} e_{i_{g}}{ }^{-1}(1) \otimes \ldots \otimes e_{i_{g}}(n)
$$

so the trace is $\sum x_{i 1} \ldots x_{i n}$ summed over

$$
\left\{\left(i_{1}, \ldots, i_{m}\right) \mid 1 \leq i_{1} \leq m, \ldots, 1 \leq i_{n} \leq m \text { and } i_{g}^{-1}(j)=i_{j} \text { for each } j\right\}
$$

Now the condition that $i_{g^{-1}(j)}=i_{j}$ for each j is equivalent to requiring that the function $j \longmapsto \boldsymbol{j}_{j}$ be constant on the cycles involved in g. It follows that the trace is equal to $s_{1}^{\alpha_{1}} \ldots s_{n}^{\alpha_{n}}$.

Equating the two calculations of the trace gives the required equation.

Theorem. Let λ be a partition of n with $\leq m$ parts and let ξ be an endomorphism of V with eigenvalues x_{1}, \ldots, x_{m}. If $s_{i}=x_{1}^{i}+\ldots+x_{m}^{i}$ then

$$
\phi_{\lambda}(\xi)=\sum_{\alpha \operatorname{conj} \operatorname{class}} \frac{\chi_{\lambda}(\alpha)}{\alpha_{1}!\cdots \alpha_{n}!}\left(\frac{{ }^{s} 1}{1}\right)^{\alpha_{1}} \ldots\left(\frac{{ }^{s_{n}}}{n}\right)^{\alpha_{n}}
$$

Proof. Take the formula in Lemma 2 , multiply by $n_{\alpha} \chi_{\mu}(\alpha)$, and sum over α, using the orthogonality of the χ_{λ}.

Theorem. (Weyl's Character Formula for the general linear group). If $\xi \in G L(V)$ has eigenvalues x_{1}, \ldots, x_{m} then

$$
\phi_{\lambda}(\xi)=\frac{\left|x^{\mathcal{L}_{1}}, \ldots, x^{\mathcal{l}_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|}
$$

where $l_{i}=\lambda_{i}+\mathrm{m}-\mathrm{i}$.

Proof. First suppose that the $\lambda_{i} \geq 0$, so that λ is a partition of n with $\leq m$ parts. By Lemma 2 and the character formula for the symmetric group we know that $s_{1}^{\alpha 1} \ldots s_{n}^{\alpha_{n}}$ is equal to both

$$
\sum \chi_{\lambda}(\alpha)\left|x^{l_{1}}, \ldots, x^{l_{m}}\right| /\left|x^{m-1}, \ldots, 1\right| \text { and } \sum \chi_{\lambda}(\alpha) \phi_{\lambda}(\xi)
$$

with summation over partitions λ of n with $\leq m$ parts. The orthogonality of the χ_{λ} enables us to equate coefficients.

For general λ, since

$$
\mathrm{D}_{\lambda}(\mathrm{V}) \cong \mathrm{D}_{\lambda_{1}-\lambda_{\mathrm{m}}, \ldots, \lambda_{\mathrm{m}}-\lambda_{\mathrm{m}}}(\mathrm{~V}) \otimes \operatorname{det}^{\lambda_{\mathrm{m}}}
$$

it follows that

$$
\phi_{\lambda}(\xi)=\frac{\left|x^{\ell_{1}-\lambda_{m}}, \ldots, x^{\mathcal{l}_{m}-\lambda_{m}}\right|}{\mid x^{m-1}, \ldots, 1} \cdot\left(x_{1} \ldots x_{m}\right)^{\lambda_{m}}=\frac{\left|x^{\ell_{1}}, \ldots, x^{\ell_{m}}\right|}{\left|x^{m-1}, \ldots, 1\right|}
$$

Remark. Our proof of Weyl's character formula looks quite short, but this is because most of the proof, the character formula for the symmetric group, is in $\$ 4$. There is, however, another approach to these formulae which derives Weyl's character formula first, and then deduces the character formula for S_{n}. The idea is to use integration to compute Weyl's character formula for the compact subgroup U_{m} of unitary matrices in $G L_{m}(\mathbb{C})$, and then to translate that to $\mathrm{GL}_{\mathrm{m}}(\mathbb{C})$. Finally one can use Lemma 2 to pass to characters of the symmetric group. See the details and the discussion in [Weyl].

Theorem. The degree of $\phi_{\lambda^{\prime}}$ the dimension of $D_{\lambda_{1}, \ldots, \lambda_{m}}(V)$, is

$$
\Pi_{1 \leq i<j \leq m}\left(\mathcal{l}_{i}-\ell_{j}\right) / \Pi_{1 \leq i<j \leq m}(j-i)
$$

Proof. For $t \in \mathbb{C}$ set

$$
x_{m}=1, x_{m-1}=e^{t}, x_{m-2}=e^{2 t}, \ldots, x_{1}=e^{(m-1) t}
$$

Then

$$
\left|x^{l_{1}}, \ldots, x^{l_{m}}\right|=\Pi_{i<j}\left(e^{l_{i} t}-e^{l_{j} t}\right)
$$

since it is the transpose of a Vandermonde matrix. The term of lowest degree in t is $\Pi_{i<j}\left[\left(\mathcal{C}_{i}-\mathcal{l}_{j}\right) t\right]$. Also

$$
\left|x^{m-1}, \ldots, 1\right|=\Pi_{i<j}\left(e^{(m-i) t_{-e}}(m-j) t\right)
$$

and the term of lowest degree in t is $\Pi_{i<j}[(j-i) t]$.

If $\xi_{t}=\operatorname{diag}\left(x_{1}, \ldots, x_{m}\right)$, then the degree of ϕ_{λ} is

$$
\phi_{\lambda}(1)=\lim _{t \rightarrow 0} \phi_{\lambda}\left(\xi_{t}\right)=\Pi_{1 \leq i<j \leq m}\left(\mathcal{l}_{i}-\ell_{j}\right) / \Pi_{1 \leq i<j \leq m}(j-i)
$$

by Weyl's character formula.

Theorem. If two rational $\mathbb{C} G L(V)$-modules have the same characters, then they are isomorphic.

Proof. As λ varies, the rational functions in Weyl's character formula are linearly independent elements of $\mathbb{C}\left(x_{1}, \ldots, x_{m}\right)$.

Lemma 3. $D_{\lambda_{1}, \ldots, \lambda_{m}}(V)^{\star} \cong D_{-\lambda_{m}, \ldots,-\lambda_{1}}(V)$.

Proof. the character ψ of the left hand module is given by

$$
\begin{aligned}
\psi(\xi) & =\phi_{\lambda}\left(\xi^{-1}\right)=\frac{\left|x^{-\mathcal{l}_{1}}, \ldots, x^{-\mathcal{l}_{m}}\right|}{\left|x^{-(m-1)}, \ldots, 1\right|}=\frac{\left|x^{-\mathcal{l}_{m}}, \ldots, x^{-\ell_{1}}\right|}{\left|1, \ldots, x^{-(m-1)}\right|} \\
& =\frac{\left|x^{m-1-\mathcal{l}_{m}}, \ldots, x^{m-1-\ell_{1}}\right|}{\left|x^{m-1}, \ldots, \quad 1\right|}=\phi_{\mu}(\xi)
\end{aligned}
$$

where $\mu=\left(-\lambda_{\mathrm{m}}, \ldots,-\lambda_{1}\right)$. Thus the dual is isomorphic to $\mathrm{D}_{\mu}(\mathrm{V})$.

In the same vein one has the following result, which is left as an exercise. We shall make extensive use of this formula later.

$$
D_{p, 0}(V) \otimes D_{q, 0}(V) \cong \underset{r=0}{\oplus} D_{p+q-r, r}(V)
$$

Remark. We list some important rational GL(V)-modules.

$$
\left.\begin{array}{ll}
\mathbb{C} & =D_{0,0, \ldots, 0^{(V)}} \\
\operatorname{det}^{i} & =D_{i, i}, \ldots, i^{(V)} \\
V & =D_{1,0, \ldots, 0^{(V)}} \\
S^{n}(V) & =D_{n, 0, \ldots, 0^{(V)}} \\
\Lambda^{n}(V) & =D_{1, \ldots, 1,0, \ldots, 0^{(V)}} \\
V^{*} & =D_{0, \ldots, 0,-1}(V) \\
S^{n}(V)^{*} & =D_{0, \ldots, 0,-n}(V) \\
\Lambda^{n}(V)^{*} & =D_{0, \ldots, 0,-1, \ldots,-1}(V)
\end{array} \quad\left(n \leq m . \text { With } n 1^{\prime} s \text { and m-n } 0^{\prime} s\right)\right)
$$

The notion of an invariant embraces many classical constructions: the discriminant, the determinant, the Hessian, etc..Presumably because of the importance of these examples, the idea of classifying all invariants arose. In this section we shall examine in detail some of the important examples of invariants, and a few simple cases in which all invariants can be classified. In the next two sections we shall investigate the general problem of classifying all invariants.

Definition. If U is a finite dimensional vector space, then $\mathbb{C}[U]$ denotes the set of all polynomial maps $U \longrightarrow \mathbb{C}$. This is an (infinite dimensional if $\mathrm{U} \neq 0$) commutative \mathbb{C}-algebra via

$$
\begin{array}{ll}
(\lambda f)(u) & =\lambda f(u) \\
\left(f f^{\prime}\right)(u) & \left(f+f^{\prime}\right)(u)=f(u) f^{\prime}(u) \\
1_{\mathbb{C}[U]}(u)=1
\end{array}
$$

for $\lambda \in \mathbb{C}, f, f^{\prime} \in \mathbb{C}[U]$ and $u \in U$.

Remarks.
(1) $\mathbb{C}[U]$ is the ring of regular functions of the affine variety $U \cong \mathbb{A}^{\operatorname{dim}} \mathrm{U}$.
(2) We have

$$
\mathbb{C}[U] \cong \oplus_{n=0}^{\infty} \operatorname{Hom}_{\mathbb{C}, n}(U, \mathbb{C}) \cong \oplus_{n=0}^{\infty} S^{n}\left(U^{*}\right)
$$

by polarization. This is the symmetric algebra on U^{*}.
(3) If U^{*} has basis ξ_{1}, \ldots, ξ_{h}, then the map

$$
\mathbb{C}\left[X_{1}, \ldots, X_{h}\right] \longrightarrow \mathbb{C}[U], \quad X_{i} \longmapsto \xi_{i}
$$ is an isomorphism of \mathbb{C}-algebras.

(4) If U is a \mathbb{C}-module then $\mathbb{C}[U]$ is a $\mathbb{C} G$-module via

$$
(g f)(u)=f\left(g^{-1} u\right) \quad \forall g \in G, f \in \mathbb{C}[U], u \in U
$$

If $g \in G$, then the $\operatorname{map} \mathbb{C}[U] \longrightarrow \mathbb{C}[U], f \longmapsto g f$, is a \mathbb{C}-algebra automorphism:

$$
\begin{aligned}
& {\left[g\left(f f^{\prime}\right)\right](u)=\left(f f^{\prime}\right)\left(g^{-1} u\right)=f\left(g^{-1} u\right) f^{\prime}\left(g^{-1} u\right)=} \\
& =[(g f)(u)]\left[\left(g f^{\prime}\right)(u)\right]=\left[(g f)\left(g f^{\prime}\right)\right](u) \\
& \left(g^{\mathbb{C}[U]}\right)(u)=1_{\mathbb{C}[U]}\left(g^{-1} u\right)=1=1_{\mathbb{C}[U]}(u) .
\end{aligned}
$$

Definition. A function $f: U \longrightarrow W$ between $\mathbb{C} G$-modules is a concomitant if $f(g u)=g f(u) \quad \forall u \in U$ and $g \in G$.

Examples.
(1) A linear concomitant is precisely a $\mathbb{C} G$-module map.
(2) $\Delta: U \longrightarrow S^{n} U, u \longmapsto u V \ldots V u$ is a homogeneous n-ic concomitant.

Definition. An invariant for a $\mathbb{C} G$ module U is a concomitant $f: U \longrightarrow \longrightarrow \mathbb{C}$ so $\mathrm{f}(\mathrm{gu})=\mathrm{f}(\mathrm{u}) \quad \forall \mathrm{u} \in \mathrm{U}$ and $\mathrm{g} \in \mathrm{G}$.

Lemma 1. The set

$$
\mathbb{C}[\mathrm{U}]^{\mathrm{G}}=\{\mathrm{f} \in \mathbb{C}[\mathrm{U}] \mid \mathrm{gf}=\mathrm{f}\}
$$

of polynomial invariants for U is a \mathbb{C}-subalgebra of $\mathbb{C}[U]$.

Proof. Trivial.

Remark. The main problem of invariant theory can now be formulated as computing $\mathbb{C}[U]^{G}$. Some important general results which I shall not cover are:
(1) If G is finite then $\mathbb{C}[U]$ is a finitely generated \mathbb{C}-algebra (E. Noether).
(2) If U is a rational $\mathbb{C G L}(V)$-module then $\mathbb{C}[U]^{G L(V)}$ and $\mathbb{C}[U]^{S L(V)}$ are finitely generated \mathbb{C}-algebras (Hilbert) and Cohen-Macaulay rings (Hochster and Roberts [Adv.Math. 13(1974) 115-175]). Moreover $\mathbb{C}[U]^{S L(V)}$ is a UFD, so a Gorenstein ring.
(3) One can compute an explicit bound on the number of generators needed for $\mathbb{C}[U]^{S L(V)}$ (V. Popov [Asterisque vol 87/88]).

Instead we consider in this section some simple examples.

Example (Symmetric polynomials).
A vector space U with basis f_{1}, \ldots, f_{n} becomes a $\mathbb{C} S_{n}$-module via $\sigma f_{i}=f_{\sigma(i)} . \operatorname{If} \xi_{1}, \ldots, \xi_{n}$ is the dual basis of U^{*}, the isomorphism

$$
\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}[U], X_{i} \vdash \xi_{i}
$$

enables us to identify $\mathbb{C}[U]$ with $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$. The action of S_{n} on this is given by $\sigma X_{i}=X_{\sigma(i)}$. The set of polynomial invariants of the $\mathbb{C} S_{n}$-module U is thus

$$
\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]^{S n}=\left\{f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \mid f \text { is symmetric in the } X_{i}\right\}
$$

Recall that the elementary symmetric polynomials

$$
E_{i}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] S n
$$

are defined by

$$
\left(t+X_{1}\right) \ldots\left(t+X_{n}\right)=t^{n}+E_{1} t^{n-1}+E_{2} t^{n-2}+\ldots+E_{n}
$$

so

$$
\begin{aligned}
& E_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\ldots+x_{n} \\
& E_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq n} x_{j_{1}} x_{j_{2}} \ldots x_{j_{i}} . \\
& E_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{n} .
\end{aligned}
$$

The Fundamental Theorem of Symmetric Functions computes the polynomial invariants for U since it states that the \mathbb{C}-algebra map

$$
\mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]^{S n}, Y_{i} \longmapsto E_{i}\left(X_{1}, \ldots, X_{n}\right)
$$

is an isomorphism.

Before moving on to other examples, recall that if $f(t) \in \mathbb{C}[t]$ is a monic polynomial of degree n

$$
f(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n-1} t+a_{n}=\left(t+\lambda_{1}\right) \ldots\left(t+\lambda_{n}\right)
$$

then its discriminant is

$$
\operatorname{disc}(f)=\Pi_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

Since the polynomial

$$
\left|x^{n-1}, \ldots, 1\right|^{2}=\Pi_{i<j}\left(x_{i}-x_{j}\right)^{2}
$$

is symmetric in the X_{i}, it can be expressed as a polynomial in the elementary symmetric polynomials E_{1}, \ldots, E_{n}, say

$$
\Pi_{i<j}\left(X_{i}-X_{j}\right)^{2}=D\left(E_{1}\left(X_{i}^{n}\right), \ldots, E_{n}\left(X_{i}\right)\right)
$$

Since also $E_{i}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=a_{i}$, it follows that disc(f) is a polynomial in a_{1}, \ldots, a_{n}. For example

$$
\operatorname{disc}\left(t^{2}+b t+c\right)=b^{2}-4 c, \operatorname{disc}\left(t^{3}+b t+c\right)=-4 b^{3}-27 c^{2}
$$

Example (The alternating group).

In the previous example, restriction enables us to consider U as a representation of the alternating group A_{n} (here we suppose $n \geq 2$). The set
of polynomial invariants is then $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]^{A_{n}}$.

In this case there is another polynomial invariant, the Vandermonde

$$
\left|x^{n-1}, \ldots, 1\right|=\Pi_{i<j}\left(x_{i}-x_{j}\right) .
$$

Now $\left|X^{n-1}, \ldots, 1\right|^{2}$ is an S_{n}-invariant, so is a polynomial $D\left(E_{1}, \ldots, E_{n}\right)$ in the elementary symmetric polynomials.

The \mathbb{C}-algebra map

$$
\theta: \mathbb{C}\left[Y_{1}, \ldots, Y_{n}, Z\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]^{A n}, \quad \theta\left(Y_{i}\right)=E_{i}, \quad \theta(Z)=\left|X^{n-1}, \ldots, 1\right|
$$

is surjective, and the kernel is the ideal $\left(Z^{2}-D\left(Y_{1}, \ldots, Y_{n}\right)\right)$.

Proof.
(1) θ is surjective. Let $\tau \in S_{\mathrm{n}}$ be a transposition. (Here we use that $n \geq 2$!) If $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]^{A n}$, then $f_{S}=f+\tau f$ is a symmetric polynomial since

$$
\sigma f_{S}=\sigma f+\tau\left(\tau^{-1} \sigma \tau\right) f=f+\tau f=f_{S}
$$

for $f \in A_{n}$, while

$$
\tau \mathrm{f}_{\mathrm{S}}=\tau \mathrm{f}+\tau_{\mathrm{f}}^{2}=\tau \mathrm{f}+\mathrm{f}=\mathrm{f}_{\mathrm{S}} .
$$

Similarly $f_{a}=f-\tau f$ is an alternating polynomial.

Now $f_{a}\left(X_{1}, \ldots, X_{n}\right)=0$ whenever $X_{1}=X_{2}$, so by Hilbert's Nullstellensatz

$$
f_{a} \in \mathcal{V}\left(X_{1}-x_{2}\right)=\left(X_{1}-x_{2}\right)
$$

Thus f_{a} is divisible by $X_{1}-X_{2}$. Similarly f_{a} is divisible by $X_{i}-X_{j}(i<j)$, and hence

$$
f_{a}=\left|x^{n-1}, \ldots, 1\right| \cdot h
$$

for some polynomial h. Clearly h is a symmetric polynomial. Thus

$$
f=\frac{1}{2}\left(f_{s}+\left|x^{n-1}, \ldots, 1\right| . h\right)
$$

Since f_{s} and h are symmetric they are in the image of θ, and hence so is f. Thus θ is onto.
(2) $\left(Z^{2}-D\left(Y_{i}\right)\right) \subseteq \operatorname{Ker}(\theta)$. This is clear since

$$
\theta\left(Z^{2}-D\left(Y_{i}\right)\right)=\left|X^{n-1}, \ldots, 1\right|^{2}-D\left(E_{1}, \ldots, E_{n}\right)=0
$$

(3) $\operatorname{Ker}(\theta) \subseteq\left(Z^{2}-D\left(Y_{i}\right)\right)$. By polynomial division, any polynomial $P\left(Y_{1}, \ldots, Y_{n}, Z\right)$ is of the form

$$
P\left(Y_{i}, Z\right)=Q\left(Y_{i}, Z\right)\left[Z^{2}-D\left(Y_{i}\right)\right]+\left[A\left(Y_{i}\right)+B\left(Y_{i}\right) Z\right]
$$

To prove the assertion it thus suffices to show that if PeKer(θ) has form $A\left(Y_{i}\right)+B\left(Y_{i}\right) Z$, then $P=0$.

$$
\begin{aligned}
& \text { If } a_{1}, \ldots, a_{n} \in \mathbb{C}, \text { let } \\
& \\
& \qquad f(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n}=\left(t+\lambda_{1}\right) \ldots\left(t+\lambda_{n}\right) .
\end{aligned}
$$

Then

$$
P\left(a_{1}, \ldots, a_{n},\left|\lambda^{n-1}, \ldots, 1\right|\right)=\theta(P)\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0
$$

since $P \in \operatorname{Ker}(\theta)$. Exchanging λ_{1} and λ_{2} changes the sign of the Vandermonde, so

$$
P\left(a_{1}, \ldots, a_{n}, \pm \delta\right)=0 \quad \text { where } \delta=\left[\operatorname{disc}\left(t^{n}+a_{1} t^{n-1}+\ldots+a_{n}\right)\right]^{1 / 2}
$$

Using the special form of P this becomes

$$
A\left(a_{1}, \ldots, a_{n}\right) \pm B\left(a_{1}, \ldots, a_{n}\right) \delta=0
$$

and hence $A=B=0$ on the Zariski-dense open subset

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n} \mid \operatorname{disc}\left(t^{n}+a_{1} t^{n-1}+\ldots+a_{n}\right) \neq 0\right\}
$$

of \mathbb{C}^{n}. A Zariski topology argument now shows that $A=B=0$ everywhere on \mathbb{C}^{n}. Thus $\mathrm{P}=0$, as required.

Example (Characteristic polynomial).
Let V be a vector space of dimension m. Recall that the natural action of $G L(V)$ on $U=\operatorname{End}_{\mathbb{C}}(V)$ is given by

$$
\left(g^{\bullet} \theta\right)(v)=g \theta\left(g^{-1} \mathrm{v}\right)
$$

so $g^{\bullet} \theta=g \theta g^{-1}$. If

$$
\chi_{\theta}(t)=\operatorname{det}\left(t 1_{V}+\theta\right)
$$

denotes the characteristic polynomial of θ (more or less), and $c_{n}(\theta)$ is the coefficient of t^{m-n} in $\chi_{\theta}(t)$, then

$$
\chi_{g \bullet \theta}(t)=\operatorname{det}\left(t 1_{V}+g \theta g^{-1}\right)=\operatorname{det} g\left(t 1_{V}+\theta\right) g^{-1}=\chi_{\theta}(t)
$$

and $s o C_{n}: U \longrightarrow \mathbb{C}$ is an homogeneous n-ic invariant. Note that if θ has eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, then putting θ into Jordan Normal Form we have

$$
\chi_{\theta}(t)=\prod_{j=1}^{m}\left(t+\lambda_{j}\right)
$$

$\operatorname{soc} c_{n}(\theta)=E_{n}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, so

$$
c_{1}(\theta)=\lambda_{1}+\ldots+\lambda_{m}=\operatorname{tr}(\theta), \quad c_{m}(\theta)=\lambda_{1} \ldots \lambda_{m}=\operatorname{det}(\theta)
$$

The \mathbb{C}-algebra map

$$
c: \mathbb{C}\left[Y_{1}, \ldots, Y_{m}\right] \longrightarrow \mathbb{C}[U]^{G L(V)}, Y_{n} \longmapsto c_{n}
$$

is an isomorphism.

Proof. It suffices to observe that if f is a polynomial invariant for U,
then $f(\theta)$ is a symmetric polynomial function of the eigenvalues of θ. The proof of this is the same as the proof that the characters of rational $\mathbb{C} G L(V)$-modules are symmetric rational functions in the eigenvalues of $g \in G L(V), \$ 10$ Lemma 1.

Example (Discriminant of a quadratic form).
Let $V=\mathbb{C}^{m}$, and let $U=\operatorname{Hom}_{\mathbb{C}, 2}(V, \mathbb{C})$ be the set of quadratic forms on V. By polarization U can be identified with the set of symmetric m×m matrices A with

$$
f(x)=x^{T} A x \quad\left(x \text { a column vector in } \mathbb{C}^{m}\right)
$$

We define the discriminant disc(f) of f by

$$
\operatorname{disc}(f)=\operatorname{det}(A) .
$$

Now U is a $\mathbb{C} G L_{m}(\mathbb{C})$-module via

$$
(g f)(x)=f\left(g^{-1} x\right)=x^{T}\left(g^{-T} A g^{-1}\right) x
$$

for $x \in \mathbb{C}^{m}, g \in G L_{m}(\mathbb{C})$, so

$$
\operatorname{disc}_{\mathrm{m}}(\mathrm{gf})=\operatorname{det}\left(\mathrm{g}^{-\mathrm{T}} \mathrm{Ag}^{-1}\right)=\operatorname{det}(\mathrm{g})^{-2} \operatorname{disc}(\mathrm{f}) .
$$

Thus disc: $\mathrm{U} \longrightarrow \mathbb{C}$ is an $\mathrm{SL}_{\mathrm{m}}(\mathbb{C})$-invariant (but not an $\mathrm{GL}_{\mathrm{m}}(\mathbb{C})$-invariant).

The \mathbb{C}-algebra map $\mathbb{C}[X] \longrightarrow \mathbb{C}[U]^{S L 2(\mathbb{C})}, X \vdash \rightarrow$ disc is an isomorphism.

Proof. The map is injective since if there is a polynomial P with $P($ disc (f)) $=0$ for all $f \in U$, then $P(\lambda)=0$ for all $\lambda \in \mathbb{C}$, since the quadratic form

$$
{ }^{f}{ }_{\lambda}\left(X_{1}, \ldots, X_{m}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+\lambda x_{m}^{2}
$$

has discriminant λ. Thus $\mathrm{P}=0$.

Now let $\theta: U \longrightarrow \mathbb{C}$ be a polynomial $S L_{m}(\mathbb{C})$-invariant, and define

$$
F: \mathbb{C} \longrightarrow \mathbb{C}, \quad F(\lambda)=\theta\left(f_{\lambda}\right) .
$$

This is a polynomial function since θ is a polynomial map. We want to show that $\theta(f)=F(\operatorname{disc}(f))$.

In fact we need only prove this for f with disc(f) $\neq 0$, for if this case is known, then
$U=\{f \mid \operatorname{disc}(f)=0\} U\{f \mid \theta(f)=F(\operatorname{disc}(f))\}$
is a union of two Zariski-closed subsets, so by the irreducibility of U we deduce that $U=\{f \mid \theta(f)=F(\operatorname{disc}(f))\}$.

```
Recall that any matrix is congruent (over \mathbb{C}}\mathrm{ ) to a matrix
```

diag (1, ..., 1, 0, .., 0).

Thus if $f \in U$ corresponds to matrix A and

$$
\lambda=\operatorname{disc}(f)=\operatorname{det}(A) \neq 0
$$

then there is some $B \in G L_{m}(\mathbb{C})$ with $B^{T} A B=I$. If now

$$
\mathrm{C}=\operatorname{diag}\left(1, \ldots, 1, \operatorname{det}(B)^{-1}\right)
$$

then $B C \in S L_{m}(\mathbb{C})$ and
(BC) ${ }^{\mathrm{T}} \mathrm{ABC}=\mathrm{C}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{ABC}=\operatorname{diag}\left(1, \ldots, 1, \operatorname{det}(\mathrm{~B})^{-2}\right)=\operatorname{diag}(1, \ldots, 1, \lambda)$
so $\theta(f)=\theta\left(f_{\lambda}\right)=F(\lambda)$ as required.

Example (Discriminant of a binary form)

Let $U=\operatorname{Hom}_{\mathbb{C}, n}\left(\mathbb{C}^{2}, \mathbb{C}\right)$ be the set of homogeneous polynomials of degree $n \geq 1$ in two variables X_{1}, X_{2}. If $f \in U$, say

$$
\mathrm{f}=\mathrm{a}_{0} \mathrm{X}_{1}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{X}_{1}^{\mathrm{n}-1} \mathrm{X}_{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{X}_{2}^{\mathrm{n}}=\mathrm{b}\left(\lambda_{1} \mathrm{X}_{1}+\mu_{1} \mathrm{X}_{2}\right) \ldots\left(\lambda_{\mathrm{n}} \mathrm{X}_{1}+\mu_{\mathrm{n}} \mathrm{X}_{2}\right)
$$

define

$$
\operatorname{disc}(\mathrm{f})=\mathrm{b}^{2 \mathrm{n}-2} \prod_{i<j}\left(\lambda_{i} \mu_{j}-\lambda_{j} \mu_{i}\right)^{2} .
$$

This is well-defined since it is unchanged if two terms are exchanged or if one term is enlarged and another reduced by the same factor.

For example, when $n=3$ one can check that

$$
\operatorname{disc}(f)=-27 a_{0}^{2} a_{3}^{2}+18 a_{0} a_{1} a_{2} a_{3}-4 a_{0} a_{2}^{3}-4 a_{1}^{3} a_{3}+a_{1}^{2} a_{2}^{2}
$$

The map disc: $U \longrightarrow \mathbb{C}$ is a homogeneous $(2 n-2)$-ic $\mathrm{SL}_{2}(\mathbb{C})$-invariant.

PROOF.
(1) disc:U $\longrightarrow \mathbb{C}$ is an $S L_{2}(\mathbb{C})$-invariant. If $g \in G L_{2}(\mathbb{C})$ and $g^{-1}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ then

$$
(\mathrm{gf})\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{f}\left(\alpha \mathrm{X}_{1}+\beta \mathrm{X}_{2}, \gamma \mathrm{X}_{1}+\delta \mathrm{X}_{2}\right)=\mathrm{b} \prod_{i=1}^{\mathrm{n}}\left(\lambda_{i}\left(\alpha \mathrm{X}_{1}+\beta \mathrm{X}_{2}\right)+\mu_{i}\left(\gamma \mathrm{X}_{1}+\delta \mathrm{X}_{2}\right)\right)
$$

SO

$$
\begin{aligned}
\operatorname{disc}(g f) & =b^{2 n-2} \prod_{i<j}\left(\left(\lambda_{i} \alpha+\mu_{i} \gamma\right)\left(\lambda_{j} \beta+\mu_{j} \delta\right)-\left(\lambda_{j} \alpha+\mu_{j} \gamma\right)\left(\lambda_{i} \beta+\mu_{i} \delta\right)\right)^{2} \\
& =b^{2 n-2} \prod_{i<j}\left(\lambda_{i} \mu_{j}-\lambda_{j} \mu_{i}\right)^{2}(\alpha \delta-\beta \gamma)^{2} \\
& =\operatorname{disc}(f) \operatorname{det}(g)^{-n(n-1)}
\end{aligned}
$$

(2) There is a homogeneous polynomial $Q\left(Z_{0}, \ldots, Z_{n}\right)$ of degree $2 n-2$ with $\operatorname{disc}(f)=Q\left(a_{0}, \ldots, a_{n}\right)$ when $a_{0} \neq 0$. Let $D\left(Y_{1}, \ldots, Y_{n}\right)$ be the polynomial with
$D\left(E_{1}\left(X_{i}\right), \ldots, E_{n}\left(X_{i}\right)\right)=\Pi_{i<j}\left(X_{i}-X_{j}\right)^{2}$. If $a_{0} \neq 0$, then taking $\lambda_{1}=\ldots=\lambda_{n}=1$ and $b=a_{0}$, we see that

$$
\operatorname{disc}(f)=a_{0}^{2 n-2} D\left(a_{1} / a_{0}, \ldots, a_{n} / a_{0}\right)=a_{0}^{-s} Q\left(a_{0}, \ldots, a_{n}\right)
$$

where $Q\left(Z_{0}, \ldots, Z_{n}\right)$ is a polynomial and we arrange things so that s is non-negative, but otherwise is as small as possible. Dually, if $a_{n} \neq 0$ then

$$
\operatorname{disc}(f)=a_{n}^{2 n-2} D\left(a_{n-1} / a_{n}, \ldots, a_{0} / a_{n}\right)=a_{n}^{-t} Q^{\prime}\left(a_{0}, \ldots, a_{n}\right)
$$

Since

$$
a_{0}^{s} Q^{\prime}\left(a_{0}, \ldots a_{n}\right)=a_{n}^{t} Q\left(a_{0}, \ldots, a_{n}\right)
$$

on the Zariski-dense open subset of U defined by $a_{0} a_{n} \neq 0$, we have

$$
Z_{0}^{s} Q^{\prime}\left(Z_{0}, \ldots, Z_{n}\right)=Z_{n}^{t} Q\left(Z_{0}, \ldots, Z_{n}\right)
$$

Thus Z_{0}^{s} divides Q, and so $s=0$ by minimality. Finally observe that

$$
Q\left(\alpha Z_{0}, \ldots, \alpha Z_{n}\right)=\left(\alpha Z_{0}\right)^{2 n-2} D\left(\alpha Z_{1} / \alpha Z_{0}, \ldots\right)=\alpha^{2 n-2} Q\left(Z_{0}, \ldots, Z_{n}\right)
$$

so that Q is homogeneous of degree $2 n-2$.
(3) The map $Q: U \longrightarrow \mathbb{C}, f \longmapsto Q\left(a_{0}, \ldots, a_{n}\right)$ is an $S L_{2}(\mathbb{C})$-invariant. If $g \in \mathrm{SL}_{2}(\mathbb{C})$ then on the Zariski-dense open subset
$\left\{f \in U \mid a_{0} \neq 0\right.$ and $g f$ has non-zero coefficient of $\left.X_{1}^{n}\right\}$
of U we have $Q(f)=\operatorname{disc}(f)=\operatorname{disc}(g f)=Q(g f)$. Thus $Q(f)=Q(g f)$ on U.
(4) disc(f) $=Q(f)$. If $f=0$ this is clear, so suppose that $f \neq 0$. There is $g \in \mathrm{SL}_{2}(\mathbb{C})$ such that $g f$ has non-zero coefficient of X_{1}^{n}. Then

$$
\operatorname{disc}(f)=\operatorname{disc}(g f)=Q(g f)=Q(f) .
$$

For a $\mathbb{C S L}(\mathrm{V})$-module, as well as the usual invariants, one wants to consider another construction:

Definition. A covariant for a $\mathbb{C S L}(V)$-module U is a polynomial invariant $\mathrm{U} \oplus \mathrm{V} \longrightarrow \mathbb{C}$.

Examples.

(1) Every invariant θ for U gives a covariant

$$
\mathrm{U} \oplus \mathrm{~V} \longrightarrow \mathbb{C}, \quad(\mathrm{u}, \mathrm{x}) \quad \vdash \longrightarrow \theta(\mathrm{u}) .
$$

(2) If $U=\operatorname{Hom}_{\mathbb{C}, n}(V, \mathbb{C})$ then there is a trivial "evaluation" covariant
defined by

$$
\mathrm{ev}: \mathrm{U} \oplus \mathrm{~V} \longrightarrow \mathbb{C},(\mathrm{f}, \mathrm{v}) \longmapsto \mathrm{f}(\mathrm{v}) .
$$

Example (Hessian).
If f is a function of variables X_{1}, \ldots, X_{m}, then the Hessian

$$
H(f)=\operatorname{det}\left(\frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}\right)
$$

is another function of X_{1}, \ldots, X_{m}.

Let $U=\operatorname{Hom}_{\mathbb{C}, n}\left(\mathbb{C}^{m}, \mathbb{C}\right)$ be the set of homogeneous n-ic polynomials in
X_{1}, \ldots, X_{m}. The Hessian defines a polynomial map

$$
U \oplus \mathbb{C}^{m} \longrightarrow \mathbb{C}, \quad(f, x) \quad \longmapsto H(f)(x)
$$

Now U is naturally a $\mathbb{C G L} \mathrm{m}_{\mathrm{m}}(\mathbb{C})$-module via

$$
(g f)(x)=f\left(g^{-1} x\right) \quad\left(f \in U, g \in G L_{m}(\mathbb{C}), x \in \mathbb{C}^{m}\right)
$$

By the chain rule for differentiation

$$
H(g f)(g x)=\operatorname{det}(g)^{-2} H(f)(x) \quad\left(f \in U, g \in G L_{m}(\mathbb{C}), x \in \mathbb{C}^{m}\right),
$$

so that H is an $S L_{m}(\mathbb{C})$-covariant.

The First Fundamental Theorem of Invariant Theory (for $G L(V)$ or $S L(V)$) gives generators for the set of polynomial invariants in the important special case when the module is a direct sum of copies of V and V. This is important because in principle one is supposed to be able to use the FFT to compute the invariants for an arbitrary rational module. In fact history has shown that such a transition is not possible, but the idea will be demonstrated with an example in the next section.

Let V be a vector space with basis e_{1}, \ldots, e_{m}.

Theorem (Multilinear First Fundamental Theorem). If $n, r \in \mathbb{N}$ then
(1) $\operatorname{Hom}_{\mathbb{C G L}(V)}\left(\mathrm{T}^{\mathrm{n}}\left(\mathrm{V}^{*}\right) \otimes \mathrm{T}^{\mathrm{r}} \mathrm{V}, \mathbb{C}\right)=0$ if $\mathrm{n} \neq r$.
(2) $\operatorname{Hom}_{\mathbb{C} G L(V)}\left(T^{n}\left(V^{\star}\right) \otimes T^{n} V, \mathbb{C}\right)$ is spanned by the maps $\mu_{\sigma}\left(\sigma \in S_{n}\right)$ defined by

$$
\mu_{\sigma}\left(\phi_{1} \otimes \ldots \otimes \phi_{n}{ }^{\otimes V_{1}}{ }_{1}^{\left.\otimes \ldots \otimes v_{n}\right)}=\phi_{\sigma(1)}\left(v_{1}\right) \ldots \phi_{\sigma(n)}\left(v_{n}\right)\right.
$$

Proof. If X and Y are $\mathbb{C} G$-modules, then

$$
\operatorname{Hom}_{\mathbb{C}}\left(X^{\star} \otimes Y, \mathbb{C}\right)=\left(X^{\star} \otimes Y\right)^{\star} \cong X^{\star \star} \otimes Y^{\star} \cong X \otimes Y^{\star} \cong \operatorname{Hom}_{\mathbb{C}}(Y, X)
$$

and taking the G-fixed points, we obtain

$$
\operatorname{Hom}_{\mathbb{C} G}\left(X^{\star} \otimes Y, \mathbb{C}\right) \cong \operatorname{Hom}_{\mathbb{C}}(Y, X)
$$

Using this and the isomorphism $T^{n}\left(V^{*}\right) \cong\left(T^{n} V\right)^{*}$ we have an isomorphism

$$
\pi: \operatorname{Hom}_{\mathbb{C} G L}(V)\left(\mathrm{T}^{r} V, \mathrm{~T}^{\mathrm{n}} \mathrm{~V}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C} G L}(V)\left(\mathrm{T}^{\mathrm{n}}\left(\mathrm{~V}^{*}\right) \otimes \mathrm{T}^{r} V, \mathbb{C}\right)
$$

Explicitly, this sends a homomorphism f to the map

$$
\phi_{1} \otimes \ldots \otimes \phi_{n} \otimes x \longmapsto\left(\phi_{1} \otimes \ldots \otimes \phi_{n}\right)(f(x)) \quad\left(\phi_{i} \in V^{\star} \text { and } x \in T^{r} V\right)
$$

(1) $\operatorname{Hom}_{\mathbb{C G L}(V)}\left(\mathrm{T}^{r} V, \mathrm{~T}^{\mathrm{n}} \mathrm{V}\right)=0$, since $\operatorname{Hom}_{\mathbb{C G L}(V)}\left(\mathrm{S}^{\prime}, S\right)=0$ if S^{\prime} (resp. S) is a simple homogeneous r-ic (resp. n-ic) $\mathbb{C} G L(V)$-module.
(2) This is a restatement of Schur-Weyl duality. Recall that End $_{\mathbb{C G L}(\mathrm{V})}\left(\mathrm{T}^{\mathrm{n}} \mathrm{V}\right)$ is spanned by the maps $\lambda_{\sigma}\left(\sigma \in \mathrm{S}_{\mathrm{n}}\right)$ where

$$
\lambda_{\sigma}\left(v_{1} \otimes \ldots \otimes v_{n}\right)=v_{\sigma}^{-1}(1)^{\otimes \ldots \otimes v_{\sigma}}{ }^{-1}(n)
$$

Now π sends λ_{σ} to μ_{σ}.

Notation. If U and W are $\mathbb{C} G$-modules, we denote by $H_{\mathbb{C}} \mathbb{G}_{\mathrm{n}}(\mathrm{U}, \mathrm{W})$ the vector space of all homogeneous n-ic concomitants $U \longrightarrow W$. Note that $\operatorname{Hom}_{\mathbb{C}, n}(U, W)$ is a $\mathbb{C} G-m o d u l e ~ b y ~ c o n j u g a t i o n: ~$

$$
(g f)(u)=g f\left(g^{-1} u\right) \quad\left(g \in G, u \in U, f \in \operatorname{Hom}_{\mathbb{C}, n}(U, W)\right)
$$

and $\operatorname{Hom}_{\mathbb{C} G, n}(U, W)=\operatorname{Hom}_{\mathbb{C}, n}(U, W){ }^{G}$.
Lemma 1. If U is a $\mathbb{C} G$-module, then $\mathbb{C}[U]^{G} \cong \oplus_{n=0}^{\infty} \operatorname{Hom}_{\mathbb{C} G, n}(U, \mathbb{C})$.
Proof. $\mathbb{C}[U] \cong \oplus_{n=0}^{\infty} \operatorname{Hom}_{\mathbb{C}, \mathrm{n}}(\mathrm{U}, \mathbb{C})$. This is an isomorphism of $\mathbb{C} G$-modules. Now take G-fixed points.

Lemma 2. If U and W are $\mathbb{C G}$-modules, then there are inverse isomorphisms of vector spaces
where $\Delta: U \longrightarrow S^{n} U, u \longmapsto u V \ldots V u$ and $P f$ is the total polarization of f.

Proof. These maps induce inverse isomorphisms between $H_{C o m}\left(S^{n} U, W\right)$ and $\operatorname{Hom}_{\mathbb{C}, n}(U, W)$, so it suffices to prove
(a) if ψ is a concomitant, then so is $\psi \circ \Delta$, and
(b) if f is a concomitant, then so is $\frac{1}{n!} P f$.

Now (a) is obvious, since Δ is a concomitant. There are 3 ways to prove (b) .

1st way. Use the formula for Pf. This is very long.

2nd way. If $f \in \operatorname{Hom}_{\mathbb{C}}\left(S^{n} U, W\right)$, then $f=\left(\frac{1}{n!} P f\right) \circ \Delta$, so

$$
\begin{aligned}
\left(\frac{1}{n!} P f\right)(g(u \vee \ldots v u)) & =\left(\frac{1}{n!} P f\right)(g \Delta(u))=\left(\frac{1}{n!} P f\right) \Delta(g u)=f(g u) \\
& =g f(u)=g\left(\frac{1}{n!} P f\right)(u \vee \ldots v u)
\end{aligned}
$$

for all $u \in U$ and $g \in G$. Now the elements of the form $u v . . . v u$ span $S^{n} U$.

3rd way. $\operatorname{Hom}_{\mathbb{C}}\left(S^{n} U, W\right)$ and $\operatorname{Hom}_{\mathbb{C}, n}(U, W)$ are $\mathbb{C} G$-modules with G acting by conjugation, and $\psi \longmapsto \psi \circ \Delta$ is a $\mathbb{C G}$-module map and an isomorphism. Thus its inverse $f \stackrel{1}{\mathrm{n}!} \mathrm{Pf}$ is also a $\mathbb{C} G$-module map. Now these maps restrict to
isomorphisms between the sets of G-fixed points.

Remark. The map Δ factors as $U \xrightarrow{\delta} T^{n} U \xrightarrow{\text { nat }} S^{n} U$ where $\delta(u)=u \otimes . . . \otimes u$, so composition with δ induces a surjection

$$
\operatorname{Hom}_{\mathbb{C} G}\left(T^{n} U, W\right) \longrightarrow \operatorname{Hom}_{\mathbb{C} G}, n(U, W)
$$

It is in this form that we shall use Lemma 2.

Theorem (First Fundamental Theorem for GL_{m}). If

$$
\mathrm{U}=\frac{\mathrm{V} \oplus \ldots \oplus \mathrm{~V} \oplus \mathrm{~V}^{\star} \oplus \ldots \oplus \mathrm{V}^{\star}}{-\mathrm{p}}
$$

then $\mathbb{C}[U]^{G L(V)}$ is generated as a \mathbb{C}-algebra by elements

$$
\left\{\rho_{i j} \mid 1 \leq i \leq p, \quad 1 \leq j \leq q\right\}
$$

defined by

$$
\rho_{i j}\left(v_{1}, v_{2}, \ldots, v_{p}, \phi_{1}, \ldots, \phi_{q}\right)=\phi_{j}\left(v_{i}\right)
$$

Proof. Note first that the $\rho_{i j}$ are polynomial invariants:

$$
\left(g \phi_{j}\right)\left(g v_{i}\right)=\phi_{j}\left(g^{-1} g v_{i}\right)=\phi_{j}\left(v_{i}\right)
$$

By Lemma 1 it suffices to prove that any homogeneous n-ic invariant f is a linear combination of products of $\rho_{i j}$. By Lemma 2 we have a surjection

$$
\operatorname{Hom}_{\mathbb{C} G L}(V)\left(T^{n} U, \mathbb{C}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C} G L}(V), n(U, \mathbb{C})
$$

Let

$$
\mathrm{V}_{1}=\mathrm{V}, \ldots, \mathrm{~V}_{\mathrm{p}}=\mathrm{V}, \mathrm{~V}_{\mathrm{p}+1}=\mathrm{V}^{*}, \ldots, \mathrm{~V}_{\mathrm{p}+\mathrm{q}}=\mathrm{V}^{*}
$$

so that

$$
U=\oplus_{i=1}^{p+q} V_{i}
$$

This decomposition of U gives a decomposition of $T^{n} U$:

So

We consider one of the summands. By the multilinear version of the FFT, either $\operatorname{Hom}_{\mathbb{C G L}(\mathrm{V})}\left(\mathrm{V}_{\mathrm{i1}} \otimes \ldots \mathrm{~V}_{\mathrm{in}}, \mathbb{C}\right)=0$ or

$$
\left\{\begin{array}{l}
n=2 k, \\
k \text { of the } i_{j} \text { are } \leq p, \text { say for } j=\alpha_{1}, \ldots, \alpha_{k} \\
k \text { of the } i_{j} \text { are }>p, \text { say for } j=\beta_{1}, \ldots, \beta_{k}
\end{array}\right.
$$

and in this case $\operatorname{Hom}_{\mathbb{C G L}(\mathrm{V})}\left(\mathrm{V}_{\mathrm{i} 1} \otimes \ldots \otimes \mathrm{~V}_{\text {in }}, \mathbb{C}\right)$ is spanned by the k! maps τ_{σ} $\left(\sigma \in S_{k}\right)$ given by

$$
\tau_{\sigma}\left(\mathrm{v}_{1} \otimes \ldots \otimes \mathrm{v}_{\mathrm{n}}\right)=\mathrm{v}_{\beta_{\sigma(1)}}\left(\mathrm{v}_{\alpha_{1}}\right) \ldots \mathrm{v}_{\beta_{\sigma(k)}}\left(\mathrm{v}_{\alpha_{k}}\right) .
$$

Tracking back, the homogeneous n-ic invariant of U corresponding to τ_{σ} is

$$
\rho_{i_{\alpha_{1}}}, i_{\beta_{\sigma(1)}}-p \cdots \rho_{i_{k}}, i_{\beta_{\sigma(k)}}-p^{\prime}
$$

and the assertion follows.

Theorem. If $r \in \mathbb{N}$, and

$$
\mathrm{U}=\operatorname{End}_{\mathbb{C}}(\mathrm{V}) \oplus \ldots \operatorname{End}_{\mathbb{C}}(\mathrm{V}) \quad(\mathrm{r} \text { copies })
$$

then $\mathbb{C}[\mathrm{U}]^{\mathrm{GL}(\mathrm{V})}$ is generated as a \mathbb{C}-algebra by the invariants

$$
t_{i_{1}}, \ldots, i_{k}: U \longrightarrow \mathbb{C},\left(\theta_{1}, \ldots, \theta_{r}\right) \longmapsto \operatorname{Tr}\left(\theta_{i_{1}} \theta_{i_{2}} \ldots \theta_{i_{k}}\right)
$$

where $k \geq 1$ and $1 \leq i_{1}, \ldots, i_{k} \leq r$.

Remark. In fact $\mathbb{C}[U]^{G L(V)}$ is generated by the $t_{i 1, \ldots, i k}$ with $k \leq 2^{m}-1$. See [Procesi, The invariant theory of $n \times n$ matrices, Adv. Math. 19 (1976), 306-381].

Remark. Regarding Schur-Weyl duality as hard (since it fails in characteristic p>0), Procesi shows that this theorem is equivalent to the FFT. Thus invariant theory is about representations of quivers: the quivers with one vertex and n loops.

Proof. By polarization (Lemmas 1 and 2) we need to compute

$$
\operatorname{Hom}_{\mathbb{C G L}(\mathrm{V})}\left(\mathrm{T}^{\mathrm{n}}\left(\operatorname{End}_{\mathbb{C}}(\mathrm{V})\right), \mathbb{C}\right)
$$

Since $\operatorname{End}_{\mathbb{C}}(V) \cong V^{*} \otimes V$ this is isomorphic to

$$
\operatorname{Hom}_{\mathbb{C G L}(\mathrm{V})}\left(\mathrm{T}^{\mathrm{n}}\left(\mathrm{~V}^{*}\right) \otimes \mathrm{T}^{\mathrm{n}} \mathrm{~V}, \mathbb{C}\right)
$$

which, by the multilinear FFT, is spanned by the maps $\mu_{\sigma}\left(\sigma \in S_{n}\right)$

$$
\mu_{\sigma}\left(\phi_{1} \otimes \ldots \otimes \phi_{\mathrm{n}} \otimes \mathrm{v}_{1} \otimes \ldots \otimes \mathrm{v}_{\mathrm{n}}\right)=\phi_{\sigma(1)}\left(\mathrm{v}_{1}\right) \ldots \phi_{\sigma(\mathrm{n})}\left(\mathrm{v}_{\mathrm{n}}\right)
$$

We compute the corresponding map

$$
v_{\sigma}: \mathrm{T}^{\mathrm{n}}\left(\operatorname{End}_{\mathbb{C}}(\mathrm{V})\right) \longrightarrow \mathbb{C}
$$

Let V have basis e_{1}, \ldots, e_{m} and V^{*} dual basis $\eta_{1}, \ldots, \eta_{m}$. If $\theta \in$ End $_{\mathbb{C}}(V)$ has matrix $A_{i j}$ with respect to this basis, then

$$
\theta(v)=\sum_{i j} A_{i j} \eta_{j}(v) e_{i}
$$

so the corresponding element of $\mathrm{V}^{*} \otimes \mathrm{~V}$ is

$$
\sum_{i j} A_{i j} \eta_{j} \otimes e_{i} .
$$

Now if θ_{k} has matrix $A_{i j}^{k}$, then $\theta_{1} \otimes \ldots \otimes \theta_{n}$ corresponds to

$$
\begin{aligned}
& \sum_{a 1, \ldots, a^{A}}{ }^{1} a_{1} b_{1} A_{a_{2} b_{2}}^{2} \cdots \eta_{b_{1}} \otimes \eta_{b_{2}}{ }^{\otimes} \cdots \otimes e_{a_{1}}^{\otimes} e_{a_{2}}^{\otimes} \ldots \in T^{n}\left(V^{*}\right) \otimes T^{n} V \\
& \text { b1, .., bn }
\end{aligned}
$$

so we have

$$
\begin{aligned}
\nu_{\sigma}\left(\theta_{1} \otimes \ldots \otimes \theta_{n}\right) & =\sum_{\substack{a_{1}, \ldots, a_{n} \\
\\
b_{1}, \ldots, b n}}^{A_{a_{1} b_{1}}^{1} A_{a_{2} b_{2}}^{2} \cdots \eta_{b_{\sigma(1)}}\left(e_{a_{1}}\right) \eta_{b_{\sigma(2)}}\left(e_{a_{2}}\right) \ldots} \\
= & \sum_{b_{1}, \ldots, b_{n}} A_{b_{\sigma(1)}^{1}, b_{1}} A_{b_{\sigma(2)}, b_{2}}^{2} \ldots
\end{aligned}
$$

If $\sigma=\left(i_{1} i_{2} \ldots i_{k}\right)\left(j_{1} j_{2} \cdots j\right) \ldots$ we can reorder this to get

$$
\left.\begin{array}{l}
=\sum_{b 1, \ldots, b n} A_{b_{i 2}}^{i 1}, b_{i 1} A_{b_{i 3}}^{i 2}, b_{i 2} \ldots A_{b_{i 1}}^{i k}, b_{i k} A_{b_{j 2}}^{j 1}, b_{j 1}^{i}
\end{array}\right)
$$

The assertion follows.

Before we move on to the $F F T$ for L_{m} we need to know a little about how rational $\mathbb{C G L}(\mathrm{V})$-modules behave when regarded as $\mathbb{C} S L(V)$-modules by restriction. First we make a non-standard definition

Definition. If $r \in \mathbb{Z}$ and U is a f.d rational $\mathbb{C} G L(V)$-module, we shall say that U has rational degree r provided that $\left(\lambda 1_{V}\right) u=\lambda^{r} u$ for all $u \in U$, $\lambda \in \mathbb{C}^{\times}$, where $\lambda 1_{V} \in \operatorname{GL}(\mathrm{~V})$.

Exercises

(1) If U is homogeneous r-ic, then it has rational degree r.
(2) If U has rational degree r, then U^{*} has rational degree $-r$.
(3) If U and W have rational degrees r and n, then $U \otimes W$ has rational degree $n+r$.
(4) $D_{\lambda_{1}}, \ldots, \lambda_{m}(V)$ has rational degree $\sum_{i=1}^{m} \lambda_{i}$.

Lemma 3. If U and W are rational $\mathbb{C G L}(V)$-modules, with rational degrees r and n respectively, then
(1) If $m \nmid r-n$ then $\operatorname{Hom}_{\mathbb{C S L}}(V)(U, W)=0$
(2) If $r-n=m k$ and $0 \neq d \in \operatorname{det}^{-k}$, then the map

$$
\pi: \operatorname{Hom}_{\mathbb{C G L}(\mathrm{V})}\left(\operatorname{det}^{-\mathrm{k}} \otimes \mathrm{U}, \mathrm{~W}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C S L}(\mathrm{V})}(\mathrm{U}, \mathrm{~W}), \pi(\mathrm{f})(\mathrm{u})=\mathrm{f}(\mathrm{~d} \otimes u)
$$

is an isomorphism of vector spaces.

Proof. Any element $g \in G L(V)$ can be written as $g=\lambda s$ where λ is an m th root of det (g) and $s \in S L(V)$. Now

$$
\left(\lambda 1_{V}\right) u=\lambda^{r} u, \quad\left(\lambda 1_{V}\right) w=\lambda^{n} w \quad(u \in U, \quad w \in W)
$$

If $\theta \in \operatorname{Hom}_{\mathbb{C S L}(V)}(U, W)$, then

$$
\begin{aligned}
\theta(g u) & =\theta((\lambda s) u)=s \theta\left(\left(\lambda 1_{V}\right) u\right)=s \theta\left(\lambda^{r} u\right)=s \lambda^{r} \theta(u) \\
& =\lambda^{r-n} s\left(\lambda 1_{V}\right) \theta(u)=\lambda^{r-n} g \theta(u)
\end{aligned}
$$

If $\theta(u) \neq 0$ then $m \mid r-n$, otherwise choosing a different $m^{\text {th }}$ root of det (g) would give a different answer. Hence (1).

Now let $r-n=m k$. The map π is defined since $g d=d$ for $g \in S L(V)$, and π is injective, so we only need to prove that it is surjective. Let $\theta \in \operatorname{Hom}_{\mathbb{C S L}(\mathrm{V})}(\mathrm{U}, \mathrm{W})$, and define

$$
\mathrm{f}: \operatorname{det}^{-\mathrm{k}} \otimes \mathrm{U} \longrightarrow \mathrm{~W}, \mathrm{~d} \otimes u \quad \longmapsto \theta(u)
$$

If f is a $\mathbb{C} G L(V)$-module map, then (2) is proved since $\theta=\pi(f)$. Now

$$
\lambda^{\mathrm{r}-\mathrm{n}}=\lambda^{\mathrm{mk}}=\operatorname{det}\left(\lambda 1_{\mathrm{V}}\right)^{\mathrm{k}}=(\operatorname{det} g)^{\mathrm{k}}
$$

so

$$
f(g d \otimes g u)=f\left((\operatorname{det} g)^{-k} d \otimes g u\right)=(\operatorname{det} g)^{-k} \theta(g u)=g \theta(u)=g f(d \otimes u)
$$

Exercises.

(1) ${ }^{\mathrm{D}} \lambda_{1}, \ldots, \lambda_{m}(\mathrm{~V})$ is simple as a $\mathbb{C S L}(\mathrm{V})$-module.
(2) $\mathrm{D}_{\lambda_{1}, \ldots, \lambda_{m}}(\mathrm{~V}) \cong \mathrm{D}_{\mu 1, \ldots, \mu_{m}}(\mathrm{~V})$ as $\mathbb{C S L}(\mathrm{V})$-modules if and only if $\lambda_{1}-\mu_{1}=\lambda_{2}-\mu_{2}=\ldots=\lambda_{m}-\mu_{m}$.

Remark. Although we have not done so, one can develop a theory of rational $\mathbb{C S L}(V)$-modules, and can prove that every rational $\mathbb{C S L}(V)$-module is the restriction of a rational $\mathbb{C G L}(\mathrm{V})$-module. Thus the $\mathrm{D}_{\lambda_{1}, \ldots, \lambda_{m}}(\mathrm{~V})$ with $\lambda_{m}=0$ are a complete set of non-isomorphic simple rational $\mathbb{C} S L(V)$-modules.

Theorem (First Fundamental Theorem for SL_{m}).
Let V be a vector space with basis e_{1}, \ldots, e_{m}, and let V^{\star} have dual basis $\eta_{1}, \ldots, \eta_{m}$. If

$$
\mathrm{U}=\frac{\mathrm{V} \oplus \ldots \oplus \mathrm{~V} \oplus \mathrm{~V}^{\star} \oplus \ldots \mathrm{p}^{\star}}{-\mathrm{p}-}
$$

then $\mathbb{C}[U]^{S L(V)}$ is generated as a \mathbb{C}-algebra by the polynomial invariants which send $\left(v_{1}, v_{2}, \ldots, v_{p}, \phi_{1}, \ldots, \phi_{q}\right) \in U$ to

$$
\begin{array}{ll}
\phi_{j}\left(v_{i}\right) & (1 \leq i \leq p, 1 \leq j \leq q) \\
{\left[v_{i 1}, \ldots, v_{i m}\right]} \\
{\left[\phi_{j 1}, \ldots, \phi_{j m}\right]} & \left(1 \leq i_{1}<\ldots<i_{m} \leq p\right), \\
\left(1 \leq j_{1}<\ldots<j_{m} \leq q\right),
\end{array}
$$

where $\left[v_{i 1}, \ldots, v_{i m}\right]$ is the determinant of the matrix whose $n{ }^{\text {th }}$ column is the coordinates of $v_{i n}$ with respect to e_{1}, \ldots, e_{m}, and $\left[\phi_{j 1}, \ldots, \phi_{j m}\right]$ is the determinant of the matrix whose $n^{\text {th }}$ column is the coordinates of $\phi_{j n}$ with respect to $\eta_{1}, \ldots, \eta_{m}$.

Proof. Clearly the indicated functions are SL(V)-invariants. Moreover, the restrictions on i_{k} and j_{k} can be replaced by

$$
1 \leq i_{1}, \ldots, i_{m} \leq p \quad \text { and } \quad 1 \leq j_{1}, \ldots, j_{m} \leq q .
$$

By polarization (Lemmas 1 and 2) we reduce to having to compute $\operatorname{Hom}_{\mathbb{C S L}(\mathrm{V})}(\mathrm{T}, \mathbb{C})$ where

$$
T=T^{n}\left(V^{\star}\right) \otimes T^{r} V .
$$

Now T has rational degree $r-n$, so by Lemma 3, $\operatorname{Hom}_{\mathbb{C S L}(V)}(T, \mathbb{C})=0$ if $m \nmid r-n$. Thus we may suppose that $r-n=m k$. If $0 \neq d \in \operatorname{det}^{-k}$, then by Lemma 3 the map

$$
\operatorname{Hom}_{\mathbb{C G L}(\mathrm{V})}\left(\operatorname{det}^{-\mathrm{k}} \otimes \mathrm{~T}, \mathbb{C}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C S L}(\mathrm{V})}(\mathrm{T}, \mathbb{C}), \mathrm{f} \longmapsto(\mathrm{t} \longmapsto \mathrm{f}(\mathrm{~d} \otimes \mathrm{t}))
$$

is an isomorphism.

We shall consider the case $k \geq 0$, the case $k<0$ is similar.

Identifying det^{-1} with the summand $T^{m}\left(V^{*}\right)$ anti of $T^{m}\left(V^{*}\right)$, we can identify $\operatorname{det}^{-k} \otimes \mathrm{~T}$ with a summand of

$$
T^{k}\left[T^{m}\left(V^{*}\right)\right] \otimes T \cong T^{r}\left(V^{*}\right) \otimes T^{r} V
$$

Thus we have a restriction map

$$
\text { res : } \operatorname{Hom}_{\mathbb{C G L}(V)}\left(T^{r}\left(V^{*}\right) \otimes T^{r} V, \mathbb{C}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C G L}(V)}\left(\operatorname{det}^{-k} \otimes T, \mathbb{C}\right)
$$

which is surjective since $\operatorname{det}^{-k} \otimes \mathrm{~T}$ is a summand. By the multilinear FFT the left hand Hom space is spanned by the maps $\mu_{\sigma}\left(\sigma \in S_{r}\right)$ defined by

$$
\mu_{\sigma}\left(\phi_{1} \otimes \ldots \otimes \phi_{r} \otimes \mathrm{v}_{1} \otimes \ldots \otimes \mathrm{v}_{\mathrm{r}}\right)=\phi_{1}\left(\mathrm{v}_{\sigma}^{-1}(1)\right) \ldots \phi_{\mathrm{n}}\left(\mathrm{v}_{\sigma}{ }^{-1}(\mathrm{n})\right) .
$$

Setting

$$
\begin{gathered}
\delta=\sum_{\tau \in S m} \varepsilon_{\tau} \eta_{\tau(1)} \otimes \cdots \otimes \eta_{\tau(\mathrm{m})} \in \mathrm{T}^{\mathrm{m}}\left(\mathrm{~V}^{*}\right) \text { anti }=\operatorname{det}^{-1}, \\
\mathrm{~d}=\delta \otimes \ldots \otimes \delta \in \operatorname{det}^{-\mathrm{k}}
\end{gathered}
$$

and if $t=\phi_{1} \otimes \ldots \otimes \phi_{n}{ }^{\otimes V_{1}}{ }^{\otimes} \ldots \otimes V_{r} \in T$, then we have

$$
\begin{aligned}
\operatorname{res}\left(\mu_{\sigma}\right)(\mathrm{d} \otimes \mathrm{t}) & =\left[\mathrm{v}_{\sigma^{-1}(1)} \cdots \mathrm{v}_{\sigma^{-1}(\mathrm{~m})}\right]\left[\mathrm{v}_{\sigma}^{-1}(\mathrm{~m}+1) \cdots \mathrm{v}_{\sigma}^{-1}(2 \mathrm{~m})\right. \\
& \times \phi_{1}\left(\mathrm{v}_{\sigma^{-1}(\mathrm{~km}+1)}\right) \phi_{2}\left(\mathrm{v}_{\sigma^{-1}}(\mathrm{~km}+2)\right) \cdots
\end{aligned}
$$

The corresponding polynomial $S L(V)$-invariant is thus a product of $\phi_{j}\left(v_{i}\right)$ and brackets $\left[\mathrm{v}_{\mathrm{i} 1} \cdots \mathrm{v}_{\mathrm{im}}\right.$].

In the similar case when $k<0$ one obtains a product of $\phi_{j}\left(v_{i}\right)$ and brackets $\left[\phi_{j 1} \ldots \phi_{j m}\right]$, and the assertion of the theorem follows.

Notation. Throughout this section the following notation will be fixed: $V=\mathbb{C}^{2}, G=S L(V)=S_{2}(\mathbb{C})$, and

$$
\mathrm{C}_{\mathrm{n}}=\operatorname{Hom}_{\mathbb{C}, \mathrm{n}}(\mathrm{~V}, \mathbb{C}) \cong\left(S^{\mathrm{n}} \mathrm{~V}\right)^{\star} \cong \mathrm{S}^{\mathrm{n}}\left(\mathrm{~V}^{\star}\right)
$$

which can be identified with the set of homogeneous polynomials of degree n in variables X_{1}, X_{2}.

Remarks.
(1) The $C_{n}(n \geq 0)$ are non-isomorphic simple $\mathbb{C} G$-modules.
(2) $D_{i, j}(V) \cong C_{i-j}$ as $\mathbb{C} G-m o d u l e s$, so $C_{n} \cong S^{n} V$. In particular $V \cong V^{*}$.
(3) The Clebsch-Gordan Formula becomes

$$
C_{p} \otimes C_{q} \cong \underset{r=0}{\oplus} \underset{p+q-2 r}{ }
$$

Fix $n \in \mathbb{N}$. Recall that a covariant for C_{n} is a polynomial $\mathbb{C} S L(V)$-invariant $\mathrm{C}_{\mathrm{n}} \oplus \mathrm{V} \longrightarrow \mathbb{C}$. We have already met some of these covariants:

$$
\begin{array}{lll}
\operatorname{ev}(f, v) & =f(v) & \text { the evaluation map, } \\
\operatorname{disc}(f, v)=\operatorname{disc}(f) & \text { the discriminant, } \\
H(f, v) & =H(f)(v) & \text { the Hessian. }
\end{array}
$$

Our aim is to compute generators for $\mathbb{C}\left[C_{n} \oplus V^{G}\right.$, or, stated more grandly, to

```
compute all covariants of binary forms of degree n.
```

In general this problem is not solved, but it is answered for small n. In this section we prove a useful theorem due to Gordan, and then solve the cases $\mathrm{n}=3$ and $\mathrm{n}=4$.

Example. Classically this problem was tackled with the symbolic method: using polarization to reduce it to the FFT. For example we shall compute $\operatorname{Hom}_{\mathbb{C} G}, 2\left(\mathrm{C}_{2} \oplus \mathrm{~V}, \mathbb{C}\right)$.

Identifying C_{2} with $T^{2}\left(V^{*}\right)_{\text {symm }}$ we have maps $\operatorname{Hom}_{\mathbb{C G}, 2}\left(\mathrm{C}_{2} \oplus \mathrm{~V}, \mathbb{C}\right) \ll \operatorname{Hom}_{\mathbb{C G}, 2}\left(\mathrm{~T}^{2} \mathrm{~V}^{\star} \oplus \mathrm{V}, \mathbb{C}\right) \ll \operatorname{Hom}_{\mathbb{C}}\left(\mathrm{T}^{2}\left(\mathrm{~T}^{2} \mathrm{~V}{ }^{\star} \oplus \mathrm{V}\right), \mathbb{C}\right)$

$$
\cong \operatorname{Hom}_{\mathbb{C} G}\left(T^{2}\left(T^{2} V^{*}\right) \oplus T^{2} V^{*} \otimes V \oplus V \otimes T^{2} V^{\star} \oplus T^{2} V, \mathbb{C}\right)
$$

Now
(1) $\operatorname{Hom}_{\mathbb{C} G}\left(\mathrm{~T}^{2} \mathrm{~V}, \mathbb{C}\right)$ is spanned by the map $\mathrm{v}_{1} \otimes \mathrm{~V}_{2} \vdash \rightarrow\left[\mathrm{v}_{1}, \mathrm{v}_{2}\right]$, but the corresponding covariant is (f,v) $\longmapsto[v, v]=0$.
(2) $\operatorname{Hom}_{\mathbb{C} G}\left(\mathrm{~T}^{2} \mathrm{~V}^{*} \otimes \mathrm{~V}, \mathbb{C}\right)=\operatorname{Hom}_{\mathbb{C} G}\left(\mathrm{~V} \otimes \mathrm{~T}^{2} \mathrm{~V}^{*}, \mathbb{C}\right)=0$.
(3) $\operatorname{Hom}_{\mathbb{C G}}\left(\mathrm{T}^{2}\left(\mathrm{~T}^{2} \mathrm{~V}^{*}\right), \mathbb{C}\right)$ is spanned by the maps which send a tensor $\left(\phi_{1} \otimes \phi_{2}\right) \otimes\left(\phi_{3} \otimes \phi_{4}\right) \quad$ to

$$
\left[\phi_{1}, \phi_{2}\right]\left[\phi_{3}, \phi_{4}\right], \quad\left[\phi_{1}, \phi_{3}\right]\left[\phi_{2}, \phi_{4}\right], \quad\left[\phi_{1}, \phi_{4}\right]\left[\phi_{2}, \phi_{3}\right]
$$

The corresponding covariants send (f,v) to

$$
0 \quad-\frac{1}{2} \operatorname{disc}(f) \quad \frac{1}{2} \operatorname{disc}(f)
$$

Thus $\operatorname{Hom}_{\mathbb{C}}, 2\left(\mathrm{C}_{2} \oplus \mathrm{~V}, \mathbb{C}\right)$ is spanned by the discriminant. More generally one can show that $\mathbb{C}\left[C_{2}{ }^{\oplus V}\right]^{G}$ is generated as a \mathbb{C}-algebra by ev and disc.

We shall not use the symbolic method, however, since we have not found it necessary.

Definition. If f and g are functions of two variables X_{1}, X_{2} and $r \in \mathbb{N}$, then the r-th transvectant (Uberschiebung) of f and g, denoted by $\tau_{r}(f, g)$, is defined by

$$
\begin{aligned}
\tau_{r}(f, g) & =\sum_{i=0}^{r} \frac{(-1)^{i}}{i!(r-i)}!\frac{\partial^{r} f}{\partial X_{1}{ }^{r-i} \partial X_{2}{ }^{i}} \frac{\partial^{r} g}{\partial X_{1}{ }^{i} \partial X_{2}{ }^{r-i}} \\
& \left.=\frac{1}{r!}\left(\frac{\partial}{\partial X_{1}} \frac{\partial}{\partial Y_{2}}-\frac{\partial}{\partial X_{2}} \frac{\partial}{\partial Y_{1}}\right)^{r}\left(f\left(X_{1}, X_{2}\right) \quad g\left(Y_{1}, Y_{2}\right)\right) \right\rvert\, Y_{1}=X_{1}, Y_{2}=X_{2}
\end{aligned}
$$

Examples.
(0) $\tau_{0}(f, g)=f g ;$
(1) $\tau_{1}(f, g)=\partial(f, g) / \partial\left(X_{1}, X_{2}\right)$ is the Jacobian of f and g;
(2) $\tau_{2}(f, f)=H(f)$ is the Hessian of f.
(r$) \tau_{r}(f, g)=(-1)^{r} \tau_{r}(g, f)$, so $\tau_{r}(f, f)=0$ if r is odd.

Remark. If f and g are homogeneous polynomials of degrees p, q, then $\tau_{r}(f, g)=0$ unless $r \leq \min (p, q)$, in which case it is a homogeneous polynomial of degree $p+q-2 r$. The normalization used for $\tau_{r}(f, g)$ is my own; usually the definition is

$$
(f, g)^{r}=\frac{r!(p-r)!(q-r)!}{p!q!} \tau_{r}(f, g) .
$$

Our first lemma shows how transvectants are related to the Clebsch-Gordan formula.

Lemma 1.
(1) If $r \leq \min (p, q)$ then the map

$$
\tau_{r}: C_{p} \otimes C_{q} \longrightarrow C_{p+q-2 r}, f \otimes g \longmapsto \tau_{r}(f, g)
$$

is non-zero map of $\mathbb{C G}$-modules.
(2) Any $\mathbb{C G}$-module map $C_{p} \otimes C_{q} \longrightarrow C_{p+q-2 r}$ is a multiple of τ_{r}.
(3) The τ_{r} combine to give an isomorphism of $\mathbb{C} G$-modules.

$$
C_{p} \otimes C_{q} \xrightarrow{\left(\tau_{r}\right)} \oplus_{r=0}^{\min (p, q)} C_{p+q-2 r} .
$$

Proof.
(1) The map is certainly a vector space map, so we need to show that it commutes with the action of $s \in G$. Let $s^{-1}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ and $x \in \mathbb{C}^{2}$. Introduce new variables

$$
\begin{aligned}
& \mathrm{X}_{1}^{\prime}=\alpha \mathrm{X}_{1}+\beta \mathrm{X}_{2}, \mathrm{X}_{2}^{\prime}=\gamma \mathrm{X}_{1}+\delta \mathrm{X}_{2}^{\prime} \\
& \text { ie }\left(\mathrm{X}_{1}^{\prime}, \mathrm{X}_{2}^{\prime}\right)=\mathrm{s}^{-1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \cdot \operatorname{Thus}(\mathrm{sf})\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{f}\left(\mathrm{X}_{1}^{\prime}, \mathrm{X}_{2}^{\prime}\right) \cdot \text { Now } \\
& \partial / \partial \mathrm{X}_{1}=\partial \mathrm{X}_{1}^{\prime} / \partial \mathrm{X}_{1} \cdot \partial / \partial \mathrm{X}_{1}^{\prime}+\partial \mathrm{X}_{2}^{\prime} / \partial \mathrm{X}_{1} \cdot \partial / \partial \mathrm{X}_{2}^{\prime}=\alpha \cdot \partial / \partial \mathrm{X}_{1}^{\prime}+\gamma \cdot \partial / \partial \mathrm{X}_{2}^{\prime} \\
& \partial / \partial \mathrm{X}_{2}=\beta \cdot \partial / \partial \mathrm{X}_{1}^{\prime}+\delta \cdot \partial / \partial \mathrm{X}_{2}^{\prime}
\end{aligned}
$$

Also, introducing $Y_{1}^{\prime}=\alpha Y_{1}+\beta Y_{2}, Y_{2}^{\prime}=\gamma Y_{1}+\delta Y_{2}$, we have similar formulae for the $\partial / \partial Y i$ and

$$
\frac{\partial}{\partial \mathrm{X}_{1}} \frac{\partial}{\partial \mathrm{Y}_{2}}-\frac{\partial}{\partial \mathrm{X}_{2}} \frac{\partial}{\partial \mathrm{Y}_{1}}=(\alpha \delta-\beta \gamma)\left(\frac{\partial}{\partial \mathrm{X}_{1}^{\prime}} \frac{\partial}{\partial \mathrm{Y}_{2}^{\prime}}-\frac{\partial}{\partial \mathrm{X}_{2}^{\prime}} \frac{\partial}{\partial \mathrm{Y}_{1}^{\prime}}\right)
$$

and $\alpha \delta-\beta \gamma=1$. Thus $\tau_{r}(s f, s g)(x)$ is equal to

$$
\left.\frac{1}{r}!\left(\frac{\partial}{\partial X_{1}} \frac{\partial}{\partial Y_{2}}-\frac{\partial}{\partial X_{2}} \frac{\partial}{\partial Y_{1}}\right)^{r}\left(f\left(X_{1}^{\prime}, X_{2}^{\prime}\right) g\left(Y_{1}^{\prime}, Y_{2}^{\prime}\right)\right) \right\rvert\,\left(X_{1}, X_{2}\right)=\left(Y_{1}, Y_{2}\right)=x
$$

which is the same as

$$
\left.\frac{1}{r}!\left(\frac{\partial}{\partial X_{1}^{\prime}} \frac{\partial}{\partial Y_{2}^{\prime}}-\frac{\partial}{\partial X_{2}^{\prime}} \frac{\partial}{\partial Y_{1}^{\prime}}\right)^{r}\left(f\left(X_{1}^{\prime}, X_{2}^{\prime}\right) g\left(Y_{1}^{\prime}, Y_{2}^{\prime}\right)\right)\right|_{\left(X_{1}^{\prime}, X_{2}^{\prime}\right)=\left(Y_{1}^{\prime}, Y_{2}^{\prime}\right)=s^{-1} X, ~} ^{x}
$$

and hence equal to $\tau_{r}(f, g)\left(s^{-1} x\right)=\left(s \tau_{r}(f, g)\right)(x)$, as required.

```
The map }\mp@subsup{\tau}{r}{}\mathrm{ is non-zero since if
```

$$
f\left(X_{1}, X_{2}\right)=X_{1}^{p} \text { and } g\left(X_{1}, X_{2}\right)=X_{2}^{q}
$$

then

$$
\begin{aligned}
& \partial^{r} f / \partial X_{1}{ }^{r}=p(p-1) \ldots(p-r+1) \quad X_{1} p^{p-r} \text { and } \\
& \partial^{r} g / \partial X_{2}^{r}=q(q-1) \ldots(q-r+1) \quad X_{2}^{q-r},
\end{aligned}
$$

so that

$$
\tau_{r}(f, g)=1 / r!p(p-1) \ldots(p-r+1) q(q-1) \ldots(q-r+1) X_{1}^{p-r} X_{2}^{q-r} \neq 0
$$

(2) By Clebsch-Gordan,

$$
C_{p} \otimes C_{q} \cong \oplus_{r=0}^{\min (p, q)} C_{p+q-2 r} .
$$

Since the summands on the RHS are simple and non-isomorphic,

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(C_{p} \otimes C_{q^{\prime}} C_{p+q-2 r}\right)=1,
$$

so any map is a multiple of τ_{r}.
(3) Combine (2) with Clebsch-Gordan.

We shall need the following technical lemma later.

Lemma 2. If $p, q, n, r \in \mathbb{N}$ and $r \leq \min (q, n)$ then setting $N=\max (0, r-p)$, there are $a_{N}, \ldots, a_{r} \in \mathbb{C}$, with $a_{r} \neq 0$, such that

$$
\mathrm{f} \tau_{\mathrm{r}}(\mathrm{~g}, \mathrm{~h})=\sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{r}} \mathrm{a}_{\mathrm{k}} \tau_{\mathrm{k}}\left(\tau_{\mathrm{r}-\mathrm{k}}(\mathrm{f}, \mathrm{~g}), \mathrm{h}\right)
$$

for all $f \in C_{p}, g \in C_{q^{\prime}} h \in C_{n}$.

Remark. Realizing that the left hand side can be rewritten as $\tau_{0}\left(f, \tau_{r}(g, h)\right)$ this lemma expresses a sort of associativity for the τ_{i}. In fact there are many formulae of this nature; see the chapter on Gordan's Series in [Grace and Young]. In particular one may also find expressions for the coefficients a_{k} there.

Proof. We have an isomorphism of $\mathbb{C G}$-modules

$$
\begin{aligned}
& C_{p} \otimes C_{q} \otimes C_{n} \xrightarrow{\left(\tau_{i} \otimes 1\right)} \underset{i=0}{\min (p, q)} C_{p+q-2 i} \otimes C_{n} \\
& \xrightarrow{\left(\tau_{k}\right)} \underset{\substack{\text { in } \\
i=0}}{\min (p, q)} \quad \underset{k=0}{\oplus \rightarrow(n, p+q-2 i)} C_{p+q+n-2 i-2 k}
\end{aligned}
$$

By Schur's Lemma, any $\mathbb{C G}$-module map

$$
C_{p} \otimes C_{q} \otimes C_{n} \longrightarrow C_{p+q+n-2 r}
$$

is a linear combination of the maps $\tau_{k} \circ\left(\tau_{i} \otimes 1\right)$ with

$$
i+k=r, 0 \leq i \leq \min (p, q) \text { and } 0 \leq k \leq \min (n, p+q-2 i)
$$

With our assumptions this condition is just

$$
\mathrm{N} \leq \mathrm{k} \leq \mathrm{r} \text { and } \mathrm{i}=\mathrm{r}-\mathrm{k}
$$

In particular this holds for the map

$$
C_{p} \otimes C_{q} \otimes C_{n} \longrightarrow C_{p+q+n-2 r}, f \otimes g \otimes h \longmapsto f \tau_{r}(g, h)
$$

so there are $a_{k} \in \mathbb{C}$ as required.

Now suppose that $a_{r}=0$. Set

$$
f=x_{1}^{p} \quad g=x_{1}^{q} \quad h=x_{2}^{r}
$$

Then

$$
\tau_{i}(f, g)= \begin{cases}\mathrm{X}_{1}^{\mathrm{p}+\mathrm{q}} & (\mathrm{i}=0) \\ 0 & (\text { else })\end{cases}
$$

so the right hand side is zero. On the other hand

$$
\begin{aligned}
\tau_{r}(g, h) & =\frac{1}{r!} \frac{\partial^{r} g}{\partial X 1} r \frac{\partial^{r} h}{\partial X 2^{r}} r=\frac{1}{r!} q(q-1) \ldots(q-r+1) X_{1}^{q-r} n(n-1) \ldots(n-q+1) X_{2}^{n-r} \\
\text { so } f \tau_{r}(g, h) & \neq 0, \text { a contradiction. }
\end{aligned}
$$

Notation. Fix $n \in \mathbb{N}$.
(1) Let $R=\mathbb{C}\left[C_{n} \oplus V\right]$. Thus R^{G} is the set of covariants of C_{n}.
(2) If $\phi \in R$ and $f \in C_{n}$, define $\phi(f) \in \mathbb{C}[V]$ by $\phi(f)(x)=\phi(f, x)$.
(3) If $r \in \mathbb{N}$ and $\phi, \psi \in R$, then $\tau_{r}(\phi, \psi)$ denotes the map

$$
\mathrm{C}_{\mathrm{n}} \oplus \mathrm{~V} \longrightarrow \mathbb{C}, \quad(\mathrm{f}, \mathrm{x}) \longmapsto \tau_{\mathrm{r}}(\phi(\mathrm{f}), \psi(\mathrm{f}))(\mathrm{x}) .
$$

(4) If $d, i \in \mathbb{N}$ let $R_{d i}$ be the set of $\phi \in R$ which are homogeneous, of degree d in C_{n} and degree i in V. Thus the elements of $R_{d 0}$ are invariants and $e v \in R_{1 n}$.

Lemma 3. If $r \in \mathbb{N}$ and $\phi, \psi: C_{n} \oplus \mathrm{~V} \longrightarrow \mathbb{C}$ are covariants, then so is

$$
\tau_{r}(\phi, \psi): C_{n} \oplus V \longrightarrow \mathbb{C}, \quad(f, x) \longmapsto \tau_{r}(\phi(f), \psi(g))(x)
$$

Proof. Follows from Lemma 1.

Lemma 4.

(2) $R_{d i} R_{e j} \subseteq R_{d+e, i+j}$ and $\tau_{r}\left(R_{d i}, R_{e j}\right) \subseteq R_{d+e, i+j-2 r}$ for $r \leq m i n(i, j)$.
(3) The assignment $\phi \longmapsto(f \vdash \rightarrow \phi(f))$ induces an isomorphism

$$
R_{d i}^{G} \cong \operatorname{Hom}_{\mathbb{C}}, d\left(C_{n}, C_{i}\right)
$$

In particular

$$
R_{0 i}^{G}=\left\{\begin{array}{ll}
\mathbb{C} .1 R & (i=0) \\
0 & (i \neq 0)
\end{array} \text { and } \quad R_{1 i}^{G}= \begin{cases}\mathbb{C} . e v & (i=n) \\
0 & (i \neq n)\end{cases}\right.
$$

Proof.
(1), (2) Clear.
(3) The assignment $\phi \longmapsto(f \longmapsto \phi(f))$ induces an isomorphism
$\left.R_{d i} \longrightarrow H_{\mathbb{C}}, d^{\left(C_{n}\right.}, C_{i}\right)$ of $\mathbb{C G}$-modules, and the assertion follows after taking fixed points. Now
$R_{0 i}^{G} \cong C_{i}^{G} \cong \operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}, C_{i}\right)=\operatorname{Hom}_{\mathbb{C} G}\left(C_{0}, C_{i}\right) \quad$ and $\quad R_{1 i}^{G} \cong \operatorname{Hom}_{\mathbb{C} G}\left(C_{n}, C_{i}\right)$
and the dimensions of these are known since the C_{i} are non-isomorphic simple $\mathbb{C} G-m o d u l e s$.

Lemma 5. Any covariant $\theta \in \mathrm{R}_{\mathrm{di}}^{\mathrm{G}}(\mathrm{d} \geq 1)$ can be expressed as a linear combination

$$
\theta=\sum_{r=0}^{\min (n, i)} \tau_{n-r}\left(\phi_{r}, \mathrm{ev}\right)
$$

with $\phi_{r} \in R_{d-1, n+i-2 r}^{G}$.

Proof. Using the correspondence in Lemma 4, we need to prove the surjectivity of the map

$$
\alpha: \quad \underset{r=0}{\min (n, i)} \operatorname{Hom}_{\mathbb{C G}, \mathrm{d}-1}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}+\mathrm{i}-2 r}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C} G, d}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{\mathrm{i}}\right)
$$

which sends $\phi \in \operatorname{Hom}_{\mathbb{C} G, d-1}\left(C_{n}, C_{n+i-2 r}\right)$ to the map

$$
f \longmapsto \tau_{n-r}(\phi(f), f)
$$

If $\delta_{d-1}: C_{n} \longrightarrow T^{d-1} C_{n}, f \longmapsto f \otimes \ldots \otimes f$ denotes the diagonal map, then composition with δ_{d-1} gives a homomorphism

and it suffices to prove that $\alpha \circ \beta$ is surjective.

For $r \leq i$ we have non-zero \mathbb{C}-module maps

$$
C_{n+i-2 r} \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(C_{n}, C_{i}\right), f \longmapsto\left(g \longmapsto \tau_{n-r}(f, g)\right)
$$

and since by Clebsch-Gordan we have an isomorphism

$$
\operatorname{Hom}_{\mathbb{C}}\left(C_{n}, C_{i}\right) \cong C_{n}^{*} \otimes C_{i} \cong C_{n} \otimes C_{i} \cong{\underset{r=0}{\oplus} \cong}_{\min (n, i)} C_{n+i-2 r} .
$$

it follows that these maps combine to give an isomorphism

$$
\underset{r=0}{\min (n, i)} C_{n+i-2 r} \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(C_{n}, C_{i}\right) .
$$

Applying $\operatorname{Hom}_{\mathbb{C}}\left(T^{d-1} C_{n},-\right)$ to this and using the isomorphism

$$
\operatorname{Hom}_{\mathbb{C}}\left(T^{d-1} C_{n}, \quad \operatorname{Hom}\left(C_{n}, C_{i}\right)\right) \cong \operatorname{Hom}_{\mathbb{C}}\left(T^{d} C_{n}, C_{i}\right)
$$

gives an isomorphism

$$
\underset{r=0}{\min (n, i)} \operatorname{Hom}_{\mathbb{C}}\left(T^{d-1} C_{n}, C_{n+i-2 r}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(T^{d} C_{n}, C_{i}\right) .
$$

which sends $\psi \in \operatorname{Hom}_{\mathbb{C}}\left(T^{d-1} C_{n}, C_{n+i-2 r}\right)$ to the map

$$
\mathrm{f}_{1} \otimes \ldots \otimes \mathrm{f}_{\mathrm{d}} \longmapsto \tau_{\mathrm{n}-\mathrm{r}}\left(\psi\left(\mathrm{f}_{1} \otimes \ldots \otimes \mathrm{f}_{\mathrm{d}-1}\right), \mathrm{f}_{\mathrm{d}}\right) .
$$

Taking G-fixed points now gives an isomorphism

By polarization, composition with δ_{d} induces a surjection

$$
\zeta: \operatorname{Hom}_{\mathbb{C G}}\left(\mathrm{T}^{\mathrm{d}_{\mathrm{n}}}, \mathrm{C}_{\mathrm{i}}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C}}, \mathrm{d}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{\mathrm{i}}\right) .
$$

Now $\alpha \circ \beta=\zeta \circ \gamma$ is surjective, as required.

Theorem (Gordan. A weak form of Gordan's famous theorem).
If T is a \mathbb{C}-subalgebra of R^{G} with the property that $\tau_{r}(\phi, e v) \in T$ whenever $r \in \mathbb{N}$ and $\phi \in T$, then $T=R^{G}$.

Proof. By definition $1_{R} \in T$, so each $R_{0 i_{G}}^{G} \subseteq T$. If $R_{d-1, i}^{G} \subseteq T$ for all i, then by Lemma 5, $R_{d i}^{G} \subseteq T$ for all i. Thus $R^{G} \subseteq T$.

Remark. We shall use this to find a set of generators of R^{G} in case $n=3$ and $n=4$, but we need to be more precise, and we need a preliminary lemma.

Lemma 6. If $\phi \in R_{d p}^{G}, \psi \in R_{e q}^{G}$ and $r \leq \min (q, n)$, then

$$
\tau_{\mathrm{r}}(\phi \psi, \mathrm{ev})=\alpha \phi \tau_{\mathrm{r}}(\psi, \mathrm{ev})+\sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{r}-1} \tau_{\mathrm{k}}\left(\theta_{\mathrm{k}}, \mathrm{ev}\right)
$$

where $N=\max (0, r-p)$, for some $\alpha \in \mathbb{C}$ and $\theta_{k} \in R_{d+e, p+q+2 k-2 r}^{G}$.

Proof. By Lemma 2, $\phi \tau_{r}(\psi, \mathrm{ev})$ is a linear combination of the covariants $\tau_{\mathrm{k}}\left(\tau_{\mathrm{r}-\mathrm{k}}(\phi, \psi)\right.$,ev) with $\mathrm{N} \leq \mathrm{k} \leq \mathrm{r}$, and the coefficient of the term with $\mathrm{k}=\mathrm{r}$ is non-zero. This term is $\tau_{r}(\phi \psi, e v)$, so we can turn the equation around, and write

$$
\tau_{\mathrm{r}}(\phi \psi, \mathrm{ev})=\alpha \phi \tau_{\mathrm{r}}(\psi, \mathrm{ev})+\sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{r}-1} \alpha_{\mathrm{k}} \tau_{\mathrm{k}}\left(\tau_{\mathrm{r}-\mathrm{k}}(\phi, \psi), \mathrm{ev}\right)
$$

Setting

$$
\theta_{\mathrm{k}}=\alpha_{\mathrm{k}}^{\tau_{\mathrm{r}-\mathrm{k}}}(\phi, \psi) \in \mathrm{R}_{\mathrm{d}+\mathrm{e}, \mathrm{p}+\mathrm{q}+2 \mathrm{k}-2 \mathrm{r}^{\prime}}
$$

the assertion follows.

Example (Covariants of cubic forms). If $n=3$, then R^{G} is generated by the covariants
$e v \in R_{13}^{G}$
$H=\tau_{2}(e v, e v)$, the Hessian, in R_{22}^{G}.
$t=\tau_{1}(\mathrm{H}, \mathrm{ev}) \in \mathrm{R}_{33}^{\mathrm{G}}$
$D=\tau_{3}(t, e v)$, the discriminant $(\times 48)$, in R_{40}^{G}.

Proof. Let T be the \mathbb{C}-subalgebra of R^{G} generated by ev, H, t and D. We must show that $T=R^{G}$. As before, $R_{0 i}^{G} \subseteq T$ for all i. Suppose by induction that

$$
R_{d^{\prime}, i}^{G} \subseteq T \text { for all i and all } d^{\prime}<d
$$

We have to show that $R_{d i}^{G} \subseteq T$ for all i. By Lemma 5, it suffices to prove for all $0 \leq r \leq n$ the property
$\left(P_{r}\right) \quad \tau_{r}(\phi, e v) \in T$ for all $\phi \in R_{d-1, j}^{G}$ with $j \geq r$.
$\left(\mathrm{P}_{0}\right)$ is trivial: by the induction on d we have $\phi \in$ T. Thus

$$
\tau_{0}(\phi, \mathrm{ev})=\phi . \mathrm{ev} \in \mathrm{~T}
$$

Now suppose that $0<r \leq n$ and that (P_{r}, is true for all $r^{\prime}<r$. We have to prove $\left(\mathrm{P}_{\mathrm{r}}\right)$. Again $\phi \in \mathrm{T}$, so ϕ is a linear combination of monomials

$$
e v^{x} H^{Y} t^{z} D^{w} \in R_{x+2 y+3 z+4 w}^{G}, 3 x+2 y+3 w^{\prime}
$$

and it suffices to prove (P_{r}) when ϕ is a monomial. There are two cases.

Case 1. If the monomial decomposes as a product

$$
\phi=\phi_{1} \phi_{2} \text { where } \phi_{2} \in \mathrm{R}_{\text {eq }}^{G} \text { with } q \geq r \text { and } e<d-1
$$

By Lemma 6 we have

$$
\tau_{r}(\phi, e v)=\alpha \phi_{1} \tau_{r}\left(\phi_{2}, e v\right)+\sum_{k=N}^{r-1} \tau_{k}\left(\theta_{k^{\prime}}, e v\right) \quad\left(\theta_{k} \in R_{d-1, j+2 k-2 r}^{G}\right)
$$

Now $\tau_{k}\left(\theta_{k}, e v\right) \in T$ by property $\left(P_{k}\right)$, and $\tau_{r}\left(\phi_{2}, e v\right) \in R_{e+1, q+n-2 r}^{G} \subseteq T$ by the induction on d. Thus $\tau_{r}(\phi, e v) \in T$.

Case 2. If ϕ does not decompose, there are only the following cases
(a) $\phi=e v, r=1,2,3$.
(b) $\quad \phi=H, \quad r=1,2$.
(c) $\phi=t, \quad r=1,2,3$.
(d) $\quad \phi=H^{2}, r=3$.

Namely, suppose that ϕ is not one of these. Since $r \leq n=3$, if ev, t or H^{2} occurs in ϕ this factor can be removed. Thus $\phi=D^{W}$ or $\phi=H . D^{W}$. In the first case $r=0$, but this has been dealt with; in the second case $r \leq 2$, so this decomposes unless $w=0$.

Now
(a1) $\tau_{1}(\mathrm{ev}, \mathrm{ev})=0$ since 1 is odd.
(a2) $\tau_{2}(e v, e v)=H \in T$ by definition.
(a3) $\tau_{3}(\mathrm{ev}, \mathrm{ev})=0$ since 3 is odd.
(b1) $\tau_{1}(\mathrm{H}, \mathrm{ev})=\mathrm{t} \in \mathrm{T}$ by definition.
(b2) $\tau_{2}(\mathrm{H}, \mathrm{ev})=0$ by calculation.
(c1) $\tau_{1}(t, \mathrm{ev})=-3 / 2 \mathrm{H}^{2} \in \mathrm{~T}$ by calculation.
(c2) $\tau_{2}(t, e v)=0$ by calculation.
(c3) $\tau_{3}(t, e v)=D \in T$ by definition.
(d3) $\tau_{3}\left(\mathrm{H}^{2}, \mathrm{ev}\right)=0$ by calculation.

The calculations are tedious, but not "difficult". For example, if

$$
f=a_{0} X_{1}^{3}+a_{1} X_{1}^{2} X_{2}+a_{2} X_{1} X_{2}^{2}+a_{3} X_{2}^{3}
$$

then

$$
\begin{aligned}
H(f) & =\left|\begin{array}{ll}
6 a_{0} x_{1}+2 a_{1} x_{2} & 2 a_{1} x_{1}+2 a_{2} x_{2} \\
2 a_{1} x_{1}+2 a_{2} x_{2} & 6 a_{3} x_{2}+2 a_{2} x_{1}
\end{array}\right| \\
& =\left(12 a_{0} a_{2}-4 a_{1}^{2}\right) x_{1}^{2}+\left(36 a_{0} a_{3}-4 a_{1} a_{2}\right) x_{1} x_{2}+\left(12 a_{1} a_{3}-4 a_{2}^{2}\right) x_{2}^{2} .
\end{aligned}
$$

so

$$
\tau_{2}(\mathrm{H}, \mathrm{ev})(\mathrm{f})=\tau_{2}(\mathrm{H}(\mathrm{f}), \mathrm{f})
$$

$$
\begin{aligned}
& =\frac{1}{2} \frac{\partial^{2} H_{1}^{2}}{\partial x_{1}^{2}} \frac{\partial^{2} f}{\partial x_{2}^{2}}-\frac{\partial^{2} H}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+\frac{1}{2} \frac{\partial^{2} H}{\partial x_{2}^{2}} \frac{\partial^{2} f}{\partial x_{1}^{2}} \\
& =\left(12 a_{0} a_{2}-4 a_{1}\right)\left(2 a_{2}^{2} x_{1}+6 a_{3} x_{2}\right)-\left(36 a_{0} a_{3}-4 a_{1} a_{2}\right)\left(2 a_{1} x_{1}+2 a_{2} x_{2}\right) \\
& \\
& +\left(12 a_{1} a_{3}-4 a_{2}^{2}\right)\left(6 a_{0} x_{1}+2 a_{1} x_{2}\right)
\end{aligned}
$$

$=0$.

Remark. Associated with the symbolic method there is a symbolic notation which makes the calculations easier, but still non-trivial. See [Grace and Young], or indeed any old text on invariant theory.

Exercise (Covariants of quartic forms). Take $n=4$, and consider the covariants

$$
\mathrm{ev}, \mathrm{H}=\tau_{2}(\mathrm{ev}, \mathrm{ev}), \mathrm{i}=\tau_{4}(\mathrm{ev}, \mathrm{ev}), \mathrm{t}=\tau_{1}(\mathrm{H}, \mathrm{ev}), \mathrm{j}=\tau_{4}(\mathrm{H}, \mathrm{ev}) .
$$

Which $R_{d i}$ do they lie in? Show that they generate R^{G}, using the calculations

```
\(\tau_{2}(\mathrm{H}, \mathrm{ev})\) is a multiple of i.ev.
\(\tau_{3}(\mathrm{H}, \mathrm{ev})=0\).
\(\tau_{1}(t, e v)\) is a linear combination of \(H^{2}\) and i.ev \({ }^{2}\).
\(\tau_{2}(\mathrm{t}, \mathrm{ev})=0\).
\(\tau_{3}(t, e v)\) is a linear combination of i.H and j.ev.
\(\tau_{4}(\mathrm{t}, \mathrm{ev})=0\).
```

Remark. In Sylvester's Collected Works one can find tables of details about higher degree forms. For example one has

Degree of binary form	0	1	2	3	4	5	6	7	8	9	10
Number of generators needed for covariants	0	1	2	4	5	23	26	124	69	415	475

