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Abstract

In this thesis, we investigate two ways of generalising the preprojective algebra.

First, we introduce the multiplicative preprojective algebra, Λq(Q), which

is a multiplicative analogue of the deformed preprojective algebra, introduced

by Crawley-Boevey and Holland. The special case q = 1 is the undeformed

multiplicative preprojective algebra, which is an analogue of the ordinary (un-

deformed) preprojective algebra. We adapt the middle convolution operation

of Dettweiler and Reiter to construct reflection functors, which are used to de-

termine the possible dimension vectors of simple modules for Λq(Q). We show

that Λq(Q) is finite dimensional if Q is Dynkin, and that e1Λ1(Q)e1 is a com-

mutative integral domain of Krull dimension 2 if Q is extended Dynkin with

1 an extending vertex. The proofs of these results depend on applying the re-

duction algorithm as described by Bergman, which is recalled in the appendix.

We conjecture that the undeformed multiplicative preprojective algebra is a

‘preprojective algebra’ in the sense of Gelfand and Ponomarev, in that as a

KQ-module, it is isomorphic to the direct sum of the indecomposable prepro-

jective KQ-modules.

Second, we extend the notion of a preprojective algebra of a quiver to the

notion of a preprojective algebra for a quiver with relations. Our results show

that for any Nakayama algebra A, there exists an algebra P (A) such that P (A)

is isomorphic to the direct sum of all indecomposable A-modules.
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4.6 Type Ãn, n > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Type D̃n, n > 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Further Investigations 98

5.1 Are Λ and Π isomorphic as KQ-modules? . . . . . . . . . . . . . 98

5.2 Are Λ and Π isomorphic as algebras? . . . . . . . . . . . . . . . . 126

5.3 Other questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Preprojective algebras for quivers with relations 130

6.1 Pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Proof of Main Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Proof of Main Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Nakayama algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A The Reduction Algorithm 154

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Reduction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Modifying reduction systems . . . . . . . . . . . . . . . . . . . . 158

A.4 The Diamond Lemma . . . . . . . . . . . . . . . . . . . . . . . . 160

A.5 How this works in practice. . . . . . . . . . . . . . . . . . . . . . 161

A.6 Orderings for reduction systems . . . . . . . . . . . . . . . . . . . 165

Bibliography 168

iv



Chapter 1

Introduction

1.1 Background

In recent decades, the representation theory of quivers has played a fundamental

role in the theory of finite dimensional algebras. The first major result was ob-

tained by Gabriel [17], when he showed that the indecomposable representations

of Dynkin quivers were in correspondence with the root systems of the corre-

sponding Lie algebra (this was generalised to all quivers by Kac [21]). Thus the

only quivers with finitely many indecomposable representations are the Dynkin

quivers. A number of techniques for studying quiver representations were devel-

oped in the 1970’s, including the reflection functors of Bernstein, Gelfand and

Ponomarev, Coxeter functors and the Auslander-Reiten translation.

The notion of a preprojective algebra was introduced by Gelfand and Pono-

marev [18]. Their aim was to construct an algebra which contains the path

algebra as a subalgebra and is isomorphic to the direct sum of the indecompos-

able preprojective modules for the path algebra, and thus one easily obtains the

indecomposable representations of the quiver. This work was subsequently gen-

eralised by Dlab and Ringel [14]. Preprojective algebras had many connections

with the known tools of representation theory. For example they had been used

implicitly in work by Riedtmann on Coxeter functors [26], and the definition of

the preprojective algebra involves relations resembling the mesh relations of the

Auslander-Reiten quiver. Indeed later, an alternative definition was proposed
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by Baer, Geigle and Lenzing [3], which defined the preprojective algebra directly

in terms the Auslander-Reiten translate. It was eventually proved by Ringel [28]

that the two definitions were the same, although this had always been generally

accepted.

Besides being used to study representations of quivers, the preprojective

algebra was found to appear naturally in a wide variety of situations. These

applications include work by Lusztig on quantum groups [23], [24], Kronheimer’s

work on differential geometry [22], and in particular Kleinian singularities. In

order to study deformations of Kleinian singularities, the deformed preprojective

algebra was introduced by Crawley-Boevey and Holland [10].

More recently, the deformed preprojective algebra was used by Crawley-

Boevey [9] to solve the additive Deligne-Simpson problem, which asks for so-

lutions to equations involving sums of matrices. This problem has connections

with Fuchsian systems of ordinary differential equations.

The aim of this thesis is to investigate the question, “Is it possible to ‘gener-

alise’ the notion of a preprojective algebra?”. Of course, this question is rather

vague, as ‘generalise’ has at least two different meanings in this context. One

can form algebras closely related to preprojective algebras by using similar con-

structions (e.g. by taking a quotient of the path algebra of the double of the

quiver by a similar relation). In particular, we look for a multiplicative analogue

of the deformed preprojective algebra which can be applied to study the multi-

plicative Deligne-Simpson problem. Alternatively, one can seek a preprojective

algebra for a quiver with relations in the spirit of Gelfand and Ponomarev,

namely, construct an algebra which contains the path algebra modulo the rela-

tions as a subalgebra, and decomposes as a direct sum of the indecomposable

‘preprojective’ modules for this algebra.

1.2 Basic definitions

In this section, we give a brief overview of quivers, representations and root

systems, introducing the notation which will be used, and stating some well
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known results. First we state some conventions. Throughout, K denotes an al-

gebraically closed field. An algebra is a K-vector space equipped with a bilinear

associative product, and is always assumed to have an identity element. Mod-

ules will typically be left modules, and are usually finite dimensional. Functions

are always written on the left, so that θφ means ‘first apply φ, then θ’. If r is an

element of an algebra, then Ir denotes the ideal generated by r, and similarly

if R is a set of elements or relations, then IR denotes the ideal generated by R.

Quivers. A quiver Q = (Q0, Q1, h, t) consists of a set Q0 of vertices, a set

Q1 of arrows, and functions t, h : Q1 → Q0. For each a ∈ Q1, the vertices

t(a), h(a) are called the tail and head of a respectively (alternatively start/end

or initial/terminal vertex etc.). We assume that the sets Q0, Q1 are finite. The

underlying graph of Q is the graph obtained by ‘forgetting’ the orientation. If v

is a vertex such that no arrow starts (ends) at v, then v is called a sink (source).

A quiver is bipartite if every vertex is a source or a sink. Quivers are typically

given as diagrams, with vertices represented by dots, and arrows pointing from

the tail to the head, e.g.

s s
s

s
s
Q

QQs

�
��3

- -

c

d
a b

1 2

4

5
3

A path of Q of length n is a word an . . . a1 where each ai ∈ Q1 and h(ai) =

t(ai+1) for i = 1, . . . , n− 1. Additionally for each v ∈ Q0 there is a trivial path

of length zero denoted by ev. For a path p, define h(p), t(p) by h(ev) = t(ev) = v

for trivial paths and t(an . . . a1) = t(a1), h(an . . . a1) = h(an). An oriented cycle

of a quiver is a non trivial path with h(p) = t(p). In the above quiver, the paths

are e1, e2, e3, e4, e5, a, b, c, d, ba, cb, db, cba, dba, and there are no oriented cycles.

Path algebras. Given a quiver Q, there is a path algebra KQ, which is the
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algebra whose basis is the set of paths of Q, and the multiplication of paths p1

and p2 is defined to be the concatenation p1p2 if h(p2) = t(p1), and zero oth-

erwise. This can easily be seen to be an associative product, and the element
∑

v∈Q0
ev is the identity. The (ev)v∈Q0 are a complete set of primitive orthog-

onal idempotents. It is easy to see that the path algebra is finite dimensional if

and only if there are no oriented cycles in Q. The path algebra of the example

quiver is 14 dimensional, and some examples of products are a.e1 = a, e1.a = 0,

d.b = db, d.c = 0 etc.

Representations. A representation X of a quiver Q is given by a vector

space Xv for each v ∈ Q0 and a linear map Xa : Xt(a) → Xh(a) for each a ∈ Q1.

The dimension vector of X , is dimX = (dimXv)v∈Q0 . The support of X is the

set {v ∈ Q0 : Xv 6= 0}. The following diagram indicates a representation of the

example quiver of dimension vector (1,2,2,1,1).

K K2

K

K

K2

Q
QQs

�
��3

- -
( 0 1 )

( 1 0 )

( 1
0 ) ( 1 0

0 1 )

There is an equivalence between the category of KQ-modules and the cat-

egory of representations of Q. Given a left KQ-module M , we define a repre-

sentation X by setting Xv = evM for each v ∈ Q0, and if a : v1 → v2 is an

arrow, Xa : Xv1 → Xv2 is the map which takes m ∈ ev1M to am ∈ ev2M .

Conversely if X is a representation of Q, there is a module M = ⊕Xv, where

ev acts as the projection onto Xv and a : v1 → v2 acts as the composition

M ։ Xv1

Xa−−→ Xv2 →֒ M .

More generally, one can speak of representations of quivers with relations.

Namely, suppose R = {r1, r2, . . . , rk} is a set of elements of KQ such that for

each i there are vertices ui, vi with ri ∈ eui
KQevi

, and let A = KQ/IR. Given
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a representation of Q, one may consider the linear map Xi : Xvi
→ Xui

ob-

tained from the expression of ri by replacing each arrow a by Xa, and each ev

by the identity map 1Xv
. One can identify the category of A-modules with the

category of representations of Q in which the linear maps satisfy the relations

Xi = 0 for all i.

Roots. The Ringel form for a quiver Q is the bilinear form

〈α, β〉 =
∑

v∈Q0

αvβv −
∑

a∈Q1

αh(a)βt(a).

This gives rise to the symmetric bilinear form (−,−) defined by (α, β) = 〈α, β〉+

〈β, α〉, and a quadratic form q defined by q(α) = 〈α, α〉.

If v is a loopfree vertex of Q, there is a reflection si : Z
Q0 → Z

Q0 , defined by

sv(α) = α−(α, ǫv)ǫv, where ǫv is the coordinate vector at v. The Weyl group W

is the subgroup of Aut(ZQ0) generated by the sv, and the fundamental region

is the set

F = {α ∈ N
Q0 : α 6= 0, α has connected support and (α, ǫv) ≤ 0 for all v}.

The real roots for Q are the orbits of ǫv under W , and the imaginary roots are

the elements of the form ±wα, where α ∈ F , w ∈W and a root is a real root or

an imaginary root. It can be shown that if α is a root then either α is positive

(α ∈ N
Q0) or negative (−α ∈ N

Q0).

Observe that q(sv(α)) = q(α), and so if α is a real root, then q(α) = 1, and

if α is an imaginary root, then q(α) ≤ 0.

Dynkin quivers and extended Dynkin quivers. The extended Dynkin

quivers are the quivers whose underlying graph is one of the following graphs,

where the number of vertices is the subscript plus one. In each case, we mark

a dimension vector δ by writing an integer δv instead of a dot to represent a
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vertex.

Ãn, n ≥ 0 1 1 11q q q
@

@
@

�
�

�

D̃n, n ≥ 4

1

1

2 2
�

�
�

@
@

@

q q q
1

1

2
@

@
@

�
�

�

Ẽ6

1 2 3 2 1

2

1

Ẽ7

1 2 3 4 3 2 1

2

Ẽ8

1 2 3 4 5 6 4 2

3

The vertices v for which δv = 1 are called extending vertices. A Dynkin quiver

is a quiver which can be obtained from an extended Dynkin quiver by removing

an extending vertex.
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For all Dynkin quivers, it can be shown that the quadratic form is pos-

itive definite, and thus all roots (of which there are finitely many) are real.

For extended Dynkin quivers, the quadratic form is positive semi-definite, and

q(α) = 0 if and only if α is a multiple of δ. Thus the imaginary roots are the

multiples of δ, and the remaining roots (of which there are infinitely many) are

real.

Theorem 1.2.1. [21] For a loopfree quiver Q, there is an indecomposable rep-

resentation of Q with dimension vector α if and only if α is a positive root. If

α is a positive real root, the indecomposable representation is unique up to iso-

morphism. If α is a positive imaginary root, there are infinitely many pairwise

non-isomorphic modules of dimension vector α.

Representation type. An algebra has finite representation type if there

are only finitely many isomorphism classes of indecomposable modules (other-

wise, it has infinite representation type). From the above, it is evident that a

path algebra KQ has finite representation type if and only if Q is a Dynkin

quiver, a theorem originally due to Gabriel.

Preprojective Modules. For a finite dimensional algebra A, there exist

several competing definitions of a preprojective module. In the case where A is

the path algebra KQ of a quiver, these definitions coincide with the following

definition, which uses the Auslander-Reiten translate τ and its inverse τ− (it can

be shown that τ(M) = DExt1KQ(M,KQ) and τ−(M) = Ext1KQ(DM,KQ)).

An indecomposable module M for A is preprojective (respectively preinjective)

if τn(M) = 0 (respectively if τ−n(M) = 0) for some positive integer n. If

τn(M) 6= 0 for all n ∈ Z then M is regular. If KQ has finite representation type

then all its modules are preprojective and preinjective. If it has infinite repre-

sentation type, then the isomorphism classes of indecomposable preprojective

modules and indecomposable preinjective modules are disjoint and there are an

infinite number of each, as well as an infinite number of isomorphism classes of

indecomposable regular modules.
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Only in Chapter 6 of this thesis does the definition in general become rel-

evant, and then only in the finite type case. We use the definition given by

Auslander and Smalø, [2], which for finite type algebras means all modules are

preprojective and preinjective.

1.3 Preprojective algebras

In this section, we define the preprojective algebra, and state some well known

results.

Definition 1.3.1. Given a quiver Q, the double of Q, denoted by Q, is defined

to be the quiver obtained by adjoining a reverse arrow a∗ for each arrow a of

Q with h(a∗) = t(a) and t(a∗) = h(a). We extend the operation a 7→ a∗ into

an involution on the arrows of Q, by defining (a∗)∗ = a. We define a function

ǫ : Q1 → {−1, 1} by

ǫ(a) =

{
1 if a ∈ Q1

−1 if a∗ ∈ Q1.

There is a grading on KQ defined by assigning trivial paths degree 0, and

the arrows degree 1, which we call the unoriented grading. Alternatively, one

may assign the trivial paths and elements of Q1 degree 0, and the elements of

Q∗
1 degree 1, and this gives rise to an oriented grading. We typically work with

the oriented grading.

Definition 1.3.2. Given a quiver Q, the preprojective algebra Π(Q) is defined

to be the algebra KQ/Iρ, where

ρ =
∑

a∈Q1

ǫ(a)aa∗.

The two gradings on KQ both induce a grading on Π(Q), since in either

case ρ is a homogeneous element.

Definition 1.3.3. Let P (A) be an algebra with a finite dimensional subalgebra

A. P (A) satisfies the preprojective property for A if, as a left (right) A-module,

P (A) ∼=
⊕

M∈Z

M

8



where Z is a set of indecomposable representatives for the category of prepro-

jective left (right) A-modules (i.e. Z contains exactly one module from each

isomorphism class of indecomposable preprojective modules).

Theorem 1.3.4. If Q has no oriented cycles, then Π(Q) has the preprojective

property for KQ.

Thus it follows quickly from Gabriel’s theorem that Π(Q) is finite dimen-

sional if and only if Q is a Dynkin quiver. Note that Π(Q) is not necessarily the

only algebra which satisfies Theorem 1.3.4. For example, with ρ′ =
∑

a∈Q1
aa∗,

one could define the algebra KQ/Iρ′ , which would also satisfy the preprojec-

tive property, and is only known to be isomorphic to the ordinary preprojective

algebra if the quiver is bipartite.

An alternative definition of the preprojective algebra was given by Baer,

Geigle and Lenzing [3]. This is not important for the purposes of this thesis,

but is given for completion, and it also helps understand why the preprojective

algebra has the preprojective property. Given a ring A and an A−A−bimodule

M , let TA(M) be the tensor algebra, which is defined as

TA(M) =
⊕

i≥0

M⊗i,

where M⊗i denotes the i-fold tensor power of M , with M⊗0 = A. The product

of x ∈ M⊗i and y ∈ M⊗j, is defined to be x ⊗ y ∈ M⊗(i+j). One can then

define Π(Q) = TKQ(τ−(KQ)). This algebra has a natural grading, where the

elements of M⊗i are in degree i. This definition is equivalent to Definition 1.3.2,

(see [28]), and the grading coincides with the oriented grading.

If Q is extended Dynkin, then Π(Q) has many interesting properties which

are given in [3]. There is also the following nice description of the ring e1Π(Q)e1

where 1 is an extending vertex. This follows from work by Cassens and Slodowy,

[7] and shows the connection of preprojective algebras to Kleinian singularities.

The equations below are not the traditional equations associated to the Kleinian

singularities (but can be shown to be equivalent after a simple change of vari-

ables), but are written in this way for later comparison.
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Theorem 1.3.5. If Q is extended Dynkin and 1 is an extending vertex, then

e1Π(Q)e1 is a commutative algebra. More precisely,

e1Π(Q)e1 ∼= K[X,Y, Z]/J,

where J is the ideal generated by

Zn+1 +XY if Q type Ãn,

Z2 −XY 2 −XmY if Q type D̃2m,

Z2 −XY 2 +XmZ if Q type D̃2m+1,

Z2 +X2Z + Y 3 if Q type Ẽ6,

Z2 + Y 3 +X3Y if Q type Ẽ7,

Z2 − Y 3 −X5 if Q type Ẽ8.

In order to study deformations of Kleinian singularities, Crawley-Boevey and

Holland introduced the following generalisation of the preprojective algebra.

Definition 1.3.6. [10] Given a quiver Q and a weight λ ∈ KQ0 , the deformed

preprojective algebra Πλ(Q) is defined to be the algebra KQ/Iρλ , where ρλ is

the element
∑

a∈Q1

ǫ(a)aa∗ −
∑

v∈Q0

λvev.

Clearly, the preprojective algebra is the special case λ = 0.

Note that the ideal Iρλ is the same as the ideal generated by the elements

ρλ
v = evρ

λev =
∑

a∈Q1

h(a)=v

aa∗ −
∑

a∈Q1

t(a)=v

a∗a− λvev.

This is helpful when considering representations of Πλ(Q), as they can be iden-

tified with representations of Q in which the linear maps satisfy the following

relation at each vertex v ∈ Q0.

∑

a∈Q1

h(a)=v

XaX
∗
a −

∑

a∈Q1

t(a)=v

X∗
aXa − λv1Xv

= 0.
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The following lemma is easy, but it is helpful to write out a proof, for later

reference.

Lemma 1.3.7. Πλ(Q) is independent of the orientation of Q.

Proof. Suppose Q′ is obtained from Q by removing an arrow b and replacing it

with an arrow c satisfying t(c) = h(b), h(c) = t(b). There is an isomorphism

θ : KQ→ KQ′ which sends each ev to ev, b to −c∗, b∗ to c and each remaining

arrow to itself. Now

θ


∑

a∈Q1

ǫ(a)aa∗ −
∑

v∈Q0

λvev


 =

∑

a∈Q1

a6=b,b∗

ǫ(a)aa∗ − c∗c+ cc∗ −
∑

v∈Q′
0

λvev

=
∑

a∈Q′
1

ǫ(a)aa∗ −
∑

v∈Q′
0

λvev,

and so θ induces an isomorphism Πλ(Q) → Πλ(Q′).

Some important properties of deformed preprojective algebras are given in

[10] and [8]. In the remainder of this section we recall those which are of

particular interest for this thesis.

Theorem 1.3.8. [10] If Q is a Dynkin diagram, then Πλ is finite dimensional.

An important tool for studying the representations of deformed preprojective

algebras are reflection functors. Given a loopfree vertex v ∈ Q0, define rv :

KQ0 → KQ0 as (rv(λ))u = λu − (ǫv, ǫu)λv. This reflection is dual to the

reflection sv, namely, λ.sv(α) = rv(λ).α, where λ.α =
∑

v∈Q0
λvαv.

Theorem 1.3.9. [10] If v is a loopfree vertex of Q with λv 6= 0 there is an

equivalence Ev from the category of representations of Πλ to the category of

representations of Πrv(λ) which acts as sv on dimension vectors.

Theorem 1.3.10. [8] There is a simple representation of Πλ of dimension

vector α if and only if α is a positive root, λ.α = 0, and p(α) =
∑
p(βi) for

any decomposition α =
∑
βi as a sum of two or more positive roots with each

λ.βi = 0 (where p(α) = 1 − q(α)).

11



This classification of the simple modules is used in [9] to solve the additive

Deligne-Simpson problem.

1.4 Main results and thesis layout

As already stated, the aim of this thesis is to generalise the preprojective algebra,

by answering the questions “Is there a multiplicative analogue of the deformed

preprojective algebra?”, and “Given an algebra A presented by a quiver with re-

lations, is it possible to define an algebra P (A) which satisfies Theorem 1.3.4?”.

Of the two questions, we were more successful with the first, and most of the

thesis (Chapters 2,3,4,5) is concerned with the definition and properties of these

algebras. Many of the results of these chapters can be described as the multi-

plicative analogue of a known result for the ordinary preprojective algebra (that

is, we replace Π by Λ, λ by q, and the condition that λ.α = 0 by qα = 1). For

the second question, we were able to define a ‘preprojective algebra’ for a quiver

with certain types of relations. We now describe our main results in more detail.

Chapter 2 is concerned with the definition of the multiplicative preprojective

algebra, and its properties in the general case. This material (other than Section

2.2) is due to be published in [11], where it is used to give a partial solution to

the Deligne-Simpson problem. Given a quiver Q equipped with an ordering <

on the arrows, and an element q ∈ (K∗)Q0 , we define an algebra Λq(Q,<). The

first main result is the following theorem.

Theorem 2.1.3. Λq(Q,<) is independent of the orientation of Q and the or-

dering <.

Thus we can write Λq(Q) instead of Λq(Q,<) (and in the special case of

the undeformed multiplicative preprojective algebra, where qv = 1 for all v, we

write Λ1(Q)). In Section 2.2 we investigate whether Λq(Q) can be defined as a

quotient of KQ, which would be easier than using the given definition (which

involves localising certain elements of KQ). In [11], it was shown that this is the

case for star-shaped quivers (which was the only case necessary for the purpose
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of solving the Deligne-Simpson problem). This is still yet to be fully understood,

but we have obtained some further results. In Section 2.3, we adapt work of

Dettweiler and Reiter [12] to obtain the following multiplicative analogue of

Theorem 1.3.9, thus showing that reflection functors also exist for multiplicative

preprojective algebras. Let tv : (K∗)Q0 → (K∗)Q0 be the reflection given by

tv(q)u = quq
−(ǫu,ǫv)
v . This is dual to the sv, as (tv(q))α = qsi(α), where qα =

∏
v∈Q0

qαv
v .

Theorem 2.3.1. If v is a loopfree vertex of Q with qv 6= 1, there is an equiva-

lence Ev from the category of representations of Λq(Q) to the category of repre-

sentations of Λtv(q)(Q) which acts as sv on dimension vectors.

In Section 2.4 we use reflection functors to prove the following results.

Theorem 2.4.4. If X is a simple representation of Λq(Q) of dimension vector

α, then α is a positive root for Q.

Theorem 2.4.5. Let α be a positive real root for Q. There is a simple rep-

resentation of Λq(Q) of dimension vector α if and only if qα = 1 and there is

no decomposition α =
∑
βi as a sum of two or more positive roots with each

qβi = 1.

These results give evidence towards the truth of the following conjecture,

which if true would be the multiplicative analogue of Theorem 1.3.10. The

truth of this conjecture would lead to a solution of the multiplicative Deligne-

Simpson problem, see [11] for more details, and a proof of one implication.

Conjecture 2.4.1. There is a simple representation of Λq(Q) of dimension

vector α if and only if α is a positive root, qα = 1 and p(α) =
∑
p(βi) for

any decomposition α =
∑
βi as a sum of two or more positive roots with each

qβi = 1.

In chapters 3 and 4 we move on to considering the properties of multiplicative

preprojective algebras in the Dynkin and extended Dynkin case respectively.
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The main results of these chapters are following two theorems, the multiplicative

analogues of Theorems 1.3.8 and 1.3.5 respectively.

Theorem 3.1.1. If Q is a Dynkin quiver, then Λq(Q) is finite dimensional.

Theorem 4.1.1. If Q is extended Dynkin and 1 is an extending vertex, then

e1Λ1(Q)e1 is a commutative algebra. More precisely,

e1Λ1(Q)e1 ∼= K[X,Y, Z]/J,

where J is the ideal generated by

Zn+1 +XY +XY Z if Q type Ãn,

Z2 − pk(X)XZ + pk−1(X)X2Y −XY 2 −XY Z if Q type D̃n,

Z2 +X2Z + Y 3 −XY Z if Q type Ẽ6,

Z2 + Y 3 +X3Y −XY Z if Q type Ẽ7,

Z2 − Y 3 −X5 +XY Z if Q type Ẽ8,

where k = n−4, and the pk are polynomials defined inductively by p−1(X) = −1,

p0(X) = 0 and pi+1(X) = X(pi(X) + pi−1(X)) for i ≥ 1.

Unfortunately the proofs of these results involve a case by case analysis, and

are therefore quite long. It would certainly be desirable to obtain shorter proofs.

At the end of each of these chapters, we include a short section on open problems.

In Chapter 5, we investigate some further open questions regarding multi-

plicative preprojective algebras, in particular whether Λ1(Q) is a ‘preprojective

algebra’ in the sense of satisfying Theorem 1.3.4. If this was true in general

then it would perhaps lead to a better understanding (and easier proofs) of the

results of Chapters 3 and 4. We show that the conjecture is true for some small

examples, as well as in the easiest infinite type case.

Theorem 5.1.4. Let Q be the quiver

s s--
a

b

1 2
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Λ1(Q) has the preprojective property for KQ.

We also consider whether Λ1(Q) and Π(Q) could be isomorphic as algebras,

and list some other interesting questions.

In Chapter 6, we consider the second interpretation of our initial question.

In Section 6.1, we define what is meant by a ‘pairing’, and show that if Q is a

quiver equipped with a pairing Σ, then it gives rise to a quiver QΣ, an ideal IΣ

in the path algebra KQΣ, and an algebra Π(Q,Σ).

Conjecture 6.2.3. If Σ is an ‘end pairing’, and A = KQΣ/IΣ has finite

representation type, then we conjecture that Π(Q,Σ) satisfies the preprojective

property for A.

For a certain type of end pairing, we can prove this conjecture (which is

Theorem 6.2.4). This is done in Sections 6.2-6.4. In Section 6.5 we prove the

following result, which could be said to be the main result of this chapter.

Theorem 6.5.4. If A is a Nakayama algebra, then there is a quiver Q and a

pairing Σ satisfying the conditions of Theorem 6.2.4 such that A ∼= KQΣ/IΣ,

and thus Π(Q,Σ) is an algebra satisfying the preprojective property for A.

It had been hoped that this chapter would lead to slightly better results. For

example, it would be desirable to obtain some results in the case where A has in-

finite representation type, but none of our results apply to this case. It had even

been hoped that one could show that preprojective algebras exist for any finite

dimensional algebra, but we have a counterexample to show the conjecture is not

true if we replaced ‘end pairing’ by ‘pairing’, thus suggesting this is not the case.

Finally, in the appendix, we discuss the ‘reduction algorithm’, which enables

us to find spanning sets (or even bases) for algebras presented by generators

with relations. None of this material is new (the main reference is [4]), but it is

helpful for understanding the proofs in Chapters 3 and 4.
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Chapter 2

The Multiplicative

preprojective algebra

The material in this chapter (except for Section 2.2) appears in [11]. Our aim

is to develop a multiplicative analogue of the deformed preprojective algebra.

After giving a definition in Section 2.1, we explore whether we can give a sim-

pler definition (Section 2.2). We then develop the theory of reflection functors

(Section 2.3), which we use in Section 2.4 to give some conditions regarding the

existence of simple modules.

The study of properties of the algebra for the Dynkin and extended Dynkin

case is reserved for later chapters.

2.1 Definition

Let Q be a quiver, with vertex set Q0, and let q ∈ (K∗)Q0 . We define ǫ : Q1 →

{−1, 1} as in Definition 1.3.1. Choose an ordering < on the set of arrows in

Q, and label the arrows as ai so that a1 < a2 < · · · < an. Given an algebra

homomorphism θ : KQ→ A, we consider the properties (†) and (‡).

(†) θ(1 + aia
∗
i ) is invertible in A for all i.

(‡)

n∏

i=1

(θ(1 + aia
∗
i ))ǫ(ai) =

∑

v∈Q0

θ(qvev).

Definition 2.1.1. [11] The multiplicative preprojective algebra is defined to
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be the algebra Λq(Q,<) equipped with a homomorphism φ : KQ → Λq(Q,<)

which is universal for homomorphisms satisfying (†) and (‡). Namely, φ satisfies

(†) and (‡) and if θ : KQ → A satisfies (†) and (‡), there exists a unique map

ψ : Λq(Q,<) → A such that ψφ = θ. Since it is defined by a universal property,

the multiplicative preprojective algebra is unique up to isomorphism (provided

it exists). The undeformed multiplicative preprojective algebra is the special case

where qv = 1 for all v, and we write Λ1(Q,<).

We now prove the multiplicative preprojective algebra exists by constructing

it. First an easy lemma.

Lemma 2.1.2. If e is an idempotent in a ring A and z ∈ eAe then 1 + z is

invertible if and only if e + z is invertible in eAe. Note that we can replace

‘invertible’ by ‘left invertible’ or ‘right invertible’ throughout.

Given an arrow a of Q, let ra = eh(a) + aa∗ and sa = 1 + aa∗, and let Ql

be the quiver obtained from Q by adjoining a loop la at h(a) for each arrow a

of Q. Let LQ = KQl/J where J is the ideal of KQl generated by the relations

lara − eh(a), rala − eh(a) for all a ∈ Q1. The relations ensure each ra has inverse

la in eh(a)LQeh(a), and by the above lemma, each sa is invertible in LQ, with

inverse la + 1 − eh(a). We can therefore define

µQ,< =

n∏

i=1

sǫ(ai)
ai

−
∑

v∈Q0

qvev ∈ LQ,

and form the quotient LQ/IµQ,<
. We claim that this is equal to the multi-

plicative preprojective algebra. For this we must show that the obvious ho-

momorphism φ : KQ → LQ/IµQ,<
(which clearly satisfies (†) and (‡)) is

universal for homomorphisms θ : KQ → A satisfying (†) and (‡). Given

such a homomorphism, we can define ψ̃ : LQ → A to be the homomorphism

which sends x to θ(x) if x is a trivial path or an arrow of Q, and each la

to (θ(ra))−1, (possible by Lemma 2.1.2 since θ satisfies (†)). This is well

defined since ψ̃(lara) = (θ(ra))−1θ(ra) = θ(eh(a)) = ψ̃(eh(a)), and similarly

ψ̃(rala) = ψ̃(eh(a)). Since ψ̃(µQ,<) =
∏n

i=1(θ(1 + aia
∗
i ))ǫ(ai) −

∑
v∈Q0

θ(qvev)
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(which is zero since θ satisfies (‡)), ψ̃ induces the map ψ : LQ/IµQ,<
→ A which

is clearly uniquely determined.

Theorem 2.1.3. [11] Λq(Q,<) is independent of the orientation of Q and the

ordering <.

Proof. First prove independence of orientation. It clearly suffices to show that

Λq(Q′, <′) ∼= Λq(Q,<) in the case where Q′ is obtained from Q by removing an

arrow c and replacing it with an arrow b with h(b) = t(c), t(b) = h(c), and <′ is

the ordering on the arrows of Q′ obtained from < with c replaced by b∗ and c∗

replaced by b. There is an algebra homomorphism θ : LQ′ → LQ which sends

b to c∗, b∗ to −lcc, lb to rc∗ , lb∗ to rc and sends the remaining arrows, each

remaining la and all trivial paths to themselves. To be well defined, we must

check that for all a ∈ Q′
1, θ(lara − eh(a)) = 0, and θ(rala − eh(a)) = 0. We have

θ(lbrb − eh(b)) = rc∗(eh(c) − c∗lcc) − eh(c∗) = ra∗ − c∗rclcc− eh(c∗) = 0,

θ(rblb − eh(b)) = (eh(c) − c∗lcc)rc∗ − eh(c∗) = ra∗ − c∗lcrcc− eh(c∗) = 0,

and similarly for a = b∗, and for the remaining arrows it is obvious. There is a

map φ : LQ → LQ′ defined similarly, sending c to −b∗lb, c
∗ to b, lc to rb∗ , lc∗

to rb. Since θ(φ(c)) = θ(−b∗lb) = lccrc∗ = lcrcc = c and φ(θ(b∗)) = φ(−lcc) =

rb∗b
∗lb = brblb = b, θ and φ are mutual inverses, and are therefore isomor-

phisms. Clearly θ(µQ′,<′) = µQ,< since θ(1 + bb∗) = 1− c∗lcc = (1 + c∗c)−1 and

θ(1 + b∗b) = 1 − lccc
∗ = (1 + cc∗)−1, and so Λq(Q′, <′) ∼= Λq(Q,<).

We now prove independence of the ordering. First note that IµQ,<
= IµQ,<◦ ,

where <◦ is the ordering with a2 <◦ a3 <◦ · · · <◦ an <◦ a1 (this follows

by conjugating µQ,< by s
ǫ(a1)
a1 ). It therefore suffices to show that Λq(Q,<) ∼=

Λq(Q,<′′), where <′′ is the ordering with a2 <
′′ a1 <

′′ a3 <
′′ · · · <′′ an. If

h(a1) 6= h(a2), then it is trivially true since µQ,< = µQ,<′′ , so assume that

h(a1) = h(a2). If a1 = a∗2, then a1 is a loop, and then Λq(Q,<′′) is the same

as Λq(Q′, <′) where Q′ and <′ are obtained by reversing a1, and the argument

above shows that this is isomorphic to Λq(Q,<).
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So assume that a1 6= a∗2, and by reversing arrows if necessary that ǫ(a1) =

ǫ(a2) = 1. Define an isomorphism θ : LQ → LQ which sends a1 to ra2a1, a∗1

to a∗1la2 , la1 to ra2 la1 la2 and each remaining arrow, each remaining la and each

trivial path to themselves. It is clear that θ(lara−eh(a)) = 0 and θ(rala−eh(a)) =

0 for each arrow a, the only non trivial case being a1, which follows since

θ(ra1 ) = eh(a1) + ra2a1a
∗
1la2 = ra2ra1 la2 .

Since θ(1 + a1a
∗
1)(1 + a2a

∗
2) = (1 + ra2a1a

∗
1la2)(1 + a2a

∗
2) = (1 + a2a

∗
2)(1 + a1a

∗
1)

and θ(1 + a∗1a1) = 1 + a∗1a1, it is clear that θ(µQ,<) = µQ,<′′ , and therefore

Λq(Q,<) ∼= Λq(Q,<′′).

We can therefore write Λq(Q) (or sometimes Λq) instead of Λq(Q,<).

2.2 Alternative definitions

In [11, Lemma 8.1], it is shown that if Q is a star shaped quiver, the multiplica-

tive preprojective algebra can be defined as a quotient of KQ, rather than using

localisation. One can ask whether this is possible for other quivers, and in this

section we investigate this interesting question.

First some notation. For all arrows a of Q, denote eh(a) + aa∗ and 1 + aa∗

by ra and sa respectively. Henceforth ‘ra is invertible’ is taken to mean ‘ra is

invertible in eh(a)Λ
q(Q)eh(a)’. We say an ordering on the set of arrows of Q is

admissible if a ∈ Q1, b∗ ∈ Q1 implies a < b.

Definition 2.2.1. Given an admissible ordering < on the set of arrows of Q, we

define Λ̃q(Q,<) to be KQ/Iµq , where Iµq is the ideal generated by the elements

µq
v =

kv∏

i=1

ravi
− qv

lv∏

i=kv+1

ravi
,

where the avi are the arrows of Q with head at v, labelled so that av1 < av2 <

· · · < av,lv , and kv is the number of arrows of Q with head at v (so each avi with

i > kv is of the form a∗ for some a ∈ Q1 with t(a) = v). The empty product is

taken to be ev. [Note that we can understand ‘µq’ to be the element
∑

v∈Q0
µq

v,

as well as the set {µq
v : v ∈ Q0} since the ideal ‘Iµq ’ is the same in both cases.]
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At first sight, this is perhaps a more natural definition of a ‘multiplicative

preprojective algebra’ (note the similarity with the definition of the of the de-

formed preprojective algebra). However it is almost certainly not the case that

Λ̃q(Q,<) is independent of < (which will be illustrated in Example 2.2.4), and

so the original definition seems the correct one. It is more desirable to speak of

‘the’ multiplicative preprojective algebra for a quiver Q, rather than have one

for each ordering of the arrows, which may or may not be isomorphic to each

other. We are interested in whether or not Λ̃q(Q,<) is isomorphic to the mul-

tiplicative preprojective algebra. Let φ be the natural map KQ → Λ̃q(Q,<),

and make the following definition.

Definition 2.2.2. If φ satisfies (†), then we say < is a good ordering.

Lemma 2.2.3. If < is a good ordering, then Λ̃q(Q,<) ∼= Λq(Q) (via φ).

Proof. Let <′ be the ordering defined as follows,

a <′ b if

{
a < b and b in Q1

b < a and b∗ in Q1.

We show that φ satisfies (‡) for this ordering. Note that if we label the arrows

as in Definition 2.2.1, one has av,lv <
′ av,lv−1 <

′ · · · <′ av,kv+1. In view of this,

we clearly have

∏

a∈Q1

(φ(sa))ǫ(a) =
∑

v∈Q0

(
kv∏

i=1

φ(ravi
)

)(
lv−kv−1∏

i=0

φ(rav,lv−i
)−1

)
.

Using the relations µq
v, this equals

∑

v∈Q0

qv

(
lv∏

i=kv+1

φ(ravi
)

)(
lv−kv−1∏

i=0

φ(rav,lv−i
)−1

)
.

Each φ(ravi
) cancels with a φ(ravi

)−1, so it equals

∑

v∈Q0

φ(qvev).

Hence φ satisfies both (†) and (‡), and is clearly universal.
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In view of Lemma 2.1.2, it is clear that an ordering is good if and only if

each ra is invertible. The key tool for showing that the ra are invertible is the

following property.

(∗) ra is (left/right) invertible if and only if ra∗ is (left/right) invertible.

This follows easily from Lemma 2.1.2 and the fact that if x, y are elements of

a ring such that 1 + xy is invertible, then 1 + yx is also invertible with inverse

1 − y(1 + xy)−1x.

Example 2.2.4. Let Q be the quiver

s s--
c

b

1 2

There are two fundamentally different orderings to consider, < and <′ where

b < c < c∗ < b∗ and c <′ b <′ c∗ <′ b∗. We show that < is good whereas <′

isn’t.

In the first case we have Λ̃q(Q,<) = KQ/Iµ, where Iµ is generated by

q1rc∗rb∗ − e1, rbrc − q2e2. Clearly the relations make rc left invertible and

rc∗ right invertible, and by (∗), both are invertible. Similarly rb and rb∗ are

both invertible and so the ordering is good and by Lemma 2.2.3, Λ̃q(Q,<) is

isomorphic to the multiplicative preprojective algebra.

In the second case, we have A = Λ̃q(Q,<′) = KQ/Iµ′ , where Iµ′ is generated

by q1rc∗rb∗ −e1, rcrb−q2e2. If we attempt a similar argument to the one above,

we can only show the invertibility of each ra on one side. This suggests that

the elements are not all invertible in A, which we now prove by constructing

a representation X of A in which the corresponding linear maps (denoted by

Xra
) are not invertible, and so A is not the multiplicative preprojective algebra

via the natural map. [Of course there may still be a universal map KQ → A

satisfying (†) and (‡), thus making A the multiplicative preprojective algebra.

However, since the natural map fails, this seems highly unlikely.] Note that such

a representation must be infinite dimensional since a linear map between finite

dimensional vector spaces is invertible if it is invertible on one side.
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Let V be the vector space with countable basis {vi : i ∈ N}. Let X be the

representation of Q with X1 = X2 = V ,

Xb = Iq1
−1(S−

q1
−1 − 1V ), Xb∗ = Iq1 ,

Xc = (S+
q2

− 1V )Iq2 , Xc∗ = Iq2
−1 ,

where Iq, S−
q , S+

q are the linear maps defined as follows

Iq(vi) = qivi for all i,

S+
q (vi) = qvi+1 for all i,

S−
q (vi) =

{
0 if i = 0

qvi−1 if i ≥ 1.

Note that Iq−1S+
q Iq = S+

1 since

(Iq−1S+
q Iq)(vi) = qi(Iq−1S+

q )(vi) = qi+1(Iq−1)(vi+1) = vi+1 = S+
1 (vi),

and IqS
−
q Iq−1 = S−

1 since if i > 0 we have

(IqS
−
q Iq−1)(vi) = q−i(IqS

−
q )(vi) = q1−i(Iq)(vi−1) = vi−1 = S−

1 (vi),

and if i = 0, we have (IqS
−
q Iq−1 )v0 = (IqS

−
q )v0 = 0 = S−

1 (v0). We therefore

have

Xrb∗
= 1V +Xb∗Xb = S−

q1
−1 ,

Xrb
= 1V +XbXb∗ = Iq1

−1S−
q1

−1Iq1 = S−
1 ,

Xrc∗
= 1V +Xc∗Xc = Iq2

−1Sq2Iq2 = S+
1 ,

Xrc
= 1V +XcXc∗ = S+

q2
.

Now since S−
q S

+
r = qr1V , we have q1Xrb∗

Xrc∗
= 1V and Xrb

Xrc
= q21V , so X

is a representation of A, but none of the Xra
are invertible.

We would like to obtain a classification of the quivers which have a good

ordering, but this is a difficult problem which remains open. The previous

example is a special case of the following lemma, which is the most general

result we have obtained.
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Lemma 2.2.5. If Q is a bipartite quiver, then Q has a good ordering.

Proof. Choose any ordering on the arrows of Q and label them so that a1 <

a2 < · · · < an. Extend this to an admissible ordering of the arrows of Q:

a < b if and only if





if a ∈ Q1, b ∈ Q1 and a < b,

if a ∈ Q1, b∗ ∈ Q1,

if a∗ ∈ Q1, b∗ ∈ Q1 and b∗ < a∗.

We claim that each ra is invertible in Λ̃q(Q,<). Since every vertex of Q is a

source or a sink, there are no arrows with tail at h(a1). Since a1 is the minimal

arrow, µq

h(a1)
has the form ra1x−qh(a1)eh(a1) for some product x of some rai

with

i > 1. This makes ra1 right invertible. Similarly, the are no arrows with head

at t(a1), and a∗1 is the maximal arrow, so µq

h(a1)
has the form qt(a1)yra1

∗ − et(a),

where y denotes a product of some rai
∗ with i > 1. This ensures that ra1

∗ is

left invertible. Hence both ra1 and ra1
∗ are invertible.

Assuming that rai
and rai

∗ are invertible for all i < k, we show that rak
and

rak
∗ are invertible. By a similar argument to the one above, µq

h(ak) has the form

wrak
x− qh(ak)eh(ak) (where w, x denote a product of some rai

with i < k, i > k

respectively). Using the invertibility of w, Iµq contains rak
xw = qh(ak)eh(ak)

which makes rak
right invertible. Similarly rak

∗ is left invertible, so both are

invertible.

Hence it follows by induction that < is a good ordering.

Along with the result for star-shaped quivers, Lemma 3.3.2, this shows that

good orderings exist for most of the quivers we consider in this thesis (so that

in Chapters 3,4,5, we can always assume that Λq(Q) = KQ/Iµq ). However, this

is far from a complete understanding, as is shown by the following example.

Example 2.2.6. Let Q be the quiver obtained by orienting the complete graph

on vertices 1,2,3,4 so that if a : u→ v is an arrow, u < v. Changing the notation

slightly, for each arrow a : u→ v of Q, let ruv denote the element ev + aa∗. Let
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I be the ideal of KQ generated by the relations

r12r13r14 = q1e1, (2.1)

r24r23 = q2r21, (2.2)

r34 = q3r31r32, (2.3)

e4 = q4r41r43r42. (2.4)

Property (∗) now reads ruv is invertible if and only if rvu is invertible. Using

this, we can work through the quiver and eventually show all the ruv are invert-

ible. From (2.4), r41 is right invertible and from (2.1), r14 is left invertible, so

both are invertible. Since r12 is right invertible by (2.1), so is r21, and then by

multiplying (2.2) by this right inverse, so is r24. Since r42 is left invertible by

(2.4), both r42 and r24 are invertible. It follows that r43 is invertible, and so is

r34. Then multiplying (2.3) by the right inverse of r34 shows that r31 is right

invertible. Using the invertibility of r14 and (2.1) shows r13 is left invertible,

and so both r31 and r13 are invertible. It quickly follows that r12, r21, r32, r23

are all invertible, and so the ordering is good and Λq(Q) ∼= KQ/I.

For simplicity, we now assume that q = 1 (in any case, it seems likely that

the question of whether an ordering is good or not does not depend on q). We

now attack the problem from the other direction, namely, instead of determining

the quivers possessing good orderings, we give examples of quivers for which no

ordering is good. We say such quivers are bad. Unfortunately, it is quite difficult

to prove a quiver is bad, as they must be quite complicated, and checking every

possible ordering is a lengthy process. For example, if we had instead chosen

(2.3) to be r34 = q3r32r31 in the above example, then the ordering is not good,

but we have to work through most of the calculation to show this. Note that

we work under the assumption that if we can’t prove that the rc are invertible

by using (∗), then they aren’t invertible - one can prove it by constructing a

representation as in Example 2.2.4.

The following lemma is useful for obtaining examples of bad quivers.
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Lemma 2.2.7. If a quiver is bad, then all quivers which contain it are bad.

Proof. Let Q be a bad quiver and suppose Q′ contains Q as a subquiver. Given

an ordering <′ on the arrows of Q′, let < be the induced ordering on the arrows

of Q. Since Q is bad, there exists a representation X< of Λ̃(Q,<) in which X<
ra

is not invertible for some arrow a of Q. Let Y < be the representation of Q′

where Y <
v = Xv if v ∈ Q0 and zero otherwise, and let Y <

a = Xa if a ∈ Q1, and

zero otherwise. It is clear that Y < is a representation of Λ̃(Q′, <′) in which Y <
ra

is not invertible. This can be done for all orderings, and so Q′ is bad.

So we can attempt to find the minimal bad quivers, the quivers which are

bad, but all subquivers of them are not. We have obtained the following list.

Minimal Bad Quivers.

1. A quiver of type Ãn, which is oriented cyclically.

2. A quiver of type Ãi,j;m,n, which is a quiver without an oriented cycle with

a source u of outdegree 2, a sink w of indegree 2, a vertex v of indegree 2

and outdegree 2, and all other vertices being outdegree 1 and indegree 1. The

numbers i, j refer to the length of the two paths between u and v, and m,n to

the length of the two paths between v and w. The simplest quiver of this type

is A1,1;1,1, which looks like

s s--
u v

s
w

--

3. There are others, e.g.

s
s

s

s

s
s

@
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�
�
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�
�

�
�7

-

S
S

S
S

S
Sw

-

�
�

��

@
@

@R

Of course, the multiplicative preprojective algebra depends only on the un-

derlying graph of Q (see Theorem 2.1.3), and it is possible to reorient the above
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quivers (other than the loop) so that they have good orderings. One might

conjecture that, given any graph without loops, one can find an orientation Q

with a good ordering <, and thus one can define the multiplicative preprojective

algebra as Λ̃q(Q,<). However this is not the case. We say a graph is bad if any

orientation of it is bad. The following graphs are bad because any orientation

must contain one of the bad quivers above as a subquiver.

Bad Graphs.

1. The graph on three vertices, with two edges between each vertex (any orien-

tation must contain an oriented cycle or Ã1,1;1,1).

2. The complete graph K5. Any orientation without oriented cycles must have a

source and a sink (labelled 1 and 5 say). Consider the remaining three vertices,

any non cyclic orientation of the three arrows between them must determine a

relative source 2 and a relative sink 4. Labelling the remaining vertex 3, we

have a bad subquiver Ã1,2;1,2:

s s s

s s

- -�
�

�
��@

@
@
@R�

�
�
��@

@
@
@R

1 3 5

2 4

3. An orientation of the following graph must contain either an oriented cycle,

Ã1,1;1,1, Ã1,1;1,2 or Ã1,2;1,1.

s
s s

s

�����

�����

HHHHH
HHHHH
















J
J

J
J

J
J

J

It is possible that these graphs have some graph-theoretic property which

may give rise to a characterisation (the presence of K5 suggests this), but we

have not be able to see it.
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Going back to the question raised at the start of the section, we have been

interpreting the question ‘Can we define Λ(Q) as a quotient of KQ?’ in a re-

stricted way, by effectively the condition ‘by an ideal generated by the obvious

multiplicative relation at each vertex’. This is the natural question to investi-

gate, but it is interesting to answer question without this restriction, especially

since we can obtain the nice answer that it is possible for all quivers without

loops (with the drawback being that in practice it will be difficult to write

down exactly what the quotient is). In the case where Q does contain a loop

then little can be done, e.g., if Q consists of one vertex v and a loop a, then

KQ ∼= K〈a, a∗〉. If one takes the quotient by the relation µ1
v = aa∗ − a∗a,

the algebra obtained is the commutative ring in two variables, which is already

smaller than Λ1(Q) ∼= K[x, y, (1 + xy)−1].

Theorem 2.2.8. If Q has no loops, Λq(Q) is isomorphic to a quotient of KQ.

Proof. Since Λq(Q) is independent of ordering and orientation, we can assume

that Q has no oriented cycles (this would obviously be impossible if Q had a

loop), and choose an admissible ordering <. We define an ideal J of Q as being

generated by a set of elements {µvj : v ∈ Q0, 1 ≤ j ≤ lv}, where lv is the

number of arrows of Q with head at v (except in the case that v is a source,

when lv = 1). These elements are defined in the course of the proof. Eventually

we show that Λq(Q,<) is isomorphic to KQ/J .

Define a k-sink to be a vertex v where the maximal length of a path starting

at v is k (so that a 0-sink is just a sink). At stage k we write down the µvj

where v is a k-sink.

Stage 0.

Since Q has no oriented cycles, it has a 0-sink v. We label the arrows of Q with

head at v so that a1 < · · · < alv . Let j be in the range 1, . . . , lv and define

µvj = raj
raj+1 . . . ralv

ra1 . . . raj−1 − qvev.

Let

lai
= q−1

v raj+1 . . . ralv
ra1 . . . raj−1 ,
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and since J contains both µvi = qvrai
lai

− qvev and µv,i+1 = qvlai
rai

− qvev, we

see lai
is the inverse of rai

in ev(KQ/J)ev. Repeat with all other 0-sinks.

Stage k.

We assume that stage k − 1 has been done. Namely, if u is an l-sink with

l ≤ k − 1, then each µuj has been defined and if a is an arrow with head at u,

ra is invertible in KQ/J . Suppose that v is a k-sink, and label the arrows of Q

with head at v so that a1 < · · · < alv , and let j be in the range 1, . . . , lv. Define

µvj = raj
raj+1 . . . ralv

tvra1 . . . raj−1 − qvev,

where tv =
∏

t(a)=v r
−1
a∗ with the product taken in the order given by <. Note

that r−1
a∗ makes sense as ra is invertible by the comments above. By a similar

argument to that in stage 0, each rai
is invertible. Repeat with all the other

k-sinks. Note that in the case that a k-sink has no arrows with head at v, we

define µv1 to be tv − qvev.

Since all vertices of Q must be a k-sink for some k, this completes the

definition of J , and shows that for each arrow of Q, sa is invertible. Since

additionally

µ =
∏

a∈Q1

sa
ǫ(a) −

∑

v∈Q0

qvev =
∑

v∈Q0

µv1,

the natural map φ : KQ → KQ/J satisfies (†) and (‡). To show KQ/J is the

multiplicative preprojective algebra, we must show that φ is universal. Clearly

if θ : KQ → A satisfies (†) and (‡), then there is a unique induced map ψ :

KQ/J → A, provided θ(J) = 0. This is satisfied since θ(µv1) = θ(evµev) = 0,

and µvj = raj−1
−1 . . . ra1

−1µv1ra1 . . . raj−1 .

2.3 Reflection functors

In [10] it was shown that there exist reflection functors for deformed prepro-

jective algebras. In this section we adapt the ‘middle convolution’ operation of

Dettweiler and Reiter [12] to show that an analogue of these reflection functors

exist for multiplicative preprojective algebras. The construction is very similar
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(but the calculations are more complicated).

We can identify representations of Λq with representations of Q which satisfy

1Xh(a)
+XaXa∗ is an invertible endomorphism of Xh(a) for all a ∈ Q1, (2.5)

∏

a∈Q1

h(a)=v

(1Xh(a)
+XaXa∗)ǫ(a) = qv1Xh(a)

for all v ∈ Q0. (2.6)

Given α ∈ Z
Q0 , define qα =

∏
i q

αi

i . Recall that if v is a loop free vertex then

there is a simple reflection sv : Z
Q0 → Z

Q0 given by sv(α) = α − (α, ǫv)ǫv.

There is a reflection tv : KQ0 → KQ0 given by tv(q)u = quq
−(ǫu,ǫv)
v . This is

dual to the sv, as (tvq)
α = qsi(α).

Theorem 2.3.1. [11] If v is a loopfree vertex of Q with qv 6= 1, there is an

equivalence Ev from the category of representations of Λq(Q) to the category of

representations of Λtv(q)(Q) which acts as sv on dimension vectors.

The proof of this theorem comprises the rest of this section. We assume

that v is a sink and denote the arrows with head at v as a1, a2, . . . , an so that

ai < ai+1 for all i. Let X be a representation of Λq. We identify X with a

representation of Q satisfying in (2.5) and (2.6). In particular, the relation at

the vertex v guarantees that

(1Xv
+Xa1Xa∗

1
)(1Xv

+Xa2Xa∗
2
) . . . (1Xv

+ Xan
Xa∗

n
) = qv1Xv

. (2.7)

For 1 ≤ i ≤ n+ 1, we define

ξi = (1Xv
+Xa1Xa∗

1
)(1Xv

+Xa2Xa∗
2
) . . . (1Xv

+Xai−1Xa∗
i−1

).

Lemma 2.3.2. We have the following formulas.

i−1∑

j=1

ξjXaj
Xa∗

j
= ξi − 1Xv

, (2.8)

n∑

j=1

ξjXaj
Xa∗

j
= (qv − 1)1Xv

, (2.9)
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i−1∑

j=1

ξjXaj
Xa∗

j
+

1

qv

n∑

j=i

ξjXaj
Xa∗

j
+

1 − qv
qv

ξi = 0. (2.10)

Proof. The first equation is obvious, and the second follows by putting i = n+1

in (2.8) and noting that (2.7) says ξn+1 = qv1Xv
. Finally, the third equation is

equivalent to

1

qv

n∑

j=1

ξjXaj
Xa∗

j
+
qv − 1

qv

i−1∑

j=1

ξjXaj
Xa∗

j
+

1 − qv
qv

ξi = 0,

and using (2.8) and (2.9), this is equivalent to

1

qv
(qv − 1)1Xv

+
qv − 1

qv
(ξi − 1Xv

) +
1 − qv
qv

ξi = 0,

which is obviously true.

Let

X⊕ =

n⊕

j=1

Xt(aj).

We denote the natural inclusions and projections between X⊕ and Xt(ai) by ιi

and πi respectively. Define maps ι : Xv → X⊕, π : X⊕ → Xv by

ι =
n∑

j=1

ιjXa∗
j
, π =

1

qv − 1

n∑

j=1

ξjXaj
πj .

Using (2.9), we have

πι =
1

qv − 1

n∑

j=1

n∑

k=1

ξjXaj
πjιkXa∗

k
=

1

qv − 1

n∑

j=1

ξjXaj
Xa∗

j
= 1Xv

,

so ιπ and ǫ = 1X⊕
− ιπ are idempotent endomorphisms of X⊕. Now define

φi : Xt(ai) → X⊕,

φi =

i−1∑

j=1

ιjXa∗
j
Xai

+
1

qv

n∑

j=i

ιjXa∗
j
Xai

+
1 − qv
qv

ιi.

Note that if j < i,

πjφi = Xa∗
j
Xai

. (2.11)

Lemma 2.3.3. [11] For all i, πφi = 0.
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Proof. We have

πφi =
1

qv − 1

n∑

k=1

ξkXak
πk




i−1∑

j=1

ιjXa∗
j
Xai

+
1

qv

n∑

j=i

ιjXa∗
j
Xai

+
1 − qv
qv

ιi




=
1

qv − 1




i−1∑

j=1

ξjXaj
Xa∗

j
Xai

+
1

qv

n∑

j=i

ξjXaj
Xa∗

j
Xai

+
1 − qv
qv

ξiXai




=
1

qv − 1




i−1∑

j=1

ξjXaj
Xa∗

j
+

1

qv

n∑

j=i

ξjXaj
Xa∗

j
+

1 − qv
qv

ξi


Xai

= 0

using (2.10).

Lemma 2.3.4. [11] For all 0 ≤ m ≤ n we have

(1X⊕
+ φ1π1)(1X⊕

+ φ2π2) . . . (1X⊕
+ φmπm) = 1X⊕

+
1 − qv
qv

m∑

j=1

ǫιjπj

Proof. By induction on m. If m = 0 there is nothing to prove. Assume that the

formula is true for l = m− 1. We want to show that it holds at m, namely that


1X⊕

+
1 − qv
qv

m−1∑

j=1

ǫιjπj


(1X⊕

+ φmπm

)
= 1X⊕

+
1 − qv
qv

m∑

j=1

ǫιjπj .

Multiplying out and rearranging, this is equivalent to

φmπm =
1 − qv
qv

ǫ


ιmπm −

1

qv

m−1∑

j=1

ιjπjφmπm


 .

Using (2.11), the right hand side of this is

1 − qv
qv

(1X⊕
− ιπ)


ιm −

m−1∑

j=1

ιjX
∗
aj
Xam


 πm.

Multiplying out, this becomes

1 − qv
qv


ιm −

m−1∑

j=1

ιjX
∗
aj
Xam

− ιπιm + ιπ

m−1∑

j=1

ιjX
∗
aj
Xam


 πm.
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Now since πιj = 1
qv−1ξjXaj

this is


1 − qv

qv


ιm −

m−1∑

j=1

ιjX
∗
aj
Xam


+

1

qv
ιξmXam

−
m−1∑

j=1

ιξjXaj
X∗

aj
Xam


πm.

Using (2.8), this simplifies to


1 − qv

qv


ιm −

m−1∑

j=1

ιjX
∗
aj
Xam


+

1

qv
ιXam


 πm.

Substituting the expression for ι, this equals


1 − qv

qv
ιm +

1

qv

n∑

j=m

ιjX
∗
aj
Xam

+
m−1∑

j=1

ιjX
∗
aj
Xam


 πm,

which is φmπm.

We define a representation X ′ of Q. Let X ′
v = Im(ǫ) = Ker(ιπ) = Ker(π)

and let X ′
u = Xu if u 6= v. Denote by ι′ the inclusion of X ′

v in X⊕. If a is not

incident with v, let X ′
a = Xa. Otherwise, let X ′

ai
∗ = πiι

′, and let X ′
ai

be the

unique map such that φi = ι′X ′
ai

. This is possible since Imφi ⊆ X ′
v by Lemma

2.3.3 and is uniquely determined since ι′ is injective. Now let q′ = tv(q), and

let α be the dimension vector of X .

Lemma 2.3.5. [11] X ′ is a representation of Λq′

(Q) of dimension vector sv(α).

Proof. We must check that the X ′
a satisfy the following relation for all v ∈ Q0,

∏

a∈Q1

h(a)=v

(1X′
v

+X ′
aX

′
a∗)ǫ(a) = q′v1X′

v
.

At vertices different from v and the t(ai), this is trivial. For all i, it is clear that

1Xt(ai)
+X ′

a∗
i
X ′

ai
= 1Xt(ai)

+ πiφi

= 1Xt(ai)
+

1

qv
Xa∗

i
Xai

+
1 − qv
qv

1Xt(ai)

=
1

qv
(1Xt(ai)

+Xa∗
i
Xai

),
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so that the relation is satisfied if v = t(ai) (recall that q′
t(ai)

= qt(ai)q
−k
v , where k

is the number of arrows between v and t(ai)). Finally, we put m = n in Lemma

2.3.4 and we have

(1X⊕
+ φ1π1)(1X⊕

+ φ2π2) . . . (1X⊕
+ φnπn) = 1X⊕

+
1 − qv
qv

ǫ.

Restricting to X ′
v gives

(1Xv
+X ′

a1
X ′

a1
∗)(1Xv

+X ′
a2
X ′

a2
∗) . . . (1Xv

+X ′
an
X ′

an
∗) =

1

qv
1Xv

,

which shows the relation at v holds. We have X⊕ = Im(ιπ) ⊕ Im(1 − ιπ) =

Xv ⊕X ′
v, so dimX ′

v = dimX⊕ − dimXv =
∑

i αt(ai) − αv = sv(α), and hence

dimX ′ = (sv(α))v .

One can define a functor by setting Ev(X) = X ′ for any object X , and if

θ : X → Y is a morphism, we define Ev(θ) by (Ev(θ))u = θu if u 6= v and

(Ev((θ)v to be the unique map with ι′Y (Ev(θ))v =
∑

k θt(ak)ι
′
X .

Lemma 2.3.6. [11] Ev is an equivalence of categories.

Proof. Clearly we can define a functor E′
v which takes a representation X ′ of

Λq′

to a representation X ′′ of Λtv(q′) = Λq. We show that there is a natural

isomorphism X ′′ → X , and thus E′
v is the inverse of Ev. Note that

n⊕

j=1

X ′
t(aj)

=

n⊕

j=1

Xt(aj) = X⊕,

and
n∑

j=1

ιjX
′
a∗

j
=

n∑

j=1

ιjπjι
′ = ι′,

so that X ′
⊕ = X⊕ and ι′ is the analogue of ι constructed from X ′. Let π′, ξ′j be

the analogues of π and ξj respectively. Note that

ξ′i = (1X′
v

+X ′
a1
X ′

a∗
1
)(1X′

v
+X ′

a2
X ′

a∗
2
) . . . (1X′

v
+X ′

ai−1
X ′

a∗
i−1

)

= (1X⊕
+ φ1π1)(1X⊕

+ φ2π2) . . . (1X⊕
+ φi−1πi−1)

restricted to X ′
v. Thus by Lemma 2.3.4 we have

ξ′i = 1X⊕
+

1 − qv
qv

i−1∑

j=1

ǫιjπj (2.12)

33



restricted to X ′
v. We claim that ι′π′ = 1X⊕

− ιπ. We have

ι′π′ =
1

q′v − 1

n∑

i=1

ι′ξ′iX
′
ai
πi

=
qv

1 − qv

n∑

i=1

φiπi +

n∑

i=1

i−1∑

j=1

ǫιjπjφiπi,

using (2.12). Now

ǫιj = ιj − ιπιj = ιj −
1

qv − 1
ιξjXaj

= ιj −
1

qv − 1

n∑

k=1

ιkXa∗
k
ξjXaj

.

Substituting this and using (2.11), the expression for ι′π′ becomes

qv
1 − qv

n∑

i=1

φiπi +

n∑

i=1

i−1∑

j=1

ιjXa∗
j
Xai

πi −
1

qv − 1

n∑

i=1

i−1∑

j=1

n∑

k=1

ιkXa∗
k
ξjXaj

Xa∗
j
Xai

πi.

By (2.8), this is equal to

qv
1 − qv

n∑

i=1

φiπi +

n∑

i=1

i−1∑

j=1

ιjXa∗
j
Xai

πi −
1

qv − 1

n∑

i=1

n∑

k=1

ιkXa∗
k
(ξi − 1)Xai

πi.

By rearranging, we obtain

ι′π′ =
qv

1 − qv

n∑

i=1

φiπi +
qv

qv − 1

n∑

i=1

i−1∑

j=1

ιjXa∗
j
Xai

πi

+
1

qv − 1

n∑

i=1

n∑

j=i

ιjXa∗
j
Xai

πi +
1

1 − qv

n∑

i=1

n∑

k=1

ιkXa∗
k
ξiXai

πi.

By expanding using the formula for φi, we obtain

ι′π′ = 1X⊕
+

1

1 − qv

n∑

i=1

n∑

k=1

ιkXa∗
k
ξiXai

πi = 1X⊕
− ιπ,

as required.

Thus ǫ′ = 1X⊕
− ι′π′ = ιπ and X ′′

v = Im(ǫ′) = Im(ιπ) = Im(ι). The

inclusion ι′′ of X ′′
v in X⊕ can therefore be identified with ι. Clearly, for all

remaining vertices u we have X ′′
u = Xu. The linear maps of X ′′ are given by
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X ′′
ai

∗ = πiι = Xai
∗ and

ιX ′′
ai

=

i−1∑

j=1

ιjX
′
a∗

j
X ′

ai
+

1

q′v

n∑

j=i

ιjX
′
a∗

j
X ′

ai
+

1 − q′v
q′v

ιi

=

i−1∑

j=1

ιjπjφi + qv

n∑

j=i

ιjπjφi + (qv − 1)ιi

=

i−1∑

j=1

ιjXa∗
j
Xai

+ qv




n∑

j=i

ιj
1

qv
Xa∗

j
Xai

+
1 − qv
qv

ιi


+ (qv − 1)ιi

=

n∑

j=1

ιjXa∗
j
Xai

= ιXai
.

Thus X ′′
ai

= Xai
and X ′′ = X as required.

This completes the proof of Theorem 2.3.1.

2.4 Simple modules

The main goal regarding simple modules for multiplicative preprojective alge-

bras is a proof of the following conjecture, which would (see [11] and [9]) lead

to a solution of the multiplicative Deligne-Simpson problem.

Conjecture 2.4.1. There is a simple representation of Λq(Q) of dimension

vector α if and only if α is a positive root, qα = 1 and p(α) >
∑
p(βi) for

any decomposition α =
∑
βi as a sum of two or more positive roots with each

qβi = 1.

Unfortunately, this has not been accomplished. However, we can discuss

some special cases, and some results related to this conjecture. We start with

an easy lemma.

Lemma 2.4.2. If X is a finite dimensional representation of Λq(Q) with di-

mension vector α, then qα = 1.

Proof. By [19, Theorem 1.3.20], if M1 is an m by n matrix, and M2 is an n

by m matrix, then det(Im + M1M2) = det(In + M2M1). Thus for each arrow
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a : i→ j, det(1Xh(a)
+XaXa∗) = det(1Xt(a)

+Xa∗Xa). In particular

∏

a∈Q1

det(1Xh(a)
+XaXa∗)ǫ(a) = 1

since det(1Xh(a)
+ XaXa∗) det(1Xt(a)

+ Xa∗Xa)−1 = 1 for each arrow a (recall

that det(1Xh(a)
+XaXa∗) is always non zero due to (2.5)). Hence, using (2.6),

qα =
∏

v∈Q0

qdim Xv
v =

∏

v∈Q0

det(qv1Xv
) =

∏

a∈Q1

det(1Xh(a)
+XaXa∗)ǫ(a) = 1.

Observe that if dimX = ǫv, then this lemma tells us that qv = 1. Of course

this had to be the case, since otherwise we could apply Theorem 2.3.1 to obtain

a representation of Λtv(q) of dimension vector −ǫv, which is clearly nonsense.

This is worth noting when following some of the later proofs.

Lemma 2.4.3. [11] If X is a simple representation of Λq(Q) of dimension

vector α and v is a vertex, then either α = ǫv or qv 6= 1 or (α, ǫv) ≤ 0.

Proof. Suppose otherwise, i.e. that α 6= ǫv, qv = 1 and (α, ǫv) > 0. The last

condition ensures that v is loopfree. We assume that v is a sink and denote the

arrows of Q with head at v as a1, a2, . . . , an so that ai < ai+1 for all i. As in

the discussion after Theorem 2.3.1, let

ξi = (1Xv
+Xa1Xa∗

1
)(1Xv

+Xa2Xa∗
2
) . . . (1Xv

+Xai−1Xa∗
i−1

).

Let

X⊕ =
n⊕

i=1

Xt(ai).

Let θ : Xv → X⊕ be the linear map with components Xa∗
i

and let φ : X⊕ → Xv

be the linear map with components ξiXai
. Using (2.8) with qv = 1 we have

φθ = 0.

Suppose θ is not injective. Then X has a subrepresentation with vector space

Ker(θ) at vertex v and the zero subspace at all other vertices. By simplicity

X is equal to this subrepresentation. Since v is loopfree, this implies that its

dimension vector is ǫv, a contradiction, and so θ is injective.
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Suppose φ is not surjective. We claim that X has a subrepresentation given

by the vector space U = Im(φ) at vertex v and the whole space Xw at all

the other vertices w. Clearly, this will be the case if this subrepresentation

makes sense, i.e. if Im(Xai
) ⊆ U for all i. We prove this by induction on

i. Clearly we have Im(ξiXai
) ⊆ U for all i. If i = 1, then ξi = 1, so this

proves Im(Xa1) ⊆ U . Assuming that Im(Xai
) ⊆ U for all i < k, it follows

that (1Xv
+ Xai

Xa∗
i
)(U) ⊆ U for all i < k, and since (1Xv

+ Xai
Xa∗

i
) acts

invertibly on Xv, this is an equality and we also have (1Xv
+Xai

Xa∗
i
)−1(U) = U .

Thus (ξk)−1(U) = (1Xv
+ Xak−1

Xa∗
k−1

)−1 . . . (1Xv
+ Xa1Xa∗

1
)−1(U) = U . Now

Im(ξkXak
) ⊆ U , and hence Im(Xak

) ⊆ ξ−1
k (U) = U as required. Since X is

simple, X is equal to this subrepresentation, so φ is surjective.

It follows that φ induces a surjective linear map X⊕/ Im(θ) → Xv, so

dimX⊕ ≥ dimXv+dim Im θ = 2 dimXv (since θ is injective), and then (α, ǫv) =

2αv −
∑

i αt(ai) ≤ 0, contradicting (α, ǫv) > 0.

Theorem 2.4.4. [11] If X is a simple representation of Λq(Q) of dimension

vector α, then α is a positive root for Q.

Proof. Assume that the theorem is true for all β < α. We can assume that

(α, ǫv) > 0 for some vertex v (which must be loopfree) since otherwise α is in

the fundamental region, and is therefore a root.

If qv = 1, then by Lemma 2.4.3, α = ǫv and is therefore a root.

If qv 6= 1, then since v is loopfree, we can apply Theorem 2.3.1 at v. Namely,

X corresponds to a simple representation of Λtv(q) of dimension vector sv(α).

Since sv(α) = α− (α, ǫv)ǫv < α, the induction hypothesis applies, and so sv(α)

is a root, and hence so is α.

In view of this theorem, the conjecture is equivalent to the statement that

for any positive root for Q, there is a simple representation of dimension vector

α if and only if qα = 1 and p(α) >
∑
p(βi) for any decomposition α =

∑
βi as a

sum of two or more positive roots with each qβi = 1. If α is a positive real root,

this can be simplified because p(α) = 0 for all roots α, so any decomposition
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will automatically have p(α) ≤
∑
p(βi). We can use reflection functors to

prove the conjecture is true in this case, and we can solve the rigid case of the

Deligne-Simpson problem (see [11]).

Theorem 2.4.5. [11] Let α be a positive real root for Q. There is a simple

representation of Λq(Q) of dimension vector α if and only if qα = 1 and there

is no decomposition α =
∑
βi as a sum of two or more positive roots with each

qβi = 1.

Proof. Again, assume that the theorem is true for all β < α. There is a vertex

v with (α, ǫv) > 0 (since otherwise α is in the fundamental region, so is an

imaginary root).

Suppose qv = 1. By Lemma 2.4.3 the first condition holds if and only if

α = ǫv. The second condition also holds if and only if α = ǫv, because if α 6= ǫv,

then there is a decomposition α = sv(α) + (α, ǫv)ǫv into a sum of at least two

positive roots (and clearly there is no decomposition if α = ǫv). Thus the two

conditions are equivalent.

If qv 6= 1, then by Theorem 2.3.1, there is a simple representation of Λq of

dimension vector α if and only if there is a simple representation of Λtv(q) of

dimension vector sv(α) (since sv(α) is a real root less than α). By the induction

hypothesis, this holds if and only if tv(q)sv(α) = 1 and there is no decomposition

sv(α) =
∑
βi as a sum of two or more positive roots with each tv(q)βi = 1. We

claim that this condition is equivalent to the same condition for α, which proves

the theorem. First, it is obvious that qα = 1 if and only if tv(q)sv(α) = 1, and

there is a decomposition α =
∑

i βi of α into a sum of positive roots with qβi = 1

if and only if sv(α) =
∑
sv(βi) is a decomposition for sv(α) into positive roots

with each tv(q)sv(βi) = 1. This is true because the reflection at v of any positive

root except ǫv is a positive root, and ǫv cannot appear in either decomposition

because (tv(q))v = qv = qǫv = 1. Thus the theorem is true for α.
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Chapter 3

The Dynkin case

In this chapter we examine the properties of Λq(Q) in the case of Q being a

Dynkin diagram. Sections 3.1-3.5 prove the main result of this chapter, that

Λq(Q) is finite dimensional. In the last section we consider some further ques-

tions that can be asked.

3.1 The main theorem

Theorem 3.1.1. If Q is a Dynkin diagram then Λq(Q) is finite dimensional.

The proof of the corresponding theorem for deformed preprojective algebras

(Theorem 1.3.8) given in [10] depends on two ingredients.

1. It is known that Π(Q) is finite dimensional for all Dynkin quivers (Theo-

rem 1.3.4).

2. The oriented grading on KQ induces a filtration on Πλ. One can then

show that the associated graded ring gr Πλ is a quotient of Π, and then it follows

that Πλ is finite dimensional.

Unfortunately, for the multiplicative case, this simple approach is not avail-

able. There does not seem to be a filtration on Λq which is suitable for this

argument, and even if there was, we do not have the result corresponding to

Theorem 1.3.4 for Λ1(Q) (although see Chapter 5). Instead we are forced to

adopt a lengthy case by case analysis of the Dynkin diagrams.
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3.2 Type An

There is nothing to do in this case, due to the following lemma.

Lemma 3.2.1. If Q has type An then Λq(Q) is isomorphic to a deformed pre-

projective algebra.

Proof. We can assume (see Lemma 3.3.2, but it should be clear in any case)

that Λq = KQ/Iµq where Q is the quiver

s s s q q q s� �� �
1 2 3 n

a1 a2 a3 an−1

and Iµq is the ideal generated by the elements

µq
i =





(e1 + a1a
∗
1) − q1e1 if i = 1,

(ei + aia
∗
i ) − qi(ei + a∗i−1ai−1) if 2 ≤ i ≤ n− 1,

en − qn(en + a∗n−1an−1) if i = n.

Let θ : KQ → KQ be the isomorphism which takes ev to ev, ai to xiai, and

a∗i to a∗i where xi = (qn . . . qi+1)−1 for 1 ≤ i ≤ n − 1. Clearly θ induces an

isomorphism KQ/Iµq → KQ/θ(Iµq ). Now

θ(µq
1) = e1 + x1a1a

∗
1 − q1e1 = x1(a1a

∗
1 − (q1 − 1)q2 . . . qne1),

θ(µq
n) = en − qn(en + xn−1a

∗
n−1an−1) = −a∗n−1an−1 − (qn − 1)en,

and for i = 2, . . . , n− 1,

θ(µq
i ) = (ei + xiaia

∗
i ) − qi(ei + xi−1a

∗
i−1ai−1)

= xi(aia
∗
i − a∗i−1ai−1 − (qi − 1)qi+1 . . . qnei).

Let λ = (λi)i∈Q0 , where λi = (qi − 1)qi+1 . . . qn for all i. We have

θ(Iµq ) = (θ(µq
1), . . . , θ(µq

i ), . . . , θ(µq
n))

= (a1a
∗
1 − λ1e1, . . . , aia

∗
i − a∗i−1ai−1 − λiei, . . . ,−a

∗
n−1an−1 − λnen)

= (ρλ
1 , ρ

λ
2 , . . . , ρ

λ
n)

= Iρλ .

Therefore θ induces an isomorphism Λq = KQ/Iµq → KQ/Iρλ = Πλ.
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Therefore we can use the results in [10] regarding the deformed preprojective

algebra. In particular by Theorem 1.3.8 we have the following corollary.

Corollary 3.2.2. If Q has type An then Λq(Q) is finite dimensional.

3.3 Star-shaped quivers

In this section we prove some facts regarding the multiplicative preprojective

algebra of a general star shaped quiver which will help us understand the re-

maining cases of Dynkin quivers.

Definition 3.3.1. A quiver Q is star-shaped if it has the form

s

s

s

s

s

s

s

s

s

s












�

�����

J
J

J
J

JJ]

�

�

�

�

�

�

�

�

�

q q q

q q q

q q q

qq
q

qq
q

qq
q0

[k, 1]

[2, 1]

[1, 1]

[k, 2]

[2, 2]

[1, 2]

[k, wk − 1]

[2, w2 − 1]

[1, w1 − 1]

a11

a21

ak1

a12

a22

ak2

a1,w1−1

a2,w2−1

ak,wk−1

That is, there are integers k ≥ 1, w1, . . . , wk ≥ 2 such that

Q0 = {0} ∪ {[i, j] : 1 ≤ i ≤ k, 1 ≤ j ≤ wk − 1},

Q1 = {aij : 1 ≤ i ≤ k, 1 ≤ j ≤ wk − 1},

where the arrows satisfy t(aij) = [i, j] and h(aij) = [i, j − 1]. Note that we

understand that [i, 0] means the vertex 0.

The Dynkin quivers are all star-shaped (provided they are given the suitable

orientation), each with k = 3.

Dn : w1 = n− 2, w2 = 2, w3 = 2.
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E6 : w1 = 3, w2 = 3, w3 = 2.

E7 : w1 = 4, w2 = 3, w3 = 2.

E8 : w1 = 5, w2 = 3, w3 = 2.

Throughout the rest of this section Q denotes the quiver above and we write

eij instead of e[i,j] to denote the trivial path at vertex [i, j]. We work towards

Lemma 3.3.7, which gives a presentation of e0Λq(Q)e0 in terms of generators

and relations.

Lemma 3.3.2. [11, Lemma 8.1]

Λq(Q) ∼= KQ/Iµ,

where Iµ is the ideal generated by the elements (µq
v)v∈Q0 with

µq
0 = (e0 + a11a

∗
11) . . . (e0 + ak1a

∗
k1) − q0e0,

µq
ij = eij + ai,j+1a

∗
i,j+1 − qij(eij + a∗ijaij), for j = 1, . . . , wi − 2,

µq
i,wi−1 = ei,wi−1 − qi,wi−1(ei,wi−1 + a∗i,wi−1ai,wi−1).

Definition 3.3.3. Given integers m,n, k with 1 < k ≤ m + 1, n+ 1, we say a

path p of Q has type (A,m, k, n) if it has the form

p = a∗rm . . . a∗rkask . . . asn for some r, s.

Given integers m,n, l, with m,n ≥ 0 we say a path p of Q has type (B,m, l, n)

it is has the form

p = a∗rm . . . a∗r1(ai1,1a
∗
i1,1) . . . (ail,1a

∗
il,1

)as1 . . . asn

for some r, s and i1, . . . , il. In either case, we say p is normalised. Note that

in the above we are understanding that the extreme cases ‘a∗rm . . . a∗r,m+1’ and

‘as,n+1 . . . asn’ mean the trivial paths em and en respectively.

Some examples of normalised paths are given below.

e0 has type (B, 0, 0, 0),
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eij has type (A, j − 1, j, j − 1) for all i,

a12a13 has type (A, 1, 2, 3),

a∗12a
∗
11a11a

∗
11a21a

∗
21a11a12a13a14 has type (B, 2, 2, 4).

Lemma 3.3.4. Λq(Q) is spanned by the set of normalised paths.

Proof. By Lemma 3.3.2, Λq is a quotient of KQ, so is spanned by the set P

of paths in Q. We set up a reduction system Ω on P . For each arrow a in

Q let d(a) = j if a = aij or a = a∗ij . For each path p = an . . . a1 ∈ P , let

d(p) =
∑n

m=1 d(am) and let ≤ be the partial ordering on P defined by

p1 ≤ p2 if and only if d(p1) < d(p2) or p1 = p2.

This clearly satisfies (†) and (‡) of the Appendix. Let Ω be reduction system

consisting of the elements

{aija
∗
ij − qi,j−1a

∗
i,j−1ai,j−1 − (qi,j−1 − 1)ei,j−1 : 1 ≤ i ≤ k, 2 ≤ j ≤ wi − 1}.

The elements are obtained by monicising the elements µq
ij for 1 ≤ j ≤ wi−2 with

respect to ≤. Note that we ignore µq
0 and µq

j,wj−1 so this isn’t a full reduction

system. By Lemma A.2.3, Λq is spanned by the set of irreducible paths, namely

those which do not contain a subpath aija
∗
ij with j > 1.

We claim that the irreducible paths are exactly all the normalised paths. No

normalised path has a subpath aija
∗
ij with j > 1, so all normalised paths are

irreducible. We now suppose p is an irreducible path and show by induction on

the length it is normalised. If p is trivial or an arrow then it normalised. We

assume that the claim is true for all paths of length less than p. Suppose that

p = bp′ where b is an arrow. Since p is irreducible then so is p′, and by the

induction hypothesis p′ is normalised. There a number of cases to consider.

Case 1. p′ has type (A, k − 1, k, n), i.e. p = ask . . . asn.

Then either (i) b = a∗sk, and then p has type (A, k, k, n), or (ii) b = as,k−1, and

then p has type (A, k − 2, k − 1, n) (or type (B, 0, 0, n) if k = 2).
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Case 2. p′ has type (A,m, k, n) where m ≥ k, i.e. p = a∗rm . . . a∗rkask . . . asn.

Then either (i) b = arm, which contradicts the irreducibility of p since it has a

subpath arma
∗
rm, or (ii) b = a∗r,m+1, and then p has type (A,m+ 1, k, n).

Case 3. p′ has type (B, 0, l, n), i.e. p = (ai1,1a
∗
i1,1) . . . (ail,1a

∗
il,1

)as1 . . . asn.

Then b = a∗r1 for some r and p has type (B, 1, l,m).

Case 4. p′ has type (B,1, l, n), i.e. p = a∗r1(ai1,1a
∗
i1,1) . . . (ail,1a

∗
il,1

)as1 . . . asn.

Then either (i) b = a∗r2, and then p has type (B, 2, l,m), or (ii) b = ar1, and p

has type (B, 0, l+ 1, n).

Case 5. p′ has type (B,m, l, n) where m > 1, i.e. p = a∗rm . . . a∗r1(ai1,1a
∗
i1,1)

. . . (ail,1a
∗
il,1

)as1 . . . asn.

Then either (i) b = a∗r,m+1, and then p has type (B,m+ 1, l, n), or (ii) b = arm,

which contradicts p being irreducible since it has a subpath arma
∗
rm.

Lemma 3.3.5. e0Λq(Q)e0 is generated by the paths ai1a
∗
i1, 1 ≤ i ≤ k.

Proof. By Lemma 3.3.4, Λq is spanned by the set of normalised paths. So e0Λqe0

is spanned by the set of normalised paths which start and end at 0, namely, the

set of paths of type (B, 0, l, 0). Clearly each path of type (B, 0, l, 0) can be

formed by taking a product involving the paths ai1a
∗
i1, 1 ≤ i ≤ k.

We now have a generating set for e0Λqe0, and we now perform some calcu-

lations which will give the relations. We define scalars si
mn, where 1 ≤ i ≤ k

and 1 ≤ m ≤ n ≤ wi,

smn
i =

n−1∏

l=m

q−1
il

where the empty product is taken to be 1. Note that sjl
i = q−1

ij s
j+1,l
i if j < l,

and in the special case where qij = 1 for all i, j, each smn
i = 1.

Lemma 3.3.6. Working in Λq(Q), we have the following equations.

(i) For all i, and j < l,

a∗ijaij − (sjl
i − 1)eij = q−1

ij (ai,j+1a
∗
i,j+1 − (sj+1,l

i − 1)eij).

44



(ii) For all i, and 1 ≤ t ≤ wi − 1,

wi∏

j=1

(ai1a
∗
i1 − (s1j

i − 1)e0) =

(
t−1∏

r=1

qr−wi

ir

)
Ft

where Ft represents the expression

ai1 . . . ait




wi∏

j=t+1

(a∗itait − (stj
i − 1)eit)


 a∗it . . . a

∗
i1.

(iii) For all i,
wi∏

j=1

(ai1a
∗
i1 − (s1j

i − 1)e0) = 0.

Proof. (i) Rewriting the relation µq
ij , we have that

a∗ijaij = q−1
ij ai,j+1a

∗
i,j+1 + (q−1

ij − 1)eij .

Subtracting (sjl
i − 1)eij from both sides gives the required equation.

(ii) By induction on t. Since s11i = 1, we have

wi∏

j=1

(ai1a
∗
i1 − (s1j

i − 1)e0) = ai1a
∗
i1




wi∏

j=2

(ai1a
∗
i1 − (s1j

i − 1)e0)


 .

Rearranging the brackets, this is

ai1




wi∏

j=2

(a∗i1ai1 − (s1j
i − 1)ei1)


 a∗i1,

which is F1. We now show that Ft+1 = qt−wi

it Ft for all t. We have

Ft = ai1 . . . ait




wi∏

j=t+1

(a∗itait − (stj
i − 1)eit)


 a∗it . . . a

∗
i1

= ai1 . . . aitq
t−wi

it




wi∏

j=t+1

(ai,t+1a
∗
i,t+1 − (st+1,j

i − 1)eit)


 a∗it . . . a

∗
i1

by using (i) on each term of the product. We take qt−wi

it to the front, and

substitute stt
i = 1, to obtain

qt−wi

it ai1 . . . aitai,t+1a
∗
i,t+1




wi∏

j=t+2

(ai,t+1a
∗
i,t+1 − (st+1,j

i − 1)eit)


 a∗it . . . a

∗
i1.
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Rearranging the brackets, this is

qt−wi

it ai1 . . . aitai,t+1




wi∏

j=t+2

(a∗i,t+1ai,t+1 − (st+1,j
i − 1)ei,t+1)


 a∗i,t+1a

∗
it . . . a

∗
i1

which is qt−wi

it Ft+1.

(iii) By (ii), this is equivalent to showing that any of the expressions Ft equal

zero. It is obvious that Fwi−1 is zero since it equals

ai1 . . . ai,wi−1(a∗i,wi−1ai,wi−1 − (swi−1,wi

i − 1)ei,wi−1)a∗i,wi−1 . . . a
∗
i1.

which is

−q−1
i,wi−1ai1 . . . ai,wi−1µi,wi−1a

∗
i,wi−1 . . . a

∗
i1 = 0.

Lemma 3.3.7. Let S = K〈A1, A2, . . . , Ak〉/IR, where R is the set of relations

(A1 + 1)(A2 + 1) . . . (Ak + 1) = q0,

wk∏

j=1

(Ai − (s1j
i − 1)) = 0, for i = 1, . . . , k.

Let Se = K〈α1, α2, . . . , αk〉/IRe , where Re is the set of relations

α1α2 . . . αk = q0,

wk∏

j=1

(αj − s1j
i ), for i = 1, . . . , k.

Then e0Λq(Q)e0 is isomorphic to both S and Se.

Proof. By Lemma 3.3.5 there is a surjective homomorphism

θ : K〈A1, . . . , Ak〉 → e0Λqe0,

in which Ai is sent to ai1a
∗
i1. Clearly (A1 + 1)(A2 + 1) . . . (Ak + 1) − q0 is sent

to µ0, which is zero, and by the previous lemma,
∏wk

j=1(Ai − (s1j
i − 1)) is also

sent to 0. Therefore θ induces a surjective homomorphism θ : S → e0Λqe0. Let

I = Ker θ. We claim that I = 0 and so θ is an isomorphism.
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To prove this we show that any S-module M is the restriction by θ of an

e0Λqe0-module. So, given M , we construct a representation X of Λq. Let

X0 = M and

Xij = (Ai − (s1j
i − 1)) . . . (Ai − (s12i − 1))(Ai − (s11i − 1))M

Let Xaij
be the inclusion of Xij in Xi,j−1 and let Xa∗

ij
be multiplication by

(s1j
i )−1(Ai − (s1j

i − 1)). This clearly defines a representation of Q, so for X to

be a representation of Λq, the Xa must satisfy the appropriate relations. Since

each s11i = 1,

(1 +Xa11Xa∗
11

) . . . (1 +Xak1
Xa∗

k1
) = (1 +A1) . . . (1 +Ak) = q0.

and so the Xa satisfy the relation at 0.

qij(1 +Xaij
Xa∗

ij
) = qij(1 + (s1j

i )−1(Ai − (s1j
i − 1)))

= (s1,j+1
i )−1Ai + (s1,j+1

i )−1

= 1 + (s1,j+1
i )−1(Ai − (s1,j+1

i − 1))

= 1 +Xai,j+1Xa∗
i,j+1

,

and so the Xa satisfy the relations at [i, j] where 1 ≤ j ≤ w1 − 2.

qi,wi−1(1 +Xa∗
i,wi−1

Xai,wi−1) = qi,wi−1(1 + (s1,wi−1
i )−1(Ai − (s1,wi−1

i − 1))

= (s1,wi

i )−1(Ai − (s1,wi

i − 1)) + 1,

and the Xa satisfy the relations at [i, wi − 1] since (Ai − (si,wi

i − 1))|Xi,wi−1 = 0

because (Ai − (si,wi

i − 1)) . . . (Ai − (s12i − 1))(Ai − (s11i − 1)) = 0.

Therefore X can be regarded as a Λq-module, and so M = e0X can be

regarded as an e0Λqe0 module. For each m ∈ M , and each i, 1 ≤ i ≤ k, the

e0Λqe0 product ai1a
∗
i1m is equal to Xai1X

∗
ai1

(m), which is the same as the S-

module product (s11i )−1(Ai − (s11i − 1))m. Since s11i = 1, this is simply Aim.

Since θ(Ai) = ai1a
∗
i1, we have shown that if r ∈ S is a generator, the S-module

product rm is the same as the e0Λqe0-module product θ(r)m. Since it holds for

all generators, it holds for any element and we have shown that any S-module

can be obtained by the restriction of an e0Λqe0 module.
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Consider in particular the case M = S, as a module over itself. Then S is

an e0Λqe0 ∼= S/I module. For each i ∈ I, we have i = i.1S = θ(i).1S = 0, and

so I = 0.

The algebras S and Se are clearly isomorphic since the map S → Se which

takes Ai to αi − 1 and the map Se → S which takes αi to Ai + 1 are mutual

inverses.

Lemma 3.3.8. Λq(Q) is finite dimensional if and only if e0Λq(Q)e0 is finite

dimensional.

Proof. Suppose e0Λqe0 is finite dimensional. As in the proof of Lemma 3.3.5

e0Λqe0 is spanned by the set P of paths {p : p is normalised of type (B, 0, l, 0)}.

Since e0Λqe0 is finite dimensional we can choose a finite subset P ′ of P so that P ′

spans e0Λqe0. Choose the maximal t such that there is a path of type (B, 0, t, 0)

in P ′. We claim Λq is spanned by the set

U = {p : p has type (A,m, k, n)} ∪ {p : p has type (B,m, l, n) where l ≤ t}.

To prove this we need to show that any path of type (B,m, l, n) with l > t can be

written as a linear combination of paths in P . Let p = a∗rm . . . a∗r1(ai1,1a
∗
i1,1) . . .

(ail,1a
∗
il,1

)as1 . . . asn be such a path. Now p0 = (ai1,1a
∗
i1,1) . . . (ail,1a

∗
il,1

) ∈ P so

p0 =
∑

i λipi for some λi ∈ K and pi ∈ P ′. Then

p = a∗rm . . . a∗r1p0as1 . . . asn

=
∑

i

λia
∗
rm . . . a∗r1pias1 . . . asn

expresses p as required. Finally we need to show that U is a finite set. There

are only finitely many paths of a given type, and since the number of possible

types is bounded (m,n, k < max{w1, . . . , wk}, l ≤ t) this is clear.

We are now ready to prove Theorem 3.1.1 for the remaining Dynkin dia-

grams. We have a presentation for e0Λqe0 so we apply the method described

in Section A.5 to obtain a reduction system which gives a finite spanning set.

Note that it is impractical to try to find a basis for e0Λqe0, since that would
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depend on q. We use the second presentation Se as this allows us some shortcuts

when resolving ambiguities, due to the fact that we know that the generators

are invertible (they correspond with elements of e0Λqe0 of the form e0 + aa∗,

which are invertible). In Se the inverse of αi is a polynomial in αi of degree

wi − 1 which can be calculated from the relation involving αi. We can always

reduce the expression ‘αiα
−1
i ’ to 1. Note that we are always allowed to divide

by any qv since they are always nonzero.

3.4 Type Dn

We assume that Q is the star shaped quiver

s s
s

s
s

Q
QQs

�
��3

� � �q q q
b

c

a1 a2 am−1

0 [1,1] [1,m− 1]

3

2

By Lemma 3.3.7 we know that e0Λqe0 ∼= Se = K〈α, β, γ〉/I, where I is the ideal

generated by the set of elements

r0 = αβγ − q0,

rα = (α − 1)(α− q−1
11 ) . . . (α− q−1

11 . . . q
−1
1,m−1),

rβ = (β − 1)(β − q−1
2 ),

rγ = (γ − 1)(γ − q−1
3 ).

Note that

γ−1 = (1 + q3) − q3γ, (3.1)

β−1 = (1 + q2) − q2β, (3.2)

Lemma 3.4.1. (i) The following elements r2, r3, r4 all lie in I.

r2 = αβ − q0(1 + q3) + q0q3γ,

r3 = γβ − q−1
0 q−1

2 q−1
3 α− (1 + q−1

2 )γ − (1 + q−1
3 )β + (1 + q−1

2 )(1 + q−1
3 ),

r4 = γα− q0(1 + q2) + q0q2β.
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(ii) The set Ω = {rα, rβ , rγ , r2, r3, r4} is a (full) reduction system for Se and

therefore the set of irreducible words is a finite spanning set.

Proof. (i) This could be done by considering the set Re = {r0, rα, rβ , rγ} as

a reduction system and resolving the ambiguities, but the following method is

equivalent and quicker.

I contains r0γ
−1, so contains αβ − q0γ

−1 = r2 by substituting (3.1). I

contains r2β
−1, so contains α − q0(1 + q3)β−1 + q0q3γβ

−1 = −q0q2q3r3 by

substituting (3.2), and therefore contains r3. I contains α−1r0α, so contains

βγα−q0. Set this equal to r1. Then I contains β−1r1, so contains γα−q0β
−1 =

r4 by substituting (3.2).

(ii) The elements of Ω are monic, so is Ω is a reduction system. [In fact Ω

is full since the ideals I and IΩ are equal - IΩ ⊆ I was proved in part (i), and

r0 = r2γ − q3rγ ∈ IΩ, so I ⊆ IΩ. However, this is not necessary for the rest of

the proof]. The illegal words are {αm, β2, γ2, αβ, γβ, γα}, so if w is irreducible

it must have the form βiαjγk where i, k ∈ {0, 1}, j ∈ {0, . . . ,m − 1}, and so

there are only finitely many possibilities. By Lemma A.2.3 this is a spanning

set for Se.

Hence e0Λqe0 is finite dimensional and by Lemma 3.3.8 we have the following

corollary.

Corollary 3.4.2. If Q has type Dn then Λq(Q) is finite dimensional.
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3.5 Type E6, E7, E8

We consider a general ‘type E’ star shaped quiver

s s

s
s

s
s

Q
QQs

Q
QQs

�
��3

� � �q q q
b1

b2

c

a1 a2 ak−1

0 [1,1] [1, k − 1]

3

[2,1]

[2,2]

By Lemma 3.3.7 we know that e0Λqe0 ∼= Se = K〈α, β, γ〉/I, where I is the ideal

generated by the elements

r0 = αβγ − q0,

rα = (α− 1)(α− q−1
11 ) . . . (α − q−1

11 q
−1
12 . . . q

−1
1k ),

rβ = (β − 1)(β − q−1
21 )(β − q−1

21 q
−1
22 ),

rγ = (γ − 1)(γ − q−1
3 ).

Note that

β−1 = q221q22β
2 − (q221q22 + q21q22 + q21)β + (1 + q21 + q21q22), (3.3)

γ−1 = (1 + q3) − q3γ, (3.4)

and that α−1 is a polynomial in α of degree k− 1, where the coefficient of αk−1

is
∏k−1

i=1 q
k−i
1i which is nonzero.
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Lemma 3.5.1. The following elements all lie in I.

r1 = γ − (1 + q−1
3 ) + q−1

0 q−1
3 αβ,

r2 = β2 + q−2
0 q−1

3 q−2
21 q

−1
22 αβα − q−1

0 (1 + q−1
3 )q−2

21 q
−1
22 α

−(1 + q−1
21 + q−1

21 q
−1
22 )β + (q−2

21 q
−1
22 + q−1

21 q
−1
22 + q−1

21 ),

r3 = βαβ − q0(1 + q3)β + q20q3α
−1,

r4 = βα2β − q40q
2
3q

2
21q22α

−1βα−1 + q40q
2
3(q221q22 − q21q22 + q21)α−2

−q0(1 + q3)αβ + q0(1 + q3)βα + q20q3(1 + q21 − q21q22)β

−q30q3(1 + q3)(1 + q21 − q21q22)α−1 + q20(1 + q3)2,

r5 = q−2
0 q−1

3 q−2
21 q

−1
22 βα

3βα + q40q
2
3q

2
21q22α

−1βα−1β + q0(1 + q3)βαβ

−(1 + q−1
21 + q−1

21 q
−1
22 )βα2β − q0−1(1 + q−1

3 )q−2
21 q

−1
22 βα

3

+(q−2
21 q

−1
22 + q−1

21 q
−1
22 + q−1

21 )βα2 + q0(1 + q3)αβ2

−q20q3(1 + q21 + q21q22)β2 − q40q
2
3(q221q22 + q21q22 + q21)α−2β

−q20(1 + q3)2β + q30q3(1 + q3)(1 + q21 + q21q22)α−1β,

r6 = q−2
0 q−1

3 q−2
21 q

−1
22 αβα

3β + q40q
2
3q

2
21q22βα

−1βα−1 + q0(1 + q3)βαβ

−(1 + q−1
21 + q−1

21 q
−1
22 )βα2β − q0−1(1 + q−1

3 )q−2
21 q

−1
22 α

3β

+(q−2
21 q

−1
22 + q−1

21 q
−1
22 + q−1

21 )α2β + q0(1 + q3)β2α

−q20q3(1 + q21 + q21q22)β2 − q40q
2
3(q221q22 + q21q22 + q21)βα−2

−q20(1 + q3)2β + q30q3(1 + q3)(1 + q21 + q21q22)βα−1.

Proof. Let W be the set of words formed from α, β, γ and let ≤ be the ordering

≤γ,β on W (see Section A.6). Observe that r1, . . . , r4 are monic with respect to

the ordering (the leading word being the first word as written out above), but

r5, r6 do not have a leading word because the ordering is not sufficiently refined.

Note that we keep expressions in terms of α−1, for the purposes of the ordering

they are regarded as a polynomial in α.

We show the elements lie in I by resolving some of the ambiguities cre-

ated by the reduction system Ω0 = {r0, rα, rβ , rγ}. The illegal words are
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{αβγ, αk, β3, γ2}. We resolve αβγ2 :

αβ(γ2) 7→ αβ((q−1
3 + 1)γ − q−1

3 ) q0(q−1
3 + 1) − q−1

3 αβ,

(αβγ)γ 7→ q0γ.

and so q0(q−1
3 + 1)− q−1

3 αβ − q0γ = −q0r1 ∈ I. Monicising, we see that r1 ∈ I.

Note that this was basically the same calculation as was done in the type Dn

case, and this time the leading word is γ because the ordering has changed.

Now let Ω1 = Ω0 ∪ {r1}, the illegal words are {αβγ, αk, β3, γ2, γ}. We resolve

the inclusion ambiguity αβγ.

αβγ 7→ q0,

αβ(γ) 7→ αβ(−q−1
0 q−1

3 αβ + (1 + q−1
3 )).

So by monicising, we have that r7 = αβαβ− q0(1 + q3)αβ+ q20q3 ∈ I. We could

add this element to the reduction system and resolve the ambiguities αβαβ3

and αkβαβ (quite a complicated process). However, we can use the fact that

α and β are invertible to reach the same result. That is, since r7β
−1 ∈ I, so is

αβα − q0(1 + q3)α + q20q3β
−1 = q20q3q

2
21q22r2, by using (3.3). Thus r2 ∈ I by

monicising. Similarly, α−1r7 ∈ I, and hence so is βαβ−q0(1+q3)β+q20q3α
−1 =

r3.

We set Ω2 = Ω1 ∪ {r2, r3}. We can take out r0, rβ , rγ from Ω2 because

they are redundant and we are only interested in finding a spanning set, so it

doesn’t matter if Ω2 is no longer a full reduction system (in fact αβγ, β3, γ2

are reduction unique with respect to Ω2, so Ω2 is full). This leaves us with

Ω3 = {rα, r1, r2, r3} with illegal words {αk, γ, β2, βαβ}. We now resolve βαβ2.

(βαβ)β 7→ q0(1 + q3)β2 − q20q3α
−1β,

 −q−1
0 (1 + q−1

3 )q−2
21 q

−1
22 αβα+ (1 + q3)(1 + q−1

3 )q−2
21 q

−1
22 α

−q0(1 + q3)(q−1
21 + q−1

21 q
−1
22 + q−2

21 q
−1
22 )

+q0(1 + q3)(1 + q−1
21 + q−1

21 q
−1
22 )β − q20q3α

−1β,
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βα(β2) 7→ βα
(
−q−2

0 q−1
3 q−2

21 q
−1
22 αβα+ q−1

0 (1 + q−1
3 )q−2

21 q
−1
22 α

+(1 + q−1
21 + q−1

21 q
−1
22 )β − (q−2

21 q
−1
22 + q−1

21 q
−1
22 + q−1

21 )
)
,

 −q−2
0 q−1

3 q−2
21 q

−1
22 βα

2βα+ q0(1 + q−1
3 )q−2

21 q
−1
22 βα

2

+q0(1 + q3)(1 + q−1
21 + q−1

21 q
−1
22 )β − q20q3(1 + q−1

21 + q−1
21 q

−1
22 )α−1

−(q−2
21 q

−1
22 + q−1

21 q
−1
22 + q−1

21 )βα.

Equating the two reductions gives a new element of I, which we monicise (the

leading term being βα2βα, as its coefficient is nonzero). That is, we obtain

r8 ∈ I, where

r8 = βα2βα− q40q
2
3q

2
21q22α

−1β + q40q
2
3(q221q22 − q21q22 + q21)α−1

−q0(1 + q3)αβα + q0(1 + q3)βα2 + q20q3(1 + q21 − q21q22)βα

−q30q3(1 + q3)(1 + q21 − q21q22) + q20(1 + q3)2α.

Adjoining r8 to Ω3 creates an ambiguity βα2βαk. To resolve it, it is equivalent

to multiply r8 by α−1 and we obtain r4 ∈ I. Setting Ω4 = Ω3 ∪ {r4} we

have illegal words {αk, γ, β2, βαβ, βα2β}. This leads to ambiguities βα2β2 and

β2α2β. We resolve βα2β2,

(βα2β)β 7→ q40q
2
3q

2
21q22α

−1βα−1β − q40q
2
3(q221q22 + q21q22 + q21)α−2β

+q0(1 + q3)αβ2 + q0(1 + q3)βαβ − q20q3(1 + q21 + q21q22)β2

+q30q3(1 + q3)(1 + q21 + q21q22)α−1β − q20(1 + q3)2β,

βα2(β2) 7→ −q−2
0 q−1

3 q−2
21 q

−1
22 βα

3βα+ q−1
0 (1 + q−1

3 )q−2
21 q

−1
22 βα

3

+(1 + q−1
21 + q−1

21 q
−1
22 ))βα2β − (q−2

21 q
−1
22 + q−1

21 q
−1
22 + q−1

21 )βα2.

Equating the two single step reductions shows r5 ∈ I. Similarly we can resolve

β2α2β, which is the same calculation as for βα2β2, except for reversing the

words. This shows r6 ∈ I.

Lemma 3.5.2. Se is finite dimensional for k = 3, 4, 5.

Proof. Let Ω be the reduction system {rα, r1, r2, r3, r4}. The corresponding set

of illegal words is {αk, γ, β2, βαβ, βα2β}. With k = 3, the irreducible words are
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exactly all the subwords of α2βα2 (a finite set), and by Lemma A.2.3 this is a

finite spanning set for Se.

The cases k = 4, 5 require us to refine the ordering so that we use r5 and

r6. Let r′5 be the complete reduction of r5 with respect to Ω, and let ≤ be

the ordering ≤γ,β,(α,β;m) (see Section A.6), with m = 3. We claim that the

leading word of r′5 is βα3βα. First, observe that its coefficient in r5 is nonzero.

It therefore suffices to prove that βα3βα > u for all other words u appearing

in r′5. Clearly the only term which concerns us is α−1βα−1β as the remaining

terms involving two occurrences of β have been reduced. We expand α−1βα−1β

using the expression for α−1 as a polynomial in α, so we need to show that

if r, s ≤ k − 1 ≤ 4 then gm
a,b(βα

3βα) > gm
a,b(α

rβαsβ). This is true because

gm
a,b(βα

3βα) = 3m + m2 and gm
a,b(α

rβαsβ) = r + sm (and clearly 3m + m2 >

r + sm for m = 3, r, s ≤ 4).

This gives enough information to settle the case k = 4. Let Ω5 be the

reduction system {rα, r1, r2, r3, r4, r
′
5}. By the above claim, the corresponding

set of illegal words is {α4, γ, β2, βαβ, βα2β, βα3βα}. Clearly the irreducible

words are exactly all the subwords of α3βα3β (a finite set), and by Lemma

A.2.3 this is a finite spanning set for Se.

Now assume that k = 5, and let r′6 be the reduction of r6 with respect to

Ω. We claim that the leading word of r′6 is βα4βα4. Its coefficient in r6 is

t2q40q
2
3q

2
21q22 (where t2 is the coefficient of α4 in α−1). It therefore suffices to

prove that βα4βα4 > u for all other words u appearing in r′6. We can forget

about words other than αβα3β and βα−1βα−1. We expand the latter term

as a linear combination of words βαrβαs, r, s ≤ 4. We wish to calculate for

which word gm
a,b takes its maximal value. gm

a,b(βα
rβαs) = rm + sm2, which is

maximised when r and s are maximised, i.e. when r = s = 4. This is clearly

greater than 1 + 3m = gm
a,b(αβα

3β).

We are now ready to prove the result for k = 5. Let Ω6 be the reduction

system {rα, r1, r2, r3, r4, r5
′, r6

′}. By the above claim, the corresponding set of

illegal words is {α5, γ, β2, βαβ, βα2β, βα3βα, βα4βα4}. Clearly the irreducible

words are exactly all the subwords of α4βα4βα3β (a finite set), and by Lemma
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A.2.3 this is a finite spanning set for Se.

Now k = 3, 4, 5 corresponds to Q being type E6, E7, E8 respectively, so we

obtain the following corollary.

Corollary 3.5.3. If Q has type E6, E7, E8 then Λq(Q) is finite dimensional.

Now we combine Corollaries 3.2.2, 3.4.2, 3.5.3 to complete the proof of The-

orem 3.1.1.

3.6 Open problems

Now that is has been shown that Λq(Q) is finite dimensional for Q Dynkin, the

next obvious problem is to determine its dimension. This will almost certainly

depend on q, and in particular the positive roots for which qα = 1. In fact, we

immediately have the following result.

Corollary 3.6.1. If qα 6= 1 for all positive roots for Q, then Λq(Q) is zero.

Proof. By combining Lemma 2.4.3 and Theorem 2.4.4, we have that the di-

mension vector α of a finite dimensional simple representation of Λq must be

a positive root and must satisfy qα = 1. Hence, by the hypothesis, Λq has no

finite dimensional simple representations. The only finite dimensional algebra

without any finite dimensional simple representations is zero.

It should be possible to obtain further results by using the methods of [10,

Section 7], though it is unclear whether this would lead to a proof of the following

conjecture.

Conjecture 3.6.2. Let q ∈ (K∗)Q0 and λ ∈ KQ0 . If we can partition the set of

roots for Q into a pair of subsets R1, R2 so that qα = 1 and λ.α = 0 for α ∈ R1

and qα 6= 1 and λ.α 6= 0 for α ∈ R2, then dim Λq(Q) = dim Πλ(Q).

In the undeformed case, this conjecture can be concisely stated.

Conjecture 3.6.3. dim Λ1(Q) = dim Π(Q).
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Whereas the first conjecture is made with little evidence, the second one is

made with more confidence. It is obviously true in type An, and it is also true

in type D4 (see Lemma 5.1.3). Additionally one can calculate the dimension

of e0Λ1e0 by using the reduction algorithm (the calculation is analogous to the

previous sections), and this has been found to be the same as e0Πe0. We could

(in theory) do the same with Λ1, but this is rather impractical. It seems ‘unnat-

ural’ that the dimensions of Λ1 and Π could be different, whilst the dimensions

of e0Λ1e0 and e0Πe0 be the same, since the algebras have the same presentation

except for taking a different relation at 0. This suggests that the conjecture is

true, but we have been unable to work out a specific reason why ‘unnatural’

should imply ‘impossible’.

We end this section by considering how the undeformed multiplicative pre-

projective algebra relates to the ‘deformed preprojective algebra of generalised

Dynkin type’, P f (Q), introduced by Bia lkowski, Erdmann and Skowroński, [5].

Note that these algebras are not the same as the deformed preprojective algebra

of Crawley-Boevey and Holland. Let Q be a star-shaped quiver of type Dn, E6,

E7 or E8 with central vertex 0 (other situations are considered in [5], but they

are not relevant to this discussion). Let RQ be the algebra

RQ = K〈x, y〉/(xw3 , yw2 , (x+ y)w1),

where the wi are the integers given in Section 3.3. It can be easily checked that

RQ
∼= e0Πe0. Let f(x, y) ∈ rad2RQ and define P f (Q) = KQ/I, where I is the

ideal generated by the elements (ρf
v )v∈Q0 and ρ̃ where

ρf
0 = a11a

∗
11 + a21a

∗
21 + a31a

∗
31 + f(a21a

∗
21, a31a

∗
31),

ρf
v =

∑

a∈Q1

h(a)=v

ǫ(a)aa∗, if v 6= 0,

ρ̃ = (a21a
∗
21 + a31a

∗
31)w1 .

In the following, we write A for a11a
∗
11, B for a21a

∗
21, C for a31a

∗
31 and e

for e0 and Λ for Λ1(Q). It can be shown that Λ is equal to KQ/Ĩ, where Ĩ is
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the ideal generated by the relations (ρf
v )v∈Q0 , with f = −xy in type Dn and

f = −xy − y2 + xy2 otherwise. Since ρf
v = µ1

v for all v 6= 0, it suffices to

show that µ1
0 ∈ Ĩ and ρf

0 ∈ Iµ. The first is true since we can cancel the terms

involving Bw2 and Cw3 in ρf
0 (e + B)(e + C) to obtain µ1

0. The second is true

because in type Dn we can do a similar process on µ1
0(e− C)(e −B) to obtain

ρf
0 , and in type En we do the same with µ1

0(e− C)(e−B +B2).

This shows that P f(Q) is the quotient of Λ1(Q) by the relation ρ̃ = (B +

C)w1 . It is natural to ask whether ρ̃ ∈ Iµ, in which case this is a trivial quotient,

and so Λ1(Q) = P f (Q) (this is one example of the last question posed at the

end of Chapter 5). The question is connected to an assertion made in the proof

of Lemma 3.2 of [5], where it is stated that for any f and any Dynkin quiver Q,

eP f(Q)e ∼= RQ. (3.5)

If Q has type Dn, it can be shown that this claim is correct. Since we

have already stated in the discussion after Conjecture 3.6.3 that dim eΛe =

dim eΠe = dimRQ, it must be the case that P f(Q) = Λ, and in particular

(B+C)w1 ∈ Iµ. We verify this - Since Iµ contains (B+C−CB)w1 , it contains

L = (B+C−CB)w1((e+B)(e+C))
w1
2 (assuming w1 is even, if w1 is odd then

multiplying by ((e +B)(e + C))
w1−1

2 (e + B) will work the same way). We can

manipulate L (and remain in Iµ) using the following rules: (B+C−CB)(1+B)

can be replaced by (B+C), (B+C)(1 +C) can be replaced by (1 +B)(B+C),

and (B + C)2(1 + B) can be replaced by (1 + B)(B + C)2 as each pair of

expressions are the same if one cancels terms involving B2 or C2. It is easy to

see that the expression eventually obtained is (B + C)w1 .

However, ifQ has type E6, then (3.5) is not true for all f , and in particular for

f = −xy−y2 +xy2. [It can also be shown that ρ̃ 6∈ Iµ, and so Λ1(Q) 6∼= P f (Q).]

There is a surjective map θ from RQ to eP f(Q)e which takes x to C and y to

B. Clearly (x+ y + f(x, y))3 is sent to zero, so if θ were an isomorphism, then

58



(x+ y + f(x, y))3 must equal zero in RQ. Consider the following matrices

x =




0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0



, y =




0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



.

It is easily checked that these matrices satisfy x2 = 0, y3 = 0, (x + y)3 = 0,

and therefore define a representation of RQ (in fact the regular representation).

However, we have

(x+ y + f(x, y))3 =




0 0 0 0 0 0 0 0 0 −1 −1 2
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




6= 0,

and thus (x + y + f(x, y))3 6= 0 in RQ. Thus (3.5), and consequently the

statement that dimP f (Q) = dim Π(Q) (which is the final part of [5, Lemma

3.2]) are incorrect. Possibly (depending on the other results of [5]) one should

define P f (Q) without the extra relation ρ̃, as then dimP f (Q) = dim Π(Q)

would very likely be true (Conjecture 3.6.3 is a special case of this).
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Chapter 4

The extended Dynkin case

In this chapter we are concerned with the properties of Λq(Q) where Q is an

extended Dynkin diagram. The main result is a nice description of the ring

e1Λ1(Q)e1 (the analogue of Theorem 1.3.5), where 1 is an extending vertex.

As in the previous chapter, the proof is a long case by case analysis, which

comprises the majority of the chapter. In the final section, we consider the

implications of this theorem with regard to the properties of Λ, and list some

further open questions.

4.1 The main theorem

Theorem 4.1.1. If Q is extended Dynkin and 1 is an extending vertex, then

e1Λ(Q)e1 is a commutative algebra. More precisely,

e1Λ(Q)e1 ∼= K[X,Y, Z]/J,

where J is the ideal generated by

Zn+1 +XY +XY Z if Q type Ãn,

Z2 − pk(X)XZ + pk−1(X)X2Y −XY 2 −XY Z if Q type D̃n,

Z2 +X2Z + Y 3 −XY Z if Q type Ẽ6,

Z2 + Y 3 +X3Y −XY Z if Q type Ẽ7,

Z2 − Y 3 −X5 +XY Z if Q type Ẽ8,
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where k = n−4, and the pk are polynomials defined inductively by p−1(X) = −1,

p0(X) = 0 and pi+1(X) = X(pi(X) + pi−1(X)) for i ≥ 1.

It would be interesting to determine the significance of these polynomials,

given their similarity to the polynomials of the Kleinian singularities. It can be

verified that they are irreducible, and have a unique singular point at zero. One

can ask if each ring is isomorphic to the coordinate ring at the corresponding

Kleinian singularity, (i.e. is e1Λ(Q)e1 is isomorphic e1Π(Q)e1?) as well as some

other questions.

The proof of the theorem is done by a case by case analysis, starting with

the star shaped quivers D̃4, Ẽ6, Ẽ7, Ẽ8, then Ãn (omitting Ã0 - this will be

discussed in the final section) and finally D̃n with n > 4. The proof in each case

splits into four parts.

1. We can assume that Λ = KQ/Iµ (using Lemma 3.3.2 in the star shaped

cases, and being careful to those the correct ordering in the Ãn case). The

object of this part is to obtain some ‘useful’ elements of Iµ to be used in later

stages (in the Ãn case we can move directly to stage 2). Assuming the quiver is

star shaped (the D̃n with n > 4 are more complicated) and that 0 is the central

vertex, then we can use the presentation S = K〈A1, A2, . . . , Ak〉/IR of e0Λe0

given in Lemma 3.3.7, and then find elements of IR (which can be considered to

be members of Iµ) in a similar fashion to the previous chapter. We consider the

rings Λ0 and S0 defined to be the analogues of Λ and S obtained by ignoring the

complicated relation at the central vertex. There is a natural map KQ → Λ0

(which induces a natural map K〈A1, A2, . . . , Ak〉 → S0) which is denoted by an

underline. This enables us to easily make the ‘obvious’ reductions by the simpler

arm relations. Clearly, if x = y, then x− y ∈ Iµ. Observe that during this part

we are operating in the path algebra or the free algebra K〈A1, A2, . . . , Ak〉 (or

in the rings Λ0 and S0 in the case where elements are underlined).

2. The object of this part is to show that each element of e1Λe1 can be

written as a linear combinations of products of X , Y and Z (where X , Y and
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Z are certain well chosen paths). For the star shaped cases, there is an easy

lemma which is helpful. We denote the shortest path of Q from 0 to 1 by [, and

the shortest path from 1 to 0 by ] (this might look rather ugly, but it seems the

most efficient notation).

Lemma 4.1.2. If H is a spanning set for e0Λe0, then [H ] = {[h] : h ∈ H} is a

spanning set for e1Λe1.

Proof. By Lemma 3.3.4, e1Λe1 is spanned by the set of all normalised paths

which start and end at 1. Let p be such a path. If p doesn’t visit 0, the we

use the reduction system {a∗ijaij − ai,j+1a
∗
i,j+1 : 1 ≤ i ≤ k, 1 ≤ j ≤ wi − 2} ∪

{a∗i,wi−1ai,wi−1 : 1 ≤ i ≤ k} to prove that p = 0. We can therefore assume that

p does visit 0, which means p has the form [p′] for some path p′ which starts

and ends at 0. Clearly p′ ∈ KH , so p ∈ K[H ].

The method used is a ‘reduction algorithm’ which uses the elements obtained

in part 1. For the D̃n, cases, the standard method described in the appendix

works nicely, but the remaining cases are slightly complicated, because the stan-

dard method will only get only part of the way towards the desired result. At

that point we employ a modified reduction algorithm, which makes substitutions

based on the position of a particular subword in a word. Of course care must

be taken with this approach, but in each case it should be clear this is a valid

argument. Some final comments about this stage - In the type Ẽn cases, we

define a sequence notation to better describe words. Although these sequences

are just an alternative way of describing elements of the path algebra, we always

use the convention that these sequences are elements of Λ (so that a sequence

really represents the image under the map KQ→ Λ).

3. The next stage is to show that there is a surjective map θ : L → e1Λe1

(where L is the appropriate K[X,Y, Z]/J). In part 2 we have shown there is a

map K〈X,Y, Z〉 → e1Λe1, so this is simply a set of calculations which show X ,Y

and Z commute, and that J is sent to zero. In these calculations, we explain

each step by stating which substitution is being used. At all times during this

stage the convention is that we are working in Λ, so when a word or sequence is
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written down, it is understood this means the image under the map KQ → Λ

(or Λ0 → Λ).

4. Once we have the surjective map θ, the final stage is to prove that it is an

isomorphism. We write down a family {M st : (s, t) ∈ V } of Λ modules, where V

is a 2 dimensional affine variety in K2. The M st are given as representations in

Q satisfying the appropriate relations, where the matrices are rational functions

in s and t defined on V , and are therefore algebraic. In each case e1M
st is a

one dimensional module for e1Λe1, and is therefore simple.

There is a morphism of varieties φ̃ : V → Spec e1Λe1 which takes (s, t) to

Ann(e1M
st). Since e1Λe1 is a quotient of L via θ, we can identify Spec e1Λe1

with a closed subset of K3, and this gives rise to a morphism of varieties φ :

V → K3 with takes (s, t) to (xst, yst, zst), where xst is the entry of the 1 by

1 matrix obtained by substituting the matrices in M st for the arrows in θ(X)

(and similarly yst and zst are defined using θ(Y ) and θ(Z) respectively).

Lemma 4.1.3. If φ is injective, then θ : L→ e1Λe1 is an isomorphism.

Proof. First note that in each case the ideal J is a prime ideal of height 1 since it

is generated by a single irreducible polynomial, and so K[X,Y, Z]/J is a domain

of Krull dimension 2. To prove θ is an isomorphism, it suffices to prove that

e1Λe1 has Krull dimension 2 since in this case there exists a chain P0 ⊂ P1 ⊂ P2

of prime ideals of e1Λe1, and hence a corresponding chain P ′
0 ⊂ P ′

1 ⊂ P ′
2 of prime

ideals of K[X,Y, Z]/J containing Ker θ. If Ker θ 6= 0, this can be extended to a

chain {0} ⊂ P ′
0 ⊂ P ′

1 ⊂ P ′
2, contradicting K[X,Y, Z]/J being a domain of Krull

dimension 2. Since φ is injective, dim Spec e1Λe1 ≥ dim Imφ ≥ dimV = 2, and

so the Krull dimension of e1Λe1 is 2 (since it cannot be greater than 2).

Note that V is always chosen so that the xst, yst, zst are non zero, which is

essential when proving that φ is injective.

It is worth describing the method used to find the M st. We consider the one

parameter family F of regular simple representations of Q of dimension vector
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δ (these can be obtained in [13] for example). They can be extended to repre-

sentations of Q by using arbitrary matrices of the correct size to the represent

the Ma∗ , for each M ∈ F . We calculate which of these are representations of

Λ. Namely, we determine which Ma∗ satisfy the equations

∏

a∈Q1

h(a)=v

(1Mh(a)
+ MaMa∗)ǫ(a) = 1Mh(a)

for all v ∈ Q0.

In each case, this leads to set of m equations in m unknowns (regarding the

original parameter t as a constant). They are nonlinear, but by regarding some

of the variables to be constants, can be assumed to be linear in the remaining

variables. Solving for these variables and substituting, we obtain another set

of equations with fewer variables, and can repeat the equations are all solved.

This can be done easily on a computer. The solution set is always one dimen-

sional (depending on s say) and we therefore obtain a family depending on two

parameters, s and t.

A final comment, which is worth noting when comparing this theorem with

Theorem 1.3.5. It is possible to repeat this entire calculation with Π(Q) (where

it is much easier). The paths we obtained in part 2 for Λ(Q) will also generate

e1Π(Q)e1, and the relation obtained in part 3 is exactly the relation given in the

statement of Theorem 1.3.5 (which is the reason for the slightly strange looking

polynomials). These relations only differ by XY Z in most cases.

64



4.2 Type D̃4

We can assume that Λ(Q) = KQ/Iµ, where Q is the quiver
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and Iµ is the ideal generated by the elements a∗a, b∗b, c∗c, d∗d and µ0 = (e0 +

aa∗)(e0 +bb∗)(e0 +cc∗)(e0 +dd∗)−e0. Let A = aa∗, B = bb∗, C = cc∗, D = dd∗.

Note that e0Λe0 ∼= S = K〈A,B,C,D〉/IR where R = {A2, B2, C2, D2, s0} (with

s0 = (1 +A)(1 +B)(1 + C)(1 +D) − 1).

Lemma 4.2.1. The following elements lie in IR (and hence in Iµ).

s1 = D +A+B + C +AB +AC +BC +ABC,

s2 = CB +AB +AC +BA+BC + CA+ABC +ABA+ACA

+BCA+ABCA,

s3 = CAB −BAC −ABC −ABA −ACA−BCA−ABCA.

Proof. Since s0 ∈ IR, so is s0(1 +D)−1 = (1 +A)(1 +B)(1 +C)− (1−D) = s1.

Now we ‘resolve’ D2: Since D2 ∈ R, so is s4 = (1 − (1 + A)(1 + B)(1 + C))2.

Multiplying s4 by (1 + C)−1(1 +B)−1 = (1 − C)(1 −B) we get

s′2 = (1 +A)(1 +B)(1 + C)(1 +A) − 2(1 +A) + (1 − C)(1 −B) ∈ IR,

and then s2
′ = s2, so s2 ∈ IR. Multiplying s4 by (1 +B)−1(1 +A)−1 on the left

and (1 + C)−1 on the right we get

s′3 = (1 + C)(1 +A)(1 +B) − 2 + (1 −B)(1 −A)(1 − C) ∈ IR,
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and then s3 = s′3 − s2 ∈ IR.

Lemma 4.2.2. e1Λe1 is generated by X = [B], Y = [C], Z = [BC].

Proof. Let Ω be the reduction system {A2, B2, C2, s1, s2}, with respect to the

ordering ≤D,C,B,(B,C;3). The leading words of s1 and s2 are D and CB re-

spectively. By Lemma A.2.3, e0Λe0 is spanned by the set H of irreducible

words, namely, all words which do not involve D, no letter occurs two or more

times consecutively, and C never occurs immediately to the left of B, and so

by Lemma 4.1.2, [H ] is a spanning set for e1Λe1. Now let G be the subset of

H containing the empty word and all words which start or end with A. Since

a∗A,Aa, a∗a ∈ Iµ, if z0 ∈ G, [z0] is zero in Λ, and therefore H ′ = [(H \G)] is a

spanning set for e1Λe1.

Elements of H ′ have the form [x1Ax2A . . . Axk] where xi ∈ {B,C,BC}.

Since A = a∗a =][, we can bracket this as [x1][x2] . . . [xk] which completes the

proof.

Lemma 4.2.3. There is a surjective map θ : K[X,Y, Z]/(Z2 −X2Y −XY 2 −

XY Z) → e1Λe1.

Proof. By the previous lemma, there is a surjective map θ : K〈X,Y, Z〉 →

e1Λe1, which maps X to a∗Ba, Y to a∗Ca and Z to a∗BCa. Observe that

θ(Y X −XY ) = a∗BACa− a∗CABa = a∗s3a = 0,

θ(ZX −XZ) = a∗BCABa− a∗BABCa = a∗Bs3a = 0,

θ(Y Z − ZY ) = a∗CABCa− a∗BCACa = a∗s3Ca = 0,

which shows X,Y, Z commute, and

θ(Z2 −X2Y −XY 2 −XY Z) = a∗BCABCa− a∗BABACa − a∗BACACa

−a∗BABCACa

= a∗Bs3Ca = 0,

which shows that θ induces θ.
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Lemma 4.2.4. θ is an isomorphism.

Proof. For all (s, t) ∈ K2 such that t2s− ts+ 1 6= 0, s 6= 0, t 6= 0, 1, we consider

the matrices

α =

(
0 s(t−1)

t2s−ts+1

0 0

)
, β =

(
0 0

ts(t− 1) 0

)

γ =

(
ts

t2s−ts+1
−ts

t2s−ts+1
ts

t2s−ts+1
−ts

t2s−ts+1

)
, δ =

(
−ts s
−t2s ts

)
.

One can check that α2 = β2 = γ2 = δ2 = 0, and (α+1)(β+1)(γ+1)(δ+1) = 1.

This implies (see the proof of Lemma 3.3.7) that one gets a representation M st

(see the diagram below) of Λ in which M st
0 = K2, M st

1 = Imα, M st
2 = Imβ,

M st
3 = Im γ, M st

4 = Im δ, M st
a is the inclusion of Imα in K2, and M st

a∗ is α (and

similarly for b, c, d).

K2

K

K

K

K

@
@

@
@@I@
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@

@@R

( 1
0 )(
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( 0
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( 1
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( 1
t ) ( −ts s )

If we calculate xst, yst, zst as described before Lemma 4.1.3, we find

xst =
(t− 1)2ts2

t2s− ts+ 1
, yst =

(t− 1)ts2

(t2s− ts+ 1)2
, zst =

(t− 1)2t2s3

(t2s− ts+ 1)2
.

If we assume that (xst, yst, zst) = (xs′t′ , ys′t′ , zs′t′), then in particular t =

zst/xstyst(yst + zst) = zs′t′/xs′t′ys′t′(ys′t′ + zs′t′) = t′ which shows t = t′ and

then ts(t− 1) = zst/yst = zs′t′/ys′t′ = t′s′(t′ − 1) which shows s = s′. Thus θ is

an isomorphism by Lemma 4.1.3.
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4.3 Type Ẽ6.

We can assume that Λ(Q) = KQ/Iµ, where Q is the quiver
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and Iµ is the ideal generated by the elements a∗2a2, b
∗
2b2, c

∗
2c2, a2a

∗
2−a

∗
1a1, b2b

∗
2−

b∗1b1, c2c
∗
2−c

∗
1c1 and µ0 = (e0+a1a

∗
1)(e0+b1b

∗
1)(e0+c1c

∗
1)−e0. Let A = a1a

∗
1, B =

b1b
∗
1, C = c1c

∗
1. Note that e0Λe0 ∼= K〈A,B,C〉/IR where R = {A3, B3, C3, s0}

with s0 = (1 +A)(1 +B)(1 + C) − 1.

Lemma 4.3.1. The following elements lie in IR (and hence in Iµ).

s1 = C +A+B −BA−A2 −B2 +BA2 +B2A−B2A2,

s2 = BA2 +A2B +AB2 +B2A+BAB +ABA +ABAB −B2A2,

s3 = BA2 +A2B +AB2 +B2A+BAB +ABA +BABA−A2B2,

s4 = B2A2 +BABA −A2B2 −ABAB.

Proof. Since s0 ∈ IR, so is (1+B)−1(1+A)−1s0 = (1+C)−(1+B)−1(1+A)−1 =

s1. Now we ‘resolve’ C3: Since C3 ∈ IR, so is s5 = ((1 + B)−1(1 +A)−1 − 1)3.

Multiplying s5 on the right by (1 +A)(1 +B)(1 +A)(1 +B) we get

(1+B)−1(1+A)−1−3+3(1+A)(1+B)−(1+A)(1+B)(1+A)(1+B) = s′2 ∈ IR,

and then s2
′ = s2, so s2 ∈ IR. Multiplying s5 on the left by (1+B)(1+A)(1+B)

and the right by (1 +A) we get

(1+A)−1(1+B)−1−3+3(1+B)(1+A)−(1+B)(1+A)(1+B)(1+A) = s′3 ∈ IR,

and then s3
′ = s3, so s3 ∈ IR. Finally s4 = s3 − s2 ∈ IR.
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Lemma 4.3.2. e1Λe1 is generated by X = [B], Y = [B2], Z = [BAB2].

Proof. As in the D̃4 case, we find a suitable spanning set for e0Λe0. Using

the reduction system {A3, B3, s1} with respect to the ordering ≤C shows that

the set H of all words which do not involve C, B3, A3 is a spanning set for

e0Λe0, and by Lemma 4.1.2, [H ] is a spanning set for e1Λe1. Let H ′ be the

set of all elements of H which start and end with B. Since [A, A], [] ∈ Iµ,

[H ′] is a spanning set for e1Λe1. Attempts to reduce H ′ further by using s2 in

some reduction system do not give the required answer, so we have to use other

methods.

We can denote an element of [H ′] of the form [Bi1ABi2A . . . ABik ] as a

sequence of integers, [i1, i2, . . . , ik], where each il = 1, 2. Since A2 = a∗1a
∗
2a2a1

can replaced by ][, for all h ∈ H ′ we can write [h] as a product of sequences,

e.g. [B2ABABA2B2A2B2] = [2, 1, 1][2][1].

We claim that all sequences [i1, i2, . . . , ik] can be written (as elements of

Λ) as a linear combination of elements which are products of the sequences

[1],[2],[1,2], and this completes the proof since these sequences are equal to

X ,Y ,Z respectively.

Proof of claim: By induction on the length k of the sequence. We first

check the small cases. If k = 1 then there is nothing to prove. Suppose k = 2.

Then [1, 2] is trivial, [1, 1] = [s2] = 0. The claim follows for the sequences

[2,1] and [2,2] because [Bs3] = [1][1] + [2, 1] + [1, 2] − [1][2] = 0 and [B2s3] =

[2][1] + [2, 2]− [2][2] = 0. Now suppose that k ≥ 3 and assume that the claim is

true for all sequences of length less than k.

(1) Since [s2A = [B2A2 + [BABA, we have that

[1, 1, i3, . . . , ik] = −[2][i3, . . . , ik].

Using the induction hypothesis, the claim is verified for sequences of the form

[1, 1, . . . ].
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(2) Since

[BAs2 = [BABA2 + [BA2B2 + [BAB2A+ [BABAB + [BA2BA

[BA2BAB − [BAB2A2,

we have that

[1, 2, i3, . . . , ik] = −[1, 1][i3, . . . , ik] − [1][i3 + 2, . . . , ik] − [1, 1, i3 + 1, . . . , ik]

−[1][1, i3, . . . , ik] − [1][1, i3 + 1, . . . , ik] + [1, 2][i3, . . . , ik].

By the induction hypothesis, and the result for sequences of the form [1, 1, . . . ],

the claim is true for sequences of the form [1, 2, . . . ] (note that sequences involv-

ing integers greater than 2 can be ignored because this corresponds to having a

subword B3, which is zero).

(3) Since [s2 = [BA2 + [B2A+ [BAB − [B2A2, we have that

[2, i2, . . . , ik] = −[1][i2, . . . , ik] − [1, i2 + 1, . . . , ik] + [2][i2, . . . , ik],

and the claim is true for sequences of the form [2, . . . ], and therefore for all

sequences.

Lemma 4.3.3. There is a surjective map θ : K[X,Y, Z]/(Z2 −X2Y −XY 2 −

XY Z) → e1Λe1.

Proof. By the previous lemma, there is a surjective map θ : K〈X,Y, Z〉 →

e1Λe1, which maps X to [B], Y to [B2] and Z to [BAB2]. Observe that

θ(XY ) = [(BA2)B2] = −[BABAB] − [B2AB2],

θ(Y X) = [B2(A2B)] = −[BABAB] − [B2AB2].

This is true by using s3 in line 1 and s2 in line 2 to substitute the bracketed

term.

θ(XZ) = [BA(ABAB)B]

= [BAB2A2B] + [(BAB)ABAB]

= [BAB2A2B] − [B2][BAB]

= θ(ZX)).
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Lines 2,3 are true by using s4 and s2 respectively to substitute the bracketed

words, and line 4 since [BAB] is zero.

θ(Y Z) = [(B2A)ABAB2] = −[BABABAB2],

θ(ZY ) = [(BAB(BA2)B2] = −[BABABAB2].

We have used s2 to substitute the bracketed term on each line. This shows that

X,Y, Z commute. Finally,

θ(Z2) = [BAB2(A2B)AB2]

= −[BA(B2A)B2AB2] − [BAB2ABA2B2] + [BAB2A2B2AB2]

= [BAB][B2AB2] + [B][BAB2AB2] − [BAB2AB][B2]

= θ(X)[BAB2AB2] − [BAB2AB2]θ(Y )

= θ(X)θ(Z)θ(Y ) − θ(X)θ(X)θ(Z) − θ(Y )θ(Y )θ(Y )

= θ(XY Z −X2Z − Y 3).

In line 2 and 3, we used s3 and s2 respectively to substitute the bracketed word,

and line 4 we cancelled the term involving [BAB]. The next line uses the facts

that [1, 2, 1] = −[1, 1, 2] = [2][2] and [1, 2, 2] = −[1][1, 2] + [1, 2][2], which can be

easily verified by following the proof of the previous lemma.

Lemma 4.3.4. θ is an isomorphism.

Proof. For all (s, t) ∈ K2 such that t2s− ts+ 1 6= 0, s 6= 0, t 6= 0, 1, we consider

the matrices

α =




0 ts(t−1)
t2s−ts+1 −ts(t− 1)

0 0 −ts(t− 1)
0 0 0




β =




0 0 0
s(t− 1) 0 0

−s
t2s−ts+1

ts
t2s−ts+1 0




γ =




0 −ts(t−1)
t2s−ts+1

ts(t−1)
t2s−ts+1

−s(t− 1) s2t(t−1)2

t2s−ts+1
ts(−3t2s+3ts−s+t3s+t−1)

t2s−ts+1

s −ts(ts−s+1)
t2s−ts+1

−s2t(t−1)2

t2s−ts+1


 .
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One can check that α3 = β3 = γ3 = 0, and (α + 1)(β + 1)(γ + 1) = 1. This

implies (see the proof of Lemma 3.3.7) that one gets a representation M st of Λ,

Imα2 Imβ2

Im γ

Im γ2

Imα K3 Imβ
?

?

- - �

6

6

� �
�

- -

where the linear maps are M st
ai

∗ = α|Im αi−1 and M st
ai

is the inclusion of Imαi in

Imαi−1 (and similarly for the bi and ci). This is easily seen to have dimension

vector δ. Calculating xst, yst, zst as described before Lemma 4.1.3, we find

xst =
(t− 1)2t2s3

(t2s− ts+ 1)2
, yst =

−(t− 1)3t3s4

(t2s− ts+ 1)2
, zst =

(t− 1)5t4s6

(t2s− ts+ 1)3
.

If we assume that (xst, yst, zst) = (xs′t′ , ys′t′ , zs′t′), then in particular (t−1)/t =

−z2
st/y

3
st = −z2

s′t′/y
3
s′t′ = (t′ − 1)/t′ which shows t = t′ and then ts(t − 1) =

yst/xst = ys′t′/xs′t′ = t′s′(t′−1) which shows s = s′. Thus θ is an isomorphism

by Lemma 4.1.3.

4.4 Type Ẽ7.

We can assume that Λ(Q) = KQ/Iµ, where Q is the quiver

s

s

sss s s s?- - - � � �
0

4

321 5 6 7

c

a3 a2 a1 b1 b2 b3

and Iµ is the ideal generated by the elements a∗3a3, b
∗
3b3, c

∗c, a3a
∗
3 − a∗2a2, b3b

∗
3 −

b∗2b2, a2a
∗
2 − a∗1a1, b2b

∗
2 − b∗1b1 and µ0 = (e0 + a1a

∗
1)(e0 + b1b

∗
1)(e0 + cc∗)− e0. We

set A = a1a
∗
1, B = b1b

∗
1, C = cc∗. Note that e0Λe0 ∼= K〈A,B,C〉/IR where R

is the set of elements {A4, B4, C2, s0} with s0 = (1 +A)(1 +B)(1 + C) − 1.
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Lemma 4.4.1. The following elements lie in IR (and hence in Iµ).

s1 = B +A+ C −A2 −AC +A3 +A2C −A3C,

s2 = CA3 +A3C + CA2C − CA3C +ACA2 +A2CA

+ACAC + CACA+ACACA.

Proof. Since s0 ∈ IR, so is (1+A)−1s0(1+C)−1 = (1+B)−(1+A)−1(1+C)−1 =

s1. Now we ‘resolve’ B4: Since B4 ∈ IR, so is s3 = ((1 +A)−1(1 + C)−1 − 1)4.

Let s4 = (1 + A)(1 + C)(1 + A)(1 + C)(1 + A)s3. One finds that s4 = s2, so

s2 ∈ IR.

Lemma 4.4.2. e1Λe1 is generated by X = [C], Y = [CAC], Z = [CACA2C].

Proof. Once again, we show that each element of e1Λe1 can be written as

linear combinations of products of X ,Y and Z. Using the reduction system

{A4, C2, s1} with respect to the ordering ≤B, we see that e0Λe0 is spanned by

the set H of all words not containing B,C2, A4 as a subword, and hence e1Λe1

is spanned by [H ]. Since [A, A], [] ∈ Iµ, we can replace [H ] by [H ′], where H ′

is the subset of H containing all words which start and end with C. We can

express an element [CAi1CAi2C . . . CAinC] of [H ′] as a sequence [i1, i2, . . . , ik],

(note that we can assume that each il = 1, 2, 3 and we use [.] to denote [C]).

We claim that each sequence can be written as a linear combination of products

of the sequences [.],[1],[1,2], which completes the proof of the lemma.

Proof of claim - By a ‘reduction algorithm’ on sequences. Consider the

ordering ≤3,2,1,lex on the set of all sequences, where the lexographic ordering

has 2 > 1. We write down a list of substitutions which writes a sequence as a

linear combination of products of lesser sequences. Note that this is what was

effectively being done for Ẽ6, only there the ordering was just ≤len.

(1) Since [i1, . . . , ij−1, 3, ij+1, . . . , ik] = [i1, . . . , ij−1][ij+1, . . . , ik], we can as-

sume that each il = 1, 2.

(2) Since Cs2C = CACA2C + CA2CAC + CACACAC , we have that

[i1, . . . , ij−1, 2, 1, ij+2, . . . , ik] = −[i1, . . . , ij−1, 1, 2, ij+2, . . . , ik]

−[i1, . . . , ij−1, 1, 1, 1, ij+2, . . . , ik].
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By applying this substitution repeatedly, we can write any sequence as a linear

combination of sequences of the form [1, 1, . . . , 1, 2, 2, . . . , 2], and thus it suffices

to prove the claim only for sequences of this form.

(3) Since [s2C = [CA3C + [CACAC, we have that

[1, 1, i3, . . . , ik] = −[3][i3, . . . , ik] = −[.][.][i3, . . . , ik],

and it follows that it suffices to prove the claim for sequences of the form

[1, 2, 2, . . . , 2].

(4) Since CA2s2] = CA2CA2C] − CA2CA3C] + CA3CAC], we have that

[i1, . . . , ik−2, 2, 2] = [i1, . . . , ik−2, 2, 3] − [i1, . . . , ik−2, 3, 1]

= [i1, . . . , ik−2, 2][.] − [i1, . . . , ik−2][1].

and it follows that we can write any sequence as a linear combination of products

of the sequences [.], [1], [2], [1, 2]. Since [s2] = [CA2C] − [CA3C], then [2] = [3] =

[.][.], which completes proof of the claim.

Lemma 4.4.3. There is a surjective map θ : K[X,Y, Z]/(Z2 + X3Y + Y 3 −

XY Z) → e1Λe1.

Proof. By the previous lemma, there is a surjective map θ : K〈X,Y, Z〉 →

e1Λe1, which maps X to [C], Y to [CAC] and Z to [CACA2C]. Observe that

by expanding using s2 we have

θ(XY ) = [(CA3C)AC] = [CA2CAC] + [CACA2C],

θ(Y X) = [(CA(CA3C)] = [CACA2C] + [CA2CAC].

which shows X and Y commute. In the following calculations, we make substi-

tutions of the bracketed part using s2, convert into the sequence notation and
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follow the method described in the above proof.

θ(ZX) = [CA(CA2C)A3C] = [CACA3CA3C] − [CA2(CACA)A2C]

= [1, 3, 3] + [2, 2, 2] − [2, 3, 2] + [3, 1, 2] + [3, 1, 3]

= [1][.][.] + [2, 2][.] − [2][1] − [.][.][.][.] + [.][1, 2] + [.][1][.]

= [1][.][.] + [.][.][.][.] − [.][1][.] − [.][.][1] − [.][.][.][.] + [.][1, 2] + [.][1][.]

= [.][1, 2]

= θ(XZ)

θ(Y Z) = [CACA3(CACA)AC]

= −[CAC(A3C)A2CAC] + [CACA3CA3CAC]

= [1, 2, 3, 1] + [1, 1, 1, 2, 1] + [1, 1, 1, 3, 1] + [1, 3, 3, 1]

= [1, 2][1] − [1, 1, 1, 1, 2]− [1, 1, 1, 1, 1, 1] + [1, 1, 1][1] + [1][.][1]

= [1, 2][1] + [.][1, 1, 2] + [.][1, 1, 1, 1] − [.][1][1] + [1][.][1]

= [1, 2][1] − [.][.][2] − [.][.][1, 1]

= [1, 2][1] − [.][.][.][.] + [.][.][.][.]

= θ(ZY ).

θ(Z2) = [CACA2(CA3)CACA2C]

= −[1, 3, 2, 1, 2]− [1, 2, 1, 1, 1, 2]− [1, 3, 1, 1, 1, 2]

= −[1][2, 1, 2]− [1, 2, 1, 1, 1, 2]− [1][1, 1, 1, 2]

= [1][1, 2, 2] + [1, 1, 2, 1, 1, 2] + [1, 1, 1, 1, 1, 1, 2]

= [1][1, 2, 2]− [1, 1, 1, 2, 1, 2]

= [1][1, 2, 2] + [1, 1, 1, 1, 2, 2] + [1, 1, 1, 1, 1, 1, 2]

= [1][1, 2, 2] + [.][.][2, 2] − [.][.][.][2]

= [1][1, 2][.] − [1][1][1] − [.][.][.][1]

= θ(XY Z − Y 3 −X3Y ).
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Lemma 4.4.4. θ is an isomorphism.

Proof. For all (s, t) ∈ K2 such that s 6= 0,−1, t 6= 0, 1, we consider the matrices

α =




0 s(t−1)
s+1 −s(t− 1) s(t−1)

s+1

0 0 −s s(t−1)
t(s+1)

0 0 0 s(t−1)
t(s+1)

0 0 0 0




β =




0 0 0 0
s
t

0 0 0
−s(t−1)
t(s+1)

s(t−1)
s+1 0 0

−s s(t− 1) s 0




γ =




0 −s(t−1)
s+1

s(t−1)
s+1

−s(t−1)
s+1

−s
t

s2(t−1)
t(s+1)

s(t+s)
t(s+1)

−s(t−1)
t(s+1)

s(t−1)
t

−s(−t−2ts+s+t2s+t2)
t(s+1)

−s2(t−1)
t(s+1)

−s(t−1)
t(s+1)

s −s(t− 1) −s 0


 .

One can check that α4 = β4 = γ2 = 0, and (α + 1)(β + 1)(γ + 1) = 1. This

implies (see the proof of Lemma 3.3.7) that one gets a representation M st of Λ,

Imα2 Imβ2

Im γ

Imα3 Imβ3Imα K4 Imβ
?

- - - �

6

� � �
� �

- - -

where the linear maps are M st
ai

∗ = α|Im αi−1 and M st
ai

is the inclusion of Imαi in

Imαi−1 (and similarly for the bi and ci). This is easily seen to have dimension

vector δ. Now

xst =
−(t− 1)2s4

t(s+ 1)2
, yst =

(t− 1)3s6

t2(s+ 1)3
, zst =

−(t− 1)5s9

t3(s+ 1)4
.

If we assume that (xst, yst, zst) = (xs′t′ , ys′t′ , zs′t′), then in particular t =

−x3
st/y

2
st = −x3

s′t′/y
2
s′t′ = t′ and s/(s + 1) = xstyst/zst = xs′t′ys′t′/zs′t′ =

s′/(s′ + 1) which shows s = s′. Thus θ is an isomorphism by Lemma 4.1.3.
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4.5 Type Ẽ8.

We can assume that Λ(Q) = KQ/Iµ, where Q is the quiver

s s

s

sss s s s?- - - -- � �
4 9

7

321 5 0 8

c

a5 a4 a3 a1a2 b1 b2

and Iµ is the ideal generated by the elements a∗5a5, b
∗
2b2, c

∗c, a5a
∗
5 −a

∗
4a4, a4a

∗
4 −

a∗3a3, a3a
∗
3 − a∗2a2, a2a

∗
2 − a∗1a1, b2b

∗
2 − b∗1b1 and µ0 = (e0 + a1a

∗
1)(e0 + b1b

∗
1)(e0 +

cc∗) − e0. We set A = a1a
∗
1, B = b1b

∗
1, C = cc∗. Note that e0Λe0 ∼=

K〈A,B,C〉/IR where R = {A6, B3, C2, s0} with s0 = (1+A)(1+B)(1+C)−1.

Lemma 4.5.1. The following elements lie in IR (and hence in Iµ).

s1 = B +A+ C −A2 −AC +A3 +A2C −A4 −A3C +A5 +A4C −A5C,

s = CACAC + CA2C +ACAC + CACA +ACA

+CAC +A2C + CA2 +A5 −A4 +A3.

The following elements of KQ lie in Iµ.

t1 = CACAC + CA5C − CA4C + CA3C,

t2 = CACACAC + CACA2C + CA2CAC − CA5C + CA4C,

t3 = CACACA2C + CACA3C + CA2CA2C + CA5C,

t4 = CACACA3C + CACA4C + CA2CA3C,

t5 = CACACA4C + CACA5C + CA2CA4C,

t6 = [CACAC] + [CA2C] + [CAC],

t7 = [CACAC + [CA2C,

t8 = CACAC] + CA2C],

t9 = [CACACA4C + [CA2CA4C + [CACA5C + [CACA4C,

t10 = [CACACA3C + [CA2CA3C + [CACA4C + [CACA3C + [CA5C,
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Proof. Since s0 ∈ IR, so is (1+A)−1s0(1+C)−1 = (1+B)−(1+A)−1(1+C)−1 =

s1. Now we ‘resolve’ B3: Since B4 ∈ R, so is s3 = ((1 + A)−1(1 + C)−1 − 1)3.

Let s4 = (1 + C)(1 + A)(1 + C)(1 + A)(1 + C)s3. Observe that s4 = s, so

s ∈ IR. The ti ∈ Iµ since t1 = CsC, t2 = CsAC, t3 = CsA2C, t4 = CsA3C,

t5 = CsA4C, t6 = [s], t7 = [sC, t8 = C], t9 = [sA4C, t10 = [sA3C.

Lemma 4.5.2. e1Λe1 is generated by the elements X = [C], Y = [CACAC],

Z = [CACACA2CAC].

Proof. Using the reduction system {A6, C2, s1} with respect to the ordering ≤B,

we see that e0Λe0 is spanned by the set H of all words not containing B,C2, A6

as a subword, and hence e1Λe1 is spanned by [H ]. Since [A, A], [] ∈ Iµ, we

can replace [H ] by [H ′], where H ′ is the subset of H containing all words which

start and end with C. We can express an element [CAi1CAi2C . . . CAinC] of

[H ′] as a sequence [i1, i2, . . . , ik], (note that each il = 1, 2, 3, 4, 5 and we use

[.] to denote [C]). We claim that each sequence can be written as a linear

combination of products of the sequences [.],[1,1],[1,1,2,1], which completes the

proof of the lemma.

Proof of claim - By a ‘reduction algorithm’ on sequences. In order to simplify

things, we drop the commas from sequences (since we only deal with single digit

numbers this shouldn’t cause confusion). The following set of equations show

that it suffices to prove the claim for all sequences consisting of 1’s and 2’s.

[...3...] = −[...12...] − [...21...] − [...11...] − [...111...], (4.1)

[...5...] = [...111...] + [...1111...] + [...121...] − [...22...], (4.2)

[...4...] = [...1111...] + [...121...] − [...22...] − [...12...] − [...21...]. (4.3)

(4.1) is obtained by adding t1 to t2, (4.2) is obtained by combining (4.1) with

t3, and (4.3) is obtained by combining (4.2) with t2. We now show that the

following property (∗) holds.

(∗) Any sequence consisting of 1’s and 2’s of length k can be written as a

linear combination of products of [.], [11] and sequences of the form [112...] of

length at most k + 1.
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We have the following equations

[2...] = −[11...], (4.4)

[1] = 0, (4.5)

[15...] = 0, (4.6)

[14...] = 0, (4.7)

[13...] = −[.][...]. (4.8)

(4.4) is obtained from t7, and then (4.5) can be obtained by combining this with

t6. Since we can replace 5 with ][, this gives us (4.6). Combining (4.4), (4.6)

and t9 gives us (4.7), and combining (4.4), (4.7) with t10 gives us (4.8). We

write down some further equations (to be verified later).

[111...] = [.][...] = [5...], (4.9)

[121...] = −[.][1...] − [112...], (4.10)

[122...] = [.][1...] + [.][11...] + [1121...], (4.11)

[12] = −[.][.], (4.12)

[112] = 0. (4.13)

It should be easy to see that equations (4.4), (4.5) and (4.9)-(4.13) are sufficient

to prove (∗). We now verify (4.9)-(4.13).

[111...] = −[15...] + [14...] − [13...]

= [.][...].

Line 1 follows by using t1 to substitute the underlined segment, and line 2 by

using (4.6), (4.7) and (4.8).

[121...] = −[1111...]− [112...] + [15...] − [14...]

= −[.][1...] − [112...].

Line 1 follows by using t2, and line 2 by using (4.9), (4.7) and (4.6).

[122...] = [1111...] + [11111...] + [1121...] − [15...]

= [.][1...] + [.][11...] + [1121...].
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Line 1 follows from using (4.2), and line 2 by using by using (4.9) and (4.6).

The final two equations follow easily from t8, (4.9) and (4.5).

We are now ready to prove the claim. By (∗), it suffices to show that all

sequences of the form [112...] can be written as a linear combination of products

of [.],[11],[1121] and shorter sequences of the form [112...]. We have the following

equations (verified below).

[1122...] = [.][11..] − [11][...], (4.14)

[11211...] = −[.][12...] − [.][.][...], (4.15)

[11212...] = [11][1...] − [.][112...]. (4.16)

This completes the proof, since by (∗), the arbitrary sequences appearing in

these equations can be replaced by sequences of the form starting [112...] in-

creasing the length by at most one. The only sequence not considered is [1121],

which is of course trivial. The verification of equations (4.14)-(4.16) follows.

[1122...] = [11111...] + [111111...] + [11121...]− [115...]

= [.][11..] − [11][...].

Line 1 follows from using (4.2) to substitute the underlined segment, and line 2

follows by simplifying using (4.4) and (4.9).

[11211...] = [1124...] − [1125...] − [1123...]

= −[11114...]− [1115...] − [112][...] + [1114...] + [11113...]

= −[.][14...] − [.][.][...] + [.][4...] + [.][13...]

= [.]
(
− [.][11...] − [1121...] + [122...] − [22...] − [12...]

−[21...] − [111...] − [1111...]
)

= −[.][12...] − [.][.][...].

Line 1 follows from using t1 to substitute the underlined segment, line 2 follows

by using t4 and t5 in the same way, line 3 uses (4.9) and (4.13), line 4 uses (4.3)
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and (4.2), and finally line 5 uses (4.4) and (4.9)-(4.11) to simplify.

[11212...] = −[112111...]− [11221...] + [1125...] − [1124...]

= [.][121...] + [.][.][1...] − [.][111...] + [11][1...] + [112][...]

+[11114...] + [1115...]

= −[.][112...] + [11][1...] + [.][14...]

= −[.][112...] + [11][1...] + [.][11111...] + [.][1121...] − [.][122...]

−[.][112...] − [.][121...]

= [11][1...] − [.][112...].

Line 1 follows from using t2 to substitute the underlined segment, line 2 follows

from using t5 in the same way, and also using (4.15) and (4.14). Line 3 follows

by simplifying using (4.9), (4.10), line 4 follows by using (4.3), and line 5 by

simplifying using (4.9)-(4.11). This completes the proof of the lemma.

Lemma 4.5.3. There is a surjective map θ : K[X,Y, Z]/(Z2 − X5 − Y 3 +

XY Z) → e1Λe1.

Proof. By the previous lemma, there is a surjective map θ : K〈X,Y, Z〉 →

e1Λe1, which maps X to [C], Y to [CACAC] and Z to [CACACA2CAC]. We

perform the usual calculations to show the commutativity relations (note that in

the following (4.9)′ denotes the reversed form of (4.9), namely [...111] = [...][.] =

[...5]. We have

[11111] = [511] = [.][11] = θ(XY ),

= [115] = [11][.] = θ(Y X),

by using (4.9) and (4.9)′.

θ(ZX) = [1121][.] = [11215]

= [1121111]

= −[.][1211]− [.][.][11]

= [.][1121]

= θ(XZ).
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Line 2 follows from (4.9)′, line 3 from (4.15), and line 4 from (4.10).

θ(ZY ) = [1121][11] = [1121511]

= [112111111] + [1121111111] + [112112111]− [11212211]

= [112][.][.] + [1121111][.] + [12112][.]− [11212211]

= −[11212211]

= −[11][1211] + [.][112211]

= [11][.][11] + [11][1121] + [.][.][1111] − [.][11][11]

= [11][1121]

= θ(Y Z).

Line 2 follows by substituting using (4.2), line 3 by using (4.9)′, and line 4 by

using t8 and (4.13) to cancel. Line 5 uses (4.16), line 6 uses (4.10) and (4.14),

and line 7 uses (4.9), (4.5) and the fact that X and Y commute to cancel.

θ(Z2) = [1121][1121] = [112151121]

= [11211111121] + [112111111121] + [11211211121]− [1121221121]

= −[.][12111121]− [.][.][111121]− [.][121111121]− [.][12211121]

−[11][121121] + [.][11221121]

= [.][.][111121] + [.][11211121]− [.][.][.][121] + [.][.][1111121]

+[.][112111121]− [.][.][111121]− [.][.][1111121]− [.][112111121]

+[11][.][1121] + [11][112121] + [.][.][111121]− [.][11][1121]

= [.][11211121] + [11][112121]

= −[.][.][12121]− [.][.][.][121] + [11][11][11]− [11][.][1121]

= [.][.][11221] + [11][11][11]− [11][.][1121]

= [.][.][.][.][.] + [11][11][11]− [11][.][1121]

= θ(X5 −XY Z + Y 3).

Line 2 follows by using (4.2), and line 3 by using (4.15),(4.16) and then using

(4.4) to cancel two terms. Line 4 uses (4.9), (4.10), (4.11) and (4.14), and then
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we cancel many terms to obtain line 5. Line 6 follows by using (4.15) and (4.16),

and then we apply (4.10) to obtain line 7. Finally we use (4.14), (4.9) and (4.5)

to obtain line 8, and thus θ induces θ.

Lemma 4.5.4. θ is an isomorphism.

Proof. For all (s, t) ∈ K2 such that st 6= 1, s 6= 0, t 6= 0, 1, we consider the

matrices

α =




0 −ts(t−1)
ts−1 t2s− ts ts(t3s−2t2s+t−1+ts)

ts−1 0 ts(t−1)
ts−1

0 0 −ts −t2s2(t−1)
ts−1 ts 0

0 0 0 ts(t−1)
ts−1 0 (t−1)s

ts−1

0 0 0 0 ts (t−1)s
ts−1

0 0 0 0 0 (t−1)s
ts−1

0 0 0 0 0 0




β =




0 0 0 0 0 0
0 0 0 0 0 0

(t− 1)s −ts(t−1)
ts−1 0 0 0 0

−s 0 0 0 0 0
(t−1)s
ts−1

−ts(t−1)
ts−1 0 ts(t−1)

ts−1 0 0

ts ts(t− 1) −ts −ts(t− 1) 0 0




γ =




0 ts(t−1)
ts−1

ts(t−1)
ts−1

−ts(t−1)
ts−1 0 −ts(t−1)

ts−1

0 0 ts 0 −ts 0

−ts+ s −tsf(s,t)
ts−1

ts2(t−1)
ts−1

tsf(s,t)
ts−1 0 −s(t−1)

ts−1

s ts2(t−1)
ts−1

ts2(t−1)
ts−1

−ts2(t−1)
ts−1 −ts −s(t−1)

ts−1

−ts+ s −tsf(s,t)
ts−1

ts2(t−1)
ts−1

tsf(s,t)
ts−1 0 −s(t−1)

ts−1

−ts −t2s+ ts ts t2s− ts 0 0




,

where f(s, t) = −2ts+ 1 + s+ t2s − t. One can check that α6 = β3 = γ2 = 0,

and (α+ 1)(β+ 1)(γ+ 1) = 1. This implies (see the proof of Lemma 3.3.7) that

one gets a representation M st of Λ.

Imα2 Imβ2

Im γ

Imα3Imα4Imα5 Imα K6 Imβ
?

- - - -- � �

6

� � � �� - -
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where the linear maps are M st
ai

∗ = α|Im αi−1 and M st
ai

is the inclusion of Imαi in

Imαi−1 (and similarly for the bi and ci). This is easily seen to have dimension

vector δ. Now

xst =
−t5s6(t− 1)3

(ts− 1)3
, yst =

t8s10(t− 1)5

(ts− 1)5
, zst =

t12s15(t− 1)8

(ts− 1)7
.

If we assume that (xst, yst, zst) = (xs′t′ , ys′t′ , zs′t′), then in particular t =

−x5
st/y

3
st = −x5

s′t′/y
3
s′t′ = t′ and ts(t − 1) = xstzst/yst = xs′t′zs′t′/ts′t′ =

t′s′(t′ − 1) which shows s = s′. Thus θ is an isomorphism by Lemma 4.1.3.

4.6 Type Ãn, n > 0

We can assume that Λ(Q) = KQ/Iµ, where Q is the quiver

s s ssq q q- - --
@

@
@ �

�
��1 02 n

a0

a1 an

and Iµ is the ideal generated by the elements a∗0a0 + a∗1a1 + a∗0a0a
∗
1a1, a0a

∗
0 +

ana
∗
n +ana

∗
na0a

∗
0 and aia

∗
i −a

∗
i+1ai+1 for i = 1, . . . , n−1. [To see this, it suffices

to prove that each eh(a) + aa∗ is invertible by Lemma 2.2.3. The relations

(e0 + ana
∗
n)(e0 + a0a

∗
0) − e0 and (e1 + a∗0a0)(e1 + a∗1a1) − e1 make e0 + a0a

∗
0

and e1 + a∗0a0 invertible (using the key fact of Section 2.2), the latter having

inverse (e1 + a∗1a1). Since (ei+1 + aia
∗
i ) = (ei+1 + a∗i+1ai+1) for 1 ≤ 1 ≤ n− 1,

it follows from the key fact that each eh(a) + aa∗ is invertible.] Note that

ana
∗
n = (e0 + a0a

∗
0)−1 − e0 = −a0(e1 + a∗0a0)−1a∗0 = −a0a

∗
0 − a0a

∗
1a1a

∗
0, and it

can be easily checked that a∗0ana
∗
n = a∗1a1a

∗
0.

Lemma 4.6.1. e1Λe1 is generated by X = a∗0an . . . a2a1, Y = a∗1a
∗
2 . . . a

∗
na0,

Z = a∗1a1.

Proof. We show that if p is a path of Q which starts and ends at 1 then p ∈ Λ

can be written as a linear combination of products of X , Y , Z. We can assume

that p doesn’t visit vertex 1 other than at the start and end, since all paths
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which start and end at 1 can be written as the product of paths of this form.

We split into three cases.

Case 1 - p does not involve a∗0.

We use the reduction system {a∗i+1ai+1−aia
∗
i : i = 1, . . . , n−1}. We claim that

any complete reduction p′ of p is a product involving Z and Y .

Namely, we assume that all reduced paths of length less than p′ are such

a product, and use induction to show that this is the case for p′. First, note

that p′ = a∗1p1, since a∗1 is the only arrow other than a∗0 which ends at 1. Now

if p1 = a1p
′
1 then p′ = Zp′1, and by the induction hypothesis, p′ is a product

involving Z and Y . On the other hand, if p1 = a∗2p2, then p′ must have the

form a∗1a
∗
2 . . . a

∗
na0p

′
1, since it cannot have a subpath a∗i ai where i ≥ 2. Therefore

p′ = Y p′1 and the result follows.

Case 2 - p does not involve a0.

A similar argument shows that p can be written as product involving Z and X .

Case 3 - p involves a0 and a∗0.

By the comment given at the start of the proof, we can assume that p = a∗0p0a0,

where p0 moves between vertices 2, . . . , n, 0. We consider the reduction system

{aia
∗
i − a∗i+1ai+1 : i = 1, . . . , n − 1} (changing the ordering so that aia

∗
i is the

leading word). Suppose that p′ is a complete reduction of p. It is clear that p′

has the form a∗0(ana
∗
n)ia0. Now, since ana

∗
n − a0a

∗
0 − a0a

∗
1a1a

∗
0 ∈ Iµ, we can add

it to the reduction system (it can be assumed that the leading word is ana
∗
n),

and compute the complete reduction of p′. It is clear this is a linear combination

of products involving Z and W = a∗0a0. To complete the proof, we show that

W can be expressed as a product involving X , Y and Z. First, note that

Zn+1 = (a∗1a1)n+1

= a∗1a
∗
2 . . . a

∗
n(ana

∗
n)anan−1 . . . a2a1

= a∗1a
∗
2 . . . a

∗
n(−a0a

∗
0 − ana

∗
na0a

∗
0)anan−1 . . . a2a1

= −Y X − a∗1a1a
∗
1a

∗
2 . . . a

∗
nana

∗
nX

= −Y X − ZYX.
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Now (e1 + Z)(e1 − Z + Z2 − · · · + (−1)nZn + (−1)nY X) = e1 + (−1)nZn+1 +

(−1)n(Y X + ZYX) = e1. Therefore W = (e1 + Z)−1 − e1 = −Z + Z2 − · · · +

(−1)n(Zn + Y X), which completes the proof.

Lemma 4.6.2. There is a surjective map θ : K[X,Y, Z]/(Zn+1 +XY +XY Z)

→ e1Λe1.

Proof. By the previous lemma, there is a surjective map θ : K〈X,Y, Z〉 →

e1Λe1, which maps X to a∗0an . . . a2a1, Y to a∗1a
∗
2 . . . a

∗
na0 and Z to a∗1a1. Ob-

serve that

θ(XZ) = a∗0an . . . a2a1a
∗
1a1

= a∗0ana
∗
nan . . . a2a1

= −a∗0a0a
∗
1a1a

∗
0an . . . a2a1 − a∗0a0a

∗
0an . . . a2a1

= a∗1a1a
∗
0an . . . a2a1

= θ(ZX).

θ(ZY ) = a∗1a1a
∗
1a

∗
2 . . . a

∗
na0

= a∗1a
∗
2 . . . a

∗
nana

∗
na0

= −a∗1a
∗
2 . . . a

∗
na0a

∗
0a0 − a∗1a

∗
2 . . . a

∗
na0a

∗
1a1a

∗
0a0

= a∗1a
∗
2 . . . a

∗
na0a

∗
1a1

= θ(Y Z).

θ(XY ) = a∗0an . . . a2a1a
∗
1a

∗
2 . . . a

∗
na0

= a∗0(ana
∗
n)na0

= (a∗1a1)na∗0a0

= (a∗1a1)n+1(e1 + a∗0a0)

= θ(Zn+1(1 +W ))

= θ(Y X + Y XZ)(1 + Z)−1

= θ(Y X).

which shows X,Y, Z commute, and θ(Zn+1 + XY + XY Z) = 0 was shown in

the proof of the previous lemma, and so θ induces θ.
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Lemma 4.6.3. θ is an isomorphism.

Proof. For s, t ∈ V , where V = {(s, t) ∈ K2 : s 6= 0,−1, t 6= 0, 1}, consider the

following representation M st of Q, which is easily seen to be a representation

of Λ.

K K KKq q q- - --� � ��

@
@@
@

@@I �
���

�
��

s

1

s

1

s

1

s

1
−s

t(s+1)

t

Now

xst = t, yst =
−sn+1

t(s+ 1)
, zst = s,

If we assume that (xst, yst, zst) = (xs′t′ , ys′t′ , zs′t′), then clearly s = s′ and

t = t′. Thus θ is an isomorphism by Lemma 4.1.3.

4.7 Type D̃n, n > 4

Let k = n− 4. We can assume that Λ(Q) = KQ/Iµ, where Q is the quiver

s

s

�
�

�
���

@
@

@
@@R s

2

1

0

b

a

s5�
f1

q� q q sn− 1 sn��
fk

s

s

@
@

@
@@I

�
�

�
��	

4

3

d

c

and Iµ is the ideal generated by the elements a∗a, b∗b, c∗c, d∗d, s0, s1 and mi for

1 ≤ i ≤ k−1 where s0 = (e0 +aa∗)(e0 +bb∗)(e0 +f1f
∗
1 )−e0, s1 = (en +f∗

kfk)−

(en + cc∗)(en + dd∗), and each mi = f∗
i fi − fi+1f

∗
i+1. Let A = aa∗, B = bb∗,

C = cc∗, D = dd∗, F = f1f
∗
1 , G = f∗

kfk, M = f1f2 . . . fk, N = f∗
k . . . f

∗
2 f

∗
1 , so

s0 = (e0 + A)(e0 + B)(e0 + F ) − e0, and s1 = (en + G) − (en + C)(en + D).
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We follow a similar path to the one we took when dealing with D̃4, except that

more calculations are necessary. We split them into several lemmas so that it

is easier to compare with the D̃4 case. First we list some elements of Iµ which

are relatively easy to obtain.

Lemma 4.7.1. The following elements all lie in Iµ.

sA = A+B + F +BF,

sB = B + F + FA+A,

sF = F +A+B −BA,

sD = D + C −G+ CG,

u1 = F k −NM,

u2 = Gk −MN,

u3 = GM −MF,

u4 = NG− FM.

Proof. Since (e0 +A)−1s0 ∈ Iµ, so is sA, Similarly, the fact that sB, sF , sD are

in Iµ follows from considering the expressions (e0 +B)−1(e0 +A)−1s0(e0 +A),

(e0 +B)−1sA and sD = −(en +C)−1s1 respectively. The ui are easily obtained

by using the mi.

Observe that from u3 and u4 we have (1 + G)M −M(1 + F ), N(1 + G) −

(1 +F )N ∈ Iµ, and consequently so are (1 +G)−1M −M(1 +F )−1 and N(1 +

G)−1 − (1 + F )−1N . Compare the following lemma with Lemma 4.2.1, and

observe that if k is assumed to be zero (and thus N and M can be ignored), the

formulas will coincide.
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Lemma 4.7.2. The following elements lie in Iµ.

s2 = ND −N + (e0 +A)(e0 +B)N(en + C),

s′2 = DM +M − (en − C)M(e0 −B)(e0 −A),

s3 = NCMB +ABNM +ANCM +BNCM +ABNCM +BNMA

+NCMA+ABNMA+ANCMA+BNCMA+ABNCMA

+ANMA+ ANM +BNM −NMB −NMA,

s4 = NCMAB −BANCM −ABNCM −ABNMA−ANCMA

−BNCMA−ABNCMA+BAF k−1BA.

Proof. We have −N(en +G)−1s1(en +D)−1 = −N(en +G)−1((en +G)− (en +

C)(en+D))(en+D)−1 ∈ Iµ, and therefore so is t2 = ND−N+N(en+G)−1(en+

C), and by the comments above, so is s2 = ND −N + (e0 + F )−1N(en + C).

Similarly, −(en +C)−1s1M = −(en +C)−1((en +G)−(en +C)(en +D))M ∈ Iµ,

and therefore so is (en − C)(en + G)M + (en + D)M , and also t′2 = −(en −

C)M(e0 + F ) + M + DM . Finally, by substituting the F in t′2 using sF , we

have s′2 ∈ Iµ.

Now assuming ND, DM to be the leading words of s2 and s′2, we resolve

NDM :

N(DM) 7→ −NM +N(en − C)M(e0 −B)(e0 −A),

(ND)M 7→ NM − (e0 +A)(e0 + B)N(en + C)M.

Thus s5 = N(en−C)M(e0−B)(e0−A)+(e0+A)(e0+B)N(en+C)M−2NM ∈

Iµ. Then since s5(e0 +A) ∈ Iµ, so is s3 = N(en −C)M(e0 −B) + (e0 +A)(e0 +

B)N(en + C)M(e0 +A) − 2NM(e0 +A).

Since (e0−B)(e0−A)s5(e0+A)(e0+B) ∈ Iµ, so is s6 = (e0−B)(e0−A)N(en−

C)M +N(en +C)M(e0 +A)(e0 +B)− 2(e0 −B)(e0 −A)NM(e0 +A)(e0 +B).
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Multiply this out, we have

s6 = BNCM +ANCM −BANCM +NCMA+NCMB +NCMAB

+BNM +ANM −NMA−NMB −BANM + 2BNMA

+2BNMB + 2ANMA+ 2ANMB −NMAB − 2BANMA

−2BANMB + 2BNMAB + 2ANMAB − 2BANMAB.

Substituting the term NCMB using s3, we obtain s7 ∈ Iµ, where

s7 = NCMAB −BANCM −ABNCM −ABNMA−ANCMA

−BNCMA−ABNCMA+ (−BANM −NMAB +BNMA

+2BNMB +ANMA+ 2ANMB −ABNM − 2BANMA

−2BANMB + 2BNMAB + 2ANMAB − 2BANMAB).

Observe that this is equal to s4, except that the terms in the bracket are replaced

by BAF k−1BA. To prove this substitution can be made, we must perform

another tricky calculation to show that the term inside the bracket can be

reduced to BAF k−1BA by adding elements of Iµ. First, replace each NM by

F k, and then use sF can be used to substitute F by −A−B−BA, so that each

term starts and ends with A or B. Set s8 equal to this element. We have

s8 = −BAF k−1BA+BAF k−1B +BAF k−1A−BAF k−1AB +BF k−1AB

+AF k−1AB +BF kA+ 2BF kB +AF kA+ 2AF kB −ABF k−1BA

+ABF k−1B +ABF k−1A− 2BAF kA− 2BAF kB + 2BF kAB

+2AF kAB − 2BAF kAB.

We consider the terms starting and ending with B. This is equal to

BAF k−1B −BAF k−1AB +BF k−1AB + 2BF kB

− 2BAF kB + 2BF kAB − 2BAF kAB.

The final three terms cancel, since BAF kB = −BAF k−1BAB−BAF k−1AB =

BF kAB−BAF kAB by using sF . The first four terms also cancel, since BF kB
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is equal to both −BAF k−1 and BF k−1BAB − BF k−1AB (using sF ). Now

consider the terms starting and ending with A:

AF kA−ABF k−1BA+ABF k−1A.

The can easily be reduced to zero, since AF kA = −ABF kA − ABF k−1A =

ABF k−1BA − ABF−1A, using sA and then sF . Continue with terms starting

with A and ending with B:

AF k−1AB + 2AF kB + ABF k−1B + 2AF kAB.

Subtracting 2AF k−1sBB, we obtain ABF k−1B − AF k−1AB. We can assume

that k > 1, (otherwise it is trivially zero) and substitute an F in both terms,

leaving us with AB(F k−2B − AF k−2)AB. Now substitute the A and B inside

the bracket to obtain zero. Finally we do the same with the terms starting with

B and ending with A (and s8 must be equal to this, since the remaining terms

have cancelled):

−BAF k−1BA+BAF k−1A+BF kA− 2BAF kA.

Using sF , the middle two terms cancel, and BAF kA = −BAF k−1BA, and so

the whole expression is equal to BAF k−1BA, as required.

Before we find the generators of e1Λe1, we need one further calculation. At

the same time, we will give a couple of formulas which will help us show that

the generators commute.

Lemma 4.7.3. The following are all elements of Iµ.

s = NCG− (AB +BA)N − (AB +A+B)NC,

ti = a∗NCGiCMa+ a∗F iANCMa, for all i,

ri = a∗BNCGiCMa+ a∗BF iBNCMa, for all i.

Proof. Going back to the start of the proof of the previous lemma, we have two

different substitutions for D in terms of C and G, namely D = (en − C)(en +
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G) − en and D = en − (en + G)−1(en + C). Hence en − C + G − CG + (en +

G)−1(en + C) ∈ Iµ. Multiply by −N on the left, to obtain NCG − NG +

NC − N − (e0 + F )−1N(en + C) ∈ Iµ. Now observe that we can substitute

(e0 +F )−1 by e0 +A+B+AB, and therefore by e0 −F +AB+BA, obtaining

NCG−NG+NC −N − (N +NC −FN −FNC +ABN +ABNC +BAN +

BANC) = NCG− (AB + BA)N − (AB + BA − F )NC ∈ Iµ. Finally use the

substitution sF to obtain s ∈ Iµ.

We prove ti, ri ∈ Iµ by induction. For i = 0, both are trivial. So we assume

that ti, ri ∈ Iµ for all i ≤ j, and consider tj+1. As elements of Λ, we have

a∗NCGj+1CMa = a∗((AB +BA)N + (AB +A+B)NC)GjCMa

= a∗BANGjCMa+ a∗BNCGjCMa

= a∗BAF jNCMa− a∗BF jBNCMa

= a∗BAF j−1BANCMa− a∗BAF j−1BNCMa

−a∗BAF j−1ANCMa− a∗BF jBNCMa

= −a∗BAF jANCMa+ a∗BF jBNCMa

+a∗BF jANCMa− a∗BF jBNCMa

= −a∗F j+1ANCMa.

Line 1 follows by using s, and then we make easy cancellations to obtain line

2. Line 3 follows by substituting using rj (possible by the induction hypothesis),

and line 4 by substituting using sF . Line 5 follows by using sA and sB to

substitute the underlined letters, and finally line 6 follows using sF to substitute

BA and the remaining terms cancel. This shows tj+1 ∈ Iµ.
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We now do the same to prove rj+1 ∈ Iµ.

a∗BNCGj+1CMa = a∗B((AB +BA)N + (AB +A+B)NC)GjCMa

= a∗BABNGjCMa+ a∗BABNCGjCMa

+a∗BANCGjCMa

= a∗BABF jNCMa− a∗BABF jBNCMa

−a∗BAF jANCMa

= a∗BA(BF j−1BA−BF j−1B −BF j−1A−BF jB

−BAF j−1A+BF j−1A)NCMa

= a∗BA(−BF j−1B −BF jB)NCMa

= a∗BA(−BF j−1B +BAF j−1B)NCMa

= a∗BAF jBNCMa

= −a∗BF j+1BNCMa.

Line 1 follows by substituting using s, and then we make easy cancellations

to obtain line 2. By the induction hypothesis, we can use rj and tj to obtain

line 3. Applying sF gives us line 4. Line 5 follows from the easily verified fact

that BAF j−1A = BF j−1BA for all j. We then use sF to obtain line 6, and

again to obtain line 7. Finally, line 8 follows by using sA, and this completes

the proof.

Lemma 4.7.4. e1Λe1 is generated by the paths X = a∗Ba, Y = a∗NCMa,

Z = a∗BNCMa.

Proof. We have that e1Λe1 is spanned by the set of all paths which start and end

at 1. Using sB and sD in a reduction system, we see that e1Λe1 is spanned by

the set H of paths which start and end at 1 and do not visit 2 or 4. We show that

any path p which doesn’t visit 2 and 4 can be written as a linear combination

of products of X,Y, Z. We can assume that p doesn’t visit 1 except at its start

and end. We split into two cases.

(1) If p does not visit 3 (i.e. does not involve C), then we use the reduction

system {mi : i = 1, . . . , k − 1} where the ordering is chosen so that each mi
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has leading word fi+1f
∗
i+1. This shows that p can be assumed to have the form

a∗F ia, and then by using sF we can express p as a polynomial in X .

(2) If p does visit 3 then we use the reduction system {mi : i = 1, . . . , k −

1} ∪ {s} where the ordering is chosen so that each mi has leading word f∗
i fi

and s has leading word NCG. Then it follows that p can be written as a

linear combination of elements of the form a∗NGiCMa, which in turn can be

written as a linear combination of elements of the form a∗F iNCMa. Use sF

to eliminate each F and the resulting expression is a linear combination of

elements of the form a∗(BA)jNCMa and a∗(BA)jBNCMa, which are XjY ,

XjZ respectively.

Note that a∗F ia = pi(X) for all i ≥ 0. For i = 0 it is clear and for i = 1,

a∗Fa = −a∗Ba = −X = p1(X). For i > 1, a∗F ia = a∗BAF i−1a−a∗BF i−1a =

a∗BAF i−1a+a∗BAF i−2a = X(pi−1(X)+pi−2(X)) = pi(X). To make the final

calculations easier to follow, we define Λ0 to be the algebra KQ/I, where I is the

ideal generated by the relations a∗a, b∗b, c∗c, d∗d, and denote the map KQ→ Λ0

by an underline. The calculation is similar to Lemma 4.2.3.

Lemma 4.7.5. There is a surjective map θ : K[X,Y, Z]/(Z2 − pk(X)XZ +

pk−1(X)X2Y −XY 2 −XYZ) → e1Λe1.

Proof. By the previous lemma, there is a surjective map θ : K〈X,Y, Z〉 →

e1Λe1, which maps X to a∗Ba, Y to a∗NCMa and Z to a∗BNCMa. Observe

that

θ(XY − Y X) = a∗BANCMa− a∗NCMABa = a∗s4a = 0,

θ(ZX −XZ) = a∗BNCMABa− a∗BABNCMa = a∗Bs4a = 0,

θ(Y Z − ZY ) = a∗NCMABNCMa− a∗BNCMANCMa

= a∗NCMABNCMa− a∗BNCMANCMa−Xtk

= a∗NCMABNCMa− a∗BNCMANCMa

−aBANCMNCMa+ aBAF k−1BANCMa

= a∗s4NCMa = 0,

94



which shows X,Y, Z commute. Let T = θ(−Xpk(X)Z + X2pk−1(X)Y ). We

have

T = −a∗BAFF k−1ABNCMa+ a∗BABAF k−1ANCMa

= −a∗BABAF k−1ABNCMa+ a∗BABF k−1ABNCMa

−a∗BABF kANCMa

= a∗BABF kBNCMa− a∗BABF kANCMa

= −a∗BABNCGkCMa− a∗BABF kANCMa

= −a∗BABNCMNCMa− a∗BABNMANCMa

Line 2 follows by using sA and sF to substitute the underlined letters, line 3

by using sA, and the fact that BAF kA = BF kBA. Line 4 follows by using rk.

Now it is clear that θ(Z2 −Xpk(X)Z +X2pk−1(X)Y −XY 2 −XZY ) is equal

to

a∗BNCMABNCMa− a∗BANCMANCMa− a∗BABNCMANCMa

− a∗BABNCMNCMa− a∗BABNMANCMa,

which is a∗Bs4NCMa = 0. Thus θ induces θ.

Lemma 4.7.6. θ is an isomorphism.

Proof. For s, t ∈ V , where V = {(s, t) ∈ K2 : t2s− ts+ 1 6= 0, s 6= 0, t 6= 0, 1},

we consider matrices

α =

(
0 s(t−1)

t2s−ts+1

0 0

)

β =

(
0 0

ts(t− 1) 0

)

γ =

(
ts

t2s−ts+1
−ts

t2s−ts+1
ts

t2s−ts+1
−ts

t2s−ts+1

)

δ =

(
−ts s
−t2s ts

)

ζ =

(
0 −s(t−1)

t2s−ts+1

−ts(t− 1) ts2(t−1)2

t2s−ts+1

)
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One can check that α2 = β2 = γ2 = δ2 = 0, and that (1 + α)(1 + β)(1 +

ζ) = 1 and (1 + ζ) = (1 + γ)(1 + δ), and thus one gets a representation M st

of Λ of dimension vector δ where M st
v = K2 for v 6= 1, 2, 3, 4, M st

1 = Imα,

M st
2 = Imβ, M st

3 = Im γ, M st
4 = Im δ, and the linear maps are M st

a∗ = α,

M st
a is the inclusion of Imα in K2 (and similarly for b, c and d), M st

fi
∗ = ζ

for all i and each M st
fi

is the identity map. For each k, let Vk = {(s, t) ∈ V :

Each component of cfk is non zero}. Since Vk is the complement in K2 of the

set of zeroes of a finite list of polynomials, it is a 2 dimensional variety. Now

xst =
ts2(t− 1)2

t2s− ts+ 1
, zst = ts(t− 1)yst,

and yst is a complicated expression which is guaranteed to be nonzero by the

assumption on Vk. Additionally note that zst+yst = yst(ts(t−1)+1) = yst(t
2s−

ts+1) is also non zero. If we assume that (xst, yst, zst) = (xs′t′ , ys′t′ , zs′t′), then

in particular, t = z2
st/(xstyst(yst + zst) = z2

s′t′/(xs′t′ys′t′(ys′t′ + zs′t′) = t′, and

then it follows that s = s′. Thus θ is an isomorphism by Lemma 4.1.3.

4.8 Open problems

The main theorem gives rise to the following corollary.

Corollary 4.8.1. If Q is extended Dynkin, and 1 is an extending vertex, then

e1Λ1(Q)e1 is a commutative Noetherian domain of Krull dimension 2.

Of course, it would be desirable to obtain the properties for general q, and

in particular a multiplicative analogue of [10, Theorem 0.4]. It may be the case

here that simply substituting ‘λ.α = 0’ with ‘qα = 1’ throughout is not correct,

and one should instead use ‘qα is a root of 1’. The best way to attack this

problem is probably to look at the simplest extended Dynkin quiver, which has

one vertex and one loop. If q = 1, this is isomorphic to a localised polynomial

ring K[x, y, (1 + xy)−1] (which is isomorphic to the algebra K[X,Y, Z]/(Z +

XY +XY Z) via the isomorphism which sends x to X , y to Y and (1 + xy)−1

to 1 + Z, thus verifying Theorem 4.1.1 in the Ã0 case). If q 6= 1, then Λq(Q) =
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K〈a, a∗, (1+aa∗)−1〉/((1+aa∗) = q(1+a∗a)), which is isomorphic to a localised

first quantised Weyl algebra, which is discussed in [20].

The proof of many results for Πλ in the extended Dynkin case rely on the

following construction, given in [10]. Any extended Dynkin quiver Q corre-

sponds to a subgroup Γ ∈ SL2(K), (shown in [25]). Using the natural action of

Γ on K〈x, y〉, one can form the skew group ring K〈x, y〉 ∗Γ. Given λ ∈ Z(KΓ),

let Π̃λ be the ring (K〈x, y〉 ∗ Γ)/(xy − yx − λ). One can identify λ with an

element of KQ0 , and then it can be shown that Πλ(Q) is Morita equivalent to

Π̃λ(Q), and e1Πλ(Q)e1 ∼= eΠ̃λ(Q)e, where e is the average of the group ele-

ments. Our attempts to find a multiplicative analogue of this construction have

been unsuccessful.

We would also like to obtain properties of Λq. We make the following con-

jecture (based on [10, Corollary 3.6]).

Conjecture 4.8.2. If Q is extended Dynkin, then Λq(Q) is a prime Noetherian

ring of GK dimension 2.

Whereas it is difficult to know where to start on a proof for general q, it

ought to be possible to use Corollary 4.8.1 to make progress in the case q = 1.

It may be possible to derive these (and other) results from results on ‘generalized

double affine Hecke algebras’, which are defined in [16]. This paper includes an

appendix which shows that these algebras are isomorphic to e0Λq(Q)e0, where

Q is a star shaped extended Dynkin quiver, and 0 is the central vertex.

97



Chapter 5

Further Investigations

In this chapter we examine some miscellaneous questions regarding multiplica-

tive preprojective algebras. In Section 5.1.1, we conjecture that Λ1(Q) is a

‘preprojective algebra’ in the sense of satisfying the preprojective property, and

give some examples where this is true. In Section 5.2 we consider whether Λ1(Q)

could be isomorphic to Π(Q) as an algebra, and in Section 5.3 we list some other

questions.

5.1 Are Λ and Π isomorphic as KQ-modules?

In this section we assume that q = 1, and write Λ(Q) (or simply Λ) for Λ1(Q).

We propose the following conjecture (clearly equivalent to the question in the

title of this section having the answer yes).

Conjecture 5.1.1. For any quiver Q, Λ(Q) satisfies the preprojective property

for KQ.

If true, this conjecture would have some interesting implications. One imme-

diate consequence would be the truth of Conjecture 3.6.3. It would also perhaps

lead to some easier proofs of the results in the previous two chapters. Unfor-

tunately, the proof in the general case is likely to be very difficult. Instead,

we can show the result is true in some special cases (note that we only show

the preprojective property holds for left modules, but each proof can be easily

adapted to show it for right modules). First the ‘trivial’ case.
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Lemma 5.1.2. If Q has type An then Conjecture 5.1.1 is true.

Proof. This is not quite as trivial as might first appear [It is not always the case

that two isomorphic algebras with a common subalgebra A are isomorphic as

A-modules, one also requires that the isomorphism between them is the identity

map when restricted to A, which is what is shown here]. Let Q′ be the quiver

given in Lemma 3.2.1. The conjecture is clearly true in this case, because

the algebras Λ(Q′) and Π(Q′) are the same, as they are given by the same

presentation. Clearly Q can be obtained from Q′ by reversing some arrows.

That is, partition the integers 1, . . . , n−1 into two disjoint sets R and S so that

Q1 = {bi : i ∈ R} ∪ {ci : i ∈ S} where t(bi) = i + 1, h(bi) = i and t(ci) = i,

h(ci) = i + 1. By Lemma 2.1.3 there is an isomorphism θ : Λ(Q) → Λ(Q′)

which satisfies θ(bi) = ai and θ(ci) = a∗i . Now (see Lemma 1.3.7) there is an

isomorphism φ : Π(Q′) → Π(Q) which in particular maps ai to bi if i ∈ R,

and a∗i to ci if i ∈ S. The composition ψ = φθ is an algebra isomorphism

Λ(Q) → Π(Q) which acts as the identity map on the subalgebrasKQ. Therefore

if x ∈ KQ and y ∈ Λ(Q), ψ(xy) = ψ(x)ψ(y) = xψ(y), so ψ is also a KQ-module

isomorphism.

We can also verify it in the smallest non trivial case, where Q is the following

quiver of type D4.

s s
s

s

�
�

�
��+

Q
Q

Q
QQk
�

c

a

b

0

1

2

3

Lemma 5.1.3. If Q is the quiver given above, the conjecture is true.

Proof. We show the set {e0, e1, e2, e3, a, a
∗, b, b∗, c, c∗, b∗a, c∗a, aa∗, a∗b, c∗b, bb∗,

a∗c, b∗c, bb∗a, b∗aa∗, c∗aa∗, aa∗b, a∗bb∗, aa∗c, a∗bb∗a, bb∗aa∗, b∗aa∗b, c∗aa∗c} is a

basis of both Π(Q) and Λ(Q), by using the reduction algorithm. Let Ω1 =

{a∗a, b∗b, c∗c, aa∗ + bb∗ + cc∗}. This is clearly a full reduction system for Π =

KQ/Iρ (we are working with the ≤c,b,len,lex ordering, where the lexographic
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ordering is chosen so that bb∗aa∗ < aa∗bb∗). Resolving the ambiguities cc∗c

and c∗cc∗ shows that ω1 = bb∗c + aa∗c and ω2 = c∗bb∗ + c∗aa∗ are in Iρ.

Let Ω2 = Ω1 ∪ {ω1, ω2}. Resolving the ambiguity cc∗bb∗ shows that ω3 =

aa∗bb∗ + bb∗aa∗ is in Iρ. Let Ω3 = Ω2 ∪ {ω3}. Resolving the ambiguities

a∗aa∗bb∗, b∗bb∗c, c∗bb∗b, aa∗bb∗b shows that a∗bb∗aa∗, b∗aa∗c, c∗aa∗b, bb∗aa∗b ∈

Iρ. Let Ω be the union of these elements and Ω3. One can check that all

ambiguities are reduction unique, and thus the set of irreducible words above is

a basis of Π.

We do a similar process for Λ = KQ/Iµ, this time starting with Ω0 =

{a∗a, b∗b, c∗c, ω0} where ω0 = aa∗ + bb∗ + cc∗ + aa∗bb∗ + aa∗cc∗ + bb∗cc∗ +

aa∗bb∗cc∗. We first verify that IΩ0 = IΩ1 , where Ω1 is the same as Ω0, except

that we replace ω0 by ω′
0 = aa∗ + bb∗ + cc∗ + aa∗bb∗. This is clear, since

ω0 = ω′
0(e0 + cc∗) − cc∗cc∗ shows the ⊆ inclusion, and then ω′

0 = ω0(e0 −

cc∗) + (e0 + aa∗ + bb∗ + aa∗bb∗)cc∗cc∗ shows the other inclusion. Resolving the

ambiguity cc∗c in Ω1 shows that aa∗c + (e0 + aa∗)bb∗c ∈ Iµ, and thus so is

(e0 − aa∗)aa∗c + bb∗c. It follows that ω1 (as given above) is in Iµ. Similarly

ω2 ∈ Iµ, by resolving c∗cc∗. By following the rest of the calculation that was

done for Π in a virtually identical fashion, we find that Ω (as given above except

that aa∗ + bb∗ + cc∗ replaced by ω′
0) is a full reduction system for Λ in which all

ambiguities are reduction unique. The set of illegal words are the same as for

Π, and therefore Λ has the same basis as Π.

We have KQ-module decompositions

Π =
⊕

v∈Q0

Πev,

Λ =
⊕

v∈Q0

Λev,

where each Πev, Λev is spanned by the paths starting at v. We want to show that

Πev
∼= Λev for all v. Let us consider v = 0, which is the only non trivial case.

Using the information above we calculate the representation of Q corresponding
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to Πe0.

(e0, aa
∗, bb∗, bb∗aa∗) (b∗, b∗aa∗)

(c∗, c∗aa∗)

(a∗, a∗cc∗)

�

Q
Q

Q
Q

Q
Qk

�
�

�
�

�
�+

(
0 0
1 0
0 0
0 1

)

(
0 0
0 0
1 0
0 1

)

(
0 0
−1 0
−1 0
0 −1

)

Note that (x1, x2, . . . , xn) denotes the vector space with basis {x1, x2, . . . , xn}

and the matrices define the linear maps with respect to this basis. This repre-

sentation clearly decomposes as

(e0) 0

0

0

�

@
@

@
@I

�
�

�
�	 ⊕

(aa∗, bb∗)

(a∗)

(b∗)

(c∗)

�

@
@

@
@I

�
�

�
�	 ⊕

(bb∗aa∗) (b∗aa∗)

(a∗bb∗)

(c∗aa∗)

�

@
@

@
@I

�
�

�
�	

( 1
0 )

( 0
1 )

(
−1
−1

)
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Similarly for Λe0, we obtain

(e0, aa
∗, bb∗, bb∗aa∗) (b∗, b∗aa∗)

(c∗, c∗aa∗)

(a∗, a∗cc∗)

�

Q
Q

Q
Q

Q
Qk

�
�

�
�

�
�+

(
0 0
1 0
0 0
0 1

)

(
0 0
0 0
1 0
0 1

)

(
0 0
−1 0
−1 0
1 −1

)

which decomposes as

(e0) 0

0

0

�

@
@

@
@I

�
�

�
�	 ⊕

(aa∗, bb∗)

(a∗)

(b∗)

(c∗ − c∗aa∗)

�

@
@

@
@I

�
�

�
�	 ⊕

(bb∗aa∗) (b∗aa∗)

(a∗bb∗)

(c∗aa∗)

�

@
@

@
@I

�
�

�
�	

( 1
0 )

( 0
1 )

(
−1
−1

)

It clear from this that Πe0 ∼= Λe0. For the remaining vertices, it is obvious

that Πev
∼= Λev, since their representations (before decomposing) are identical.

Thus the conjecture is true in this case.

This example illustrates the difficulty in proving the conjecture. Since the

ordinary preprojective algebra is graded, there is an automatic decomposition

Π ∼=
⊕

v∈Q0

k≥0

Πkev,

where Πk denotes the span of the paths of degree k (using the oriented grad-

ing). This decomposition is in fact the decomposition into indecomposable
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KQ-modules. The multiplicative preprojective algebra does not inherit the ori-

ented grading from KQ, and one has to consider the inhomogeneous element

c∗−c∗aa∗ in order to obtain the decomposition. It is not at all obvious why this

particular element is needed. One possible strategy of proving the conjecture

(in the Dynkin case) that we investigated was to use a descending filtration on

Λ, and show that the associated graded ring is isomorphic to Π. This would be

true if Conjecture 3.6.3 was true, but even if gr Λ ∼= Π as algebras, it does not

seem to follow easily that Λ ∼= Π as modules.

The best evidence we have for the truth of the conjecture is the following re-

sult in the simplest infinite type case. It would seem unlikely that the conjecture

could be true in this case by accident.

Theorem 5.1.4. Let Q be the quiver

s s--
a

b

1 2

Λ(Q) is isomorphic to the direct sum of a set of representatives of the indecom-

posable preprojective KQ modules.

The (lengthy) proof of this theorem comprises the rest of this section. Firstly,

we use the reduction algorithm to obtain a basis P of Λ (Corollary 5.1.7). We

then find (Lemma 5.1.13) an alternative basis L which is suitable for decom-

posing of Λ into a direct sum of indecomposable modules. The long part of the

proof is taken up by proving that L is a basis. It would be desirable to obtain

a simpler proof, by determining the significance of the elements of L. This may

also lead to a proof of the conjecture in general.

We can assume that Λ ∼= KQ/I, where I is the ideal generated by r1 =

aa∗bb∗+aa∗+bb∗ and r2 = b∗ba∗a+a∗a+b∗b. We define some elements of KQ.

Set c1 = b∗aa∗ − a∗ab∗, c2 = ba∗a− aa∗b, c3 = bb∗a− ab∗b, c4 = b∗ba∗ − a∗bb∗.
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Given an integer i ≥ 0, let

fi = aa∗(ba∗)ibb∗ + a(a∗b)ia∗ + b(a∗b)ib∗,

gi = a∗a(b∗a)ib∗b+ a∗(ab∗)ia+ b∗(ab∗)ib.

Lemma 5.1.5. The elements c1, . . . , c4, and each fi, gi lie in I.

Proof. Consider the reduction system Ω0 = {r1, r2} with respect to the ordering

≤len,lex with a < b, a∗ < b∗. Resolve aa∗bb∗ba∗a:

(aa∗bb∗)ba∗a 7→ −aa∗ba∗a− b(b∗ba∗a) 7→ −aa∗ba∗a+ bb∗b+ ba∗a,

aa∗b(b∗ba∗a) 7→ −aa∗ba∗a− (aa∗bb∗)b 7→ −aa∗ba∗a+ bb∗b+ aa∗b.

Thus c2 ∈ I. Resolve b∗ba∗aa∗bb∗:

b∗ba∗(aa∗bb∗) 7→ −(b∗ba∗a)a∗ − b∗ba∗bb∗ 7→ a∗aa∗ + b∗ba∗ − b∗ba∗bb∗,

(b∗ba∗a)a∗bb∗ 7→ −a∗(aa∗bb∗) − b∗ba∗bb∗ 7→ a∗aa∗ + a∗bb∗ − b∗ba∗bb∗.

Thus c3 ∈ I. Let Ω1 = Ω0 ∪ {c2, c3}. Resolve b∗ba∗a:

b∗ba∗a 7→ −b∗b− a∗a,

b∗(ba∗a) 7→ b∗aa∗b,

(b∗ba∗)a 7→ a∗bb∗a.

This shows that both s1 = b∗aa∗b + b∗b + a∗a and s2 = a∗bb∗a + b∗b + a∗a lie

in I. Let Ω2 = Ω1 ∪ {s1, s2}. Resolve b∗aa∗bb∗:

b∗(aa∗bb∗) 7→ −b∗aa∗ − b∗bb∗,

(b∗aa∗b)b∗ 7→ −b∗bb∗ − a∗ab∗.

This shows that c1 ∈ I. Resolve aa∗bb∗a:

(aa∗bb∗)a 7→ −aa∗a− bb∗a,

a(a∗bb∗a) 7→ −aa∗a− ab∗b.

This shows that c4 ∈ I. Now let Ω3 = {r1, r2, c1, c2, c3, c4} (s1, s2 are now

redundant). Note that the combination of c1, . . . , c4 imply that given a path p
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we can always reduce it to the unique path which contains the same number of

occurrences of each arrow as p, and which starts/ends in at the same vertices

as p, and a (respectively a∗) never occurs to the right of b (respectively b∗). For

example, if p = bb∗aa∗ab∗bb∗ab∗, then we can reduce it to aa∗ab∗ab∗bb∗bb∗.

We now show by induction that each fi, gi ∈ I. First, f0 = r1 ∈ I and

r2 → g0 so g0 ∈ I. Now assume that fj , gj ∈ I for all j ≤ i. Since they

are monic, we can therefore include them in a reduction system. We resolve

aa∗(ba∗)ibb∗ba∗:

(aa∗(ba∗)ibb∗)ba∗ 7→ −a(a∗b)ia∗ba∗ − b(a∗b)ia∗bb∗,

→ −a(a∗b)i+1a∗ − b(a∗b)i+1b∗,

aa∗(ba∗)ib(b∗ba∗) 7→ aa∗(ba∗)iba∗bb∗,

→ aa∗(ba∗)i+1bb∗.

This shows fi+1 ∈ I.

(a∗a(b∗a)ib∗b)b∗a 7→ −a∗(ab∗)iab∗a− b∗(ab∗)iab∗b,

→ −a∗(ab∗)i+1a− b∗(ab∗)i+1b,

a∗a(b∗a)ib∗(bb∗a) 7→ a∗a(b∗a)ib∗ab∗b,

→ a∗a(b∗a)i+1b∗b.

This shows gi+1 ∈ I, which completes the proof.

Lemma 5.1.6. The set Ω = {c1, c2, c3, c4} ∪ {fi : i ≥ 0} ∪ {gi : i ≥ 0} is a full

reduction system for Λ in which all minimally ambiguous words are reduction

unique.

Proof. The elements of Ω are monic, and we have shown that IΩ ⊆ I, so Ω

is a reduction system. To show it is full, we only need show that r1, r2 ∈ IΩ,

since then I = IΩ. This is clear, since r1 = f0, and r2 = b∗ba∗a+ b∗b + a∗a =

g0 + b∗c2 + c1b ∈ IΩ. We must now show that all minimally ambiguous words

are reduction unique. There are no inclusion ambiguities, so we must look for

overlaps. The only overlaps between the ci are bb∗aa∗, b∗ba∗a, which are very
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easy to check. There are no overlaps which involve only the fi and gi, which

leaves us with the overlap of a ck and an fi or gi. First we check the overlaps

with f0, namely, aa∗bb∗aa∗, aa∗bb∗ba∗, ba∗aa∗bb∗, bb∗aa∗bb∗ (there is no need

to check aa∗bb∗a, b∗aa∗bb∗ since if for example aa∗bb∗a is not reduction unique,

then neither is aa∗bb∗aa∗). We compute all single step reductions, and show

each of them has a reduction to a common value.

aa∗b(b∗aa∗) 7→ aa∗(ba∗a)b∗ 7→ aa∗(aa∗bb∗) 7→ −aa∗aa∗ − aa∗bb∗,

aa∗(bb∗a)a∗ 7→ a(a∗ab∗b)a∗ 7→ −aa∗aa∗ − a(b∗ba∗) 7→ −aa∗aa∗ − aa∗bb∗,

(aa∗bb∗)aa∗ 7→ −aa∗aa∗ − bb∗aa∗ → −aa∗aa∗ − aa∗bb∗.

aa∗b(b∗ba∗) 7→ aa∗ba∗bb∗ 7→ −aa∗ba∗ − ba∗bb∗,

(aa∗bb∗)ba∗ 7→ −aa∗ba∗ − b(b∗ba∗) 7→ −aa∗ba∗ − ba∗bb∗.

(ba∗a)a∗bb∗ 7→ aa∗ba∗bb∗ 7→ −aa∗ba∗ − ba∗bb∗,

ba∗(aa∗bb∗) 7→ (ba∗a)a∗ − ba∗bb∗ 7→ −aa∗ba∗ − ba∗bb∗.

(bb∗a)a∗bb∗ 7→ a(bb∗a∗)bb∗ 7→ (aa∗bb∗)bb∗ 7→ −aa∗bb∗ − bb∗bb∗,

b(b∗aa∗)bb∗ 7→ b(a∗ab∗b)b∗ 7→ −(ba∗a)b∗ − bb∗bb∗ 7→ −aa∗bb∗ − bb∗bb∗,

bb∗(aa∗bb∗) 7→ −bb∗aa∗ − bb∗bb∗ → −aa∗bb∗ − bb∗bb∗.

The overlaps with g0 are also easily seen to be reduction unique (the calcu-

lations are the same, apply * to each arrow). We now show that for each k, the

overlaps involving fk and gk are reduction unique. It is only necessary to check

fk, since the calculations for gk are the same except for the stars. First the two

shorter overlaps.

aa∗(ba∗)k(bb∗a) 7→ aa∗(ba∗)kab∗b→ aa∗(aa∗(ba∗)k−1bb∗)b,

7→ −aa∗a(a∗b)k − a(a∗b)kb∗b,

(aa∗(ba∗)kbb∗)a 7→ −a(a∗b)ka∗a− b(a∗b)kb∗a,

→ −aa∗a(a∗b)k − a(a∗b)kb∗b.
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(b∗aa∗)(ba∗)kbb∗ 7→ a∗ab∗(ba∗)kbb∗ → a∗(aa∗(ba∗)k−1bb∗)bb∗,

7→ −a∗a(a∗b)k−1a∗bb∗ − (a∗b)kb∗bb∗,

b∗(aa∗(ba∗)kbb∗) 7→ −b∗a(a∗b)ka∗ − b∗b(a∗b)kb∗,

→ −a∗a(a∗b)k−1a∗bb∗ − (a∗b)kb∗bb∗.

Now we check the four longer overlaps.

aa∗(ba∗)kb(b∗aa∗) 7→ aa∗(ba∗)kba∗ab∗ → aa∗(aa∗(ba∗)kbb∗),

7→ −aa∗a(a∗b)ka∗ − a(a∗b)k+1b∗,

aa∗(ba∗)k(bb∗a)a∗ 7→ aa∗(ba∗)kab∗ba∗ → aa∗aa∗(ba∗)kbb∗,

(aa∗(ba∗)kbb∗)aa∗ 7→ −a(a∗b)ka∗aa∗ − b(a∗b)kb∗aa∗,

→ −aa∗a(a∗b)ka∗ − a(a∗b)k+1b∗.

aa∗(ba∗)kb(b∗ba∗) 7→ aa∗(ba∗)kba∗bb∗ 7→ −a(a∗b)k+1a∗ − b(a∗b)k+1b∗,

(aa∗(ba∗)kbb∗)ba∗ 7→ −a(a∗b)ka∗ba∗ − b(a∗b)kb∗ba∗,

→ −a(a∗b)k+1a∗ − b(a∗b)k+1b∗.

(ba∗a)a∗(ba∗)kbb∗ 7→ aa∗ba∗(ba∗)kbb∗ 7→ −a(a∗b)k+1a∗ − b(a∗b)k+1b∗,

ba∗(aa∗(ba∗)kbb∗) 7→ −ba∗a(a∗b)ka∗ − ba∗b(a∗b)kb∗,

→ −a(a∗b)k+1a∗ − b(a∗b)k+1b∗.

(bb∗a)a∗(ba∗)kbb∗ 7→ abb∗a∗(ba∗)kbb∗ → (aa∗(ba∗)kbb∗)bb∗,

7→ −a(a∗b)k+1b∗ − b(a∗b)kb∗bb∗,

b(b∗aa∗)(ba∗)kbb∗ 7→ ba∗ab∗(ba∗)kbb∗ → (aa∗(ba∗)kbb∗)bb∗,

bb∗(aa∗(ba∗)kbb∗) 7→ −bb∗a(a∗b)ka∗ − bb∗b(a∗b)kb∗,

→ −a(a∗b)k+1b∗ − b(a∗b)kb∗bb∗.

Putting this together with Lemma A.4.3 gives the following corollary.
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Corollary 5.1.7. A basis for Λ is given by the set of P paths of Q in which

(i) a never occurs to the right of b,

(ii) a∗ never occurs to the right of b∗,

(iii) At least one arrow does not occur (e.g. b does not occur in aa∗ab∗ab∗).

Proof. Such paths are irreducible, as they cannot contain an element of Ω as a

subpath. Conversely, if a path is reducible by some ci, it cannot satisfy both (i)

and (ii), and if it is reducible by some fi or gi, it cannot satisfy (iii).

We can calculate the representation of Q corresponding to Λ with respect to

this basis, but unfortunately it is not convenient for obtaining the decomposition

of Λ into indecomposable modules. Instead we have to calculate a new basis

so that Λ is easily seen to decompose. We define some notation to easily write

down elements P . Suppose u, v are vertices of the quiver and i, j ≥ 0 be integers

(exclude the cases 1(a, 0, 0)2, 1(b, 0, 0)2, 2(a∗, 0, 0)1, 2(b∗, 0, 0)1 which don’t make

sense).

1. Let u(a, i, j)v be the unique path from v to u in P which contains i

occurrences of a∗, j occurrences of b∗, and does not involve b.

2. Let u(b, i, j)v be the unique path from v to u in P which contains i

occurrences of a∗, j occurrences of b∗, and does not involve a.

3. Let u(a∗, i, j)v be the unique path from v to u in P which contains i

occurrences of a, j occurrences of b, and does not involve b∗.

4. Let u(b∗, i, j)v be the unique path from v to u in P which contains i

occurrences of a, j occurrences of b, and does not involve a∗.

For example, 1(a∗, 1, 3)1 is equal to the basis element a∗aa∗ba∗ba∗b. It can-

not be equal to any other basis element, as once we know the number of occur-

rences of a and b, the order in which they appear is determined by (i). We know

each remaining arrow is that appears is a∗ so the path is determined by the start-

ing/ending vertices. Conversely, every basis element can be represented in this

way, as by (iii) it must be included at at least one of the categories. Note that

some basis elements are not uniquely represented, specifically those in which at

least two arrows do not occur, e.g. a∗ba∗ba∗ is equal to both 1(a∗, 0, 2)2 and
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1(b, 3, 0)2. Clearly the set Puv of all elements of the form u(c, i, j)v, where c can

be any arrow in Q, is a basis of euΛev (provided the appropriate identifications

are made).

Let A = −(e2 +aa∗), A∗ = −(e1 +a∗a), B = −(e2 + bb∗), B∗ = −(e1 + b∗b).

As elements of Λ, bb∗ = aa∗B = Baa∗, aa∗ = Abb∗ = bb∗B, b∗b = a∗aB∗ =

B∗a∗a, a∗a = A∗b∗b = b∗bB∗, Ab = bA∗, Ba = aB∗, Aa = aA∗, Bb = bB∗.

Definition 5.1.8. We define a set of elements {xi
l : l ∈ N, 1 ≤ i ≤ l} ∈ e1Λ.

Let x1
1 = e1, and for all j ≥ 1, let x1

2j = (a∗b)j−1a∗, x1
2j+1 = (a∗b)j, x2j

2j =

A∗j(b∗a)j−1b∗, x2j+1
2j+1 = A∗j(b∗a)j . The remaining xi

l are defined by induction,

xi+1
l+2 = a∗axi

l , (it should be easy to see that this gives a valid definition for all

i, l in the given range).

Lemma 5.1.9. For all i = 1, . . . , l − 1, axi
l = bxi+1

l .

Proof. We split into the cases of l even or odd. Suppose l = 2j. We proceed by

induction on j. We have

ax1
2 = aa∗ = Abb∗ = bA∗b∗ = bx2

2,

so the formula is true for j = 1. Assume that j > 1, and that the formula holds

for all values less than j. For the cases i = 1, 2j − 1, we have

ax1
2j = a(a∗b)j−1a∗ = ba∗a(a∗b)j−2a∗ = ba∗ax1

2j−2 = bx2
2j ,

ax2j−1
2j = aa∗ax2j−2

2j−2 = aa∗aA∗j−1(b∗a)j−2b∗ = aa∗Aj−1(ab∗)j−1

= bb∗AAj−1(ab∗)j−1 = bA∗j(b∗a)j−1b∗ = bx2j
2j .

For the cases i 6= 1, 2j − 1, we can use the induction hypothesis,

axi
2j = aa∗axi−1

2j−2 = aa∗bxi
2j−2 = ba∗axi

2j−2 = bxi+1
2j ,

which completes the proof for even l. Now suppose l = 2j+1, and again proceed

by induction on j. We have

ax1
3 = aa∗b = ba∗a = ba∗ax1

1 = bx2
3,

ax2
3 = aa∗a = Abb∗a = bA∗b∗a = bx3

3,
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so the formula is true for j = 1. Assume that j > 1, and that the formula holds

for all values less than j. For the cases i = 1, 2j, we have

ax1
2j+1 = a(a∗b)j = aa∗b(a∗b)j−1 = ba∗a(a∗b)j−1 = ba∗ax1

2j−1 = bx2
2j+1,

ax2j
2j+1 = aa∗ax2j−1

2j−1 = aa∗a(A∗)j−1(b∗a)j−1 = aa∗Aj−1(ab∗)j−1a

= bb∗Aj(a∗b)j−1 = b(A∗)j(b∗a)j = bx2j+1
2j+1.

For the cases i 6= 1, 2j, we can use the induction hypothesis,

axi
2j+1 = aa∗axi−1

2j−1 = aa∗bxi
2j−1 = ba∗axi

2j−1 = bxi+1
2j+1,

which completes the proof.

Definition 5.1.10. We can now define a set of elements {yi
l : l ∈ N, 0 ≤ i ≤

l} ∈ e2Λ by setting y0
0 = e2, and otherwise let yi

l = axi
l and yi−1

l = bxi
l . The

previous lemma shows that this is well defined.

Definition 5.1.11. Let k be an integer. Set xi
2j [k] = xi

2jB
k, xi

2j+1[k] =

xi
2j+1B

∗k, yi
2j [k] = yi

2jB
k, yi

2j+1[k] = yi
2j+1B

∗k.

Lemma 5.1.12. The elements of P can be written in the form xi
l [k] or yi

l [k]

for some i, l, k. Specifically, for all valid r, s,

1(a, r, s)2 = xr+2s
2r+2s[s], 2(a, r, s)2 = yr+2s

2r+2s[s],

1(b, r, s)2 = xs+1
2r+2s[s], 2(b, r, s)2 = ys

2r+2s[s],

1(a∗, r, s)2 = xr+1
2r+2s+2[0], 2(a∗, r, s)2 = yr

2r+2s[0],

1(b∗, r, s)2 = x2r+s+2
2r+2s+2[r + s+ 1], 2(b∗, r, s)2 = y2r+s

2r+2s[r + s].

1(a, r, s)1 = xr+2s+1
2r+2s+1[s], 2(a, r, s)1 = yr+2s+1

2r+2s+1[s],

1(b, r, s)1 = xs+1
2r+2s+1[s], 2(b, r, s)1 = ys

2r+2s+1[s],

1(a∗, r, s)1 = xr+1
2r+2s+1[0], 2(a∗, r, s)1 = yr

2r+2s−1[0],

1(b∗, r, s)1 = x2r+s+1
2r+2s+1[r + s]. 2(b∗, r, s)1 = y2r+s−1

2r+2s−1[r + s− 1].
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Proof. First, we verify the top four equations on the left. If s > 0, then

xr+2s
2r+2s[s] = (a∗a)rx2s

2s[s] = (a∗a)rA∗s(b∗a)s−1b∗Bs

= (a∗a)rA∗sB∗s(b∗a)s−1b∗ = (a∗a)r(b∗a)s−1b∗,

since A∗B∗ = e1, and the resulting expression is is equal to 1(a, r, s)2. If s = 0,

then the equation is true since for r > 0

xr
2r[0] = (a∗a)r−1x1

2[0] = (a∗a)r−1a∗ = 1(a, r, 0)2,

and 1(a, 0, 0)2 is not defined. If r > 0, then

xs+1
2r+2s[s] = (a∗a)sx1

2r[s] = (a∗a)s(a∗b)r−1a∗Bs = (a∗b)r−1a∗(bb∗)s,

which is 1(b, r, s)2 and if r = 0, then the equation is true since for s > 0,

xs+1
2s [s] = (a∗a)s−1x2

2[s] = (a∗a)s−1A∗b∗Bs = A∗(a∗a)s−1(B∗)sb∗

= A∗B∗(b∗b)s−1b∗ = (b∗b)s−1b∗ = 1(b, 0, s)2,

and 1(b, 0, 0)2 is not defined. The third equation is true since

xr+1
2r+2s+2[0] = (a∗a)rx1

2s+2 = (a∗a)r(a∗b)sa∗ = 1(a∗, r, s)2,

and the fourth is true since

x2r+s+2
2r+2s+2[r + s+ 1] = (a∗a)sx2r+2

2r+2[r + s+ 1] = (a∗a)s(A∗)r+1(b∗a)rb∗Br+s+1

= (a∗a)s(B∗)s(b∗a)rb∗ = (b∗b)s(b∗a)rb∗

= 1(b∗, r, s)2.

The top four equations on the right are now easy to verify. Note first that

(c, 0, 0) = e2 = y0
0 [0] for all arrows c. For the rest we use the equations just

verified.

2(a, r, s)2 = a(1(a, r, s)2) = axr+2s
2r+2s[s] = yr+2s

2r+2s[s],

2(b, r, s) = b(1(b, r, s)2) = bxs+1
2r+2s[s] = ys

2r+2s[s].

If s > 0, then

2(a∗, 0, s)2 = b(1(a∗, 0, s− 1)2) = bx1
2s[0] = y0

2s[0].
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If r > 0, then

2(a∗, r, s)2 = a(1(a∗, r − 1, s)2) = axr
2r+2s[0] = yr

2r+2s[0].

If s > 0, then

2(b∗, 0, s)2 = b(1(b∗, 0, s− 1)2) = bxs+1
2s [s] = ys

2s[s].

If r > 0, then

2(b∗, r, s)2 = a(1(b∗, r − 1, s)2) = ax2r+s
2r+2s[r + s] = y2r+s

2r+2s[r + s].

For the equations at the bottom, we do the same thing. Note first that (c, 0, 0) =

e1 = x1
1[0] for all arrows c. If s > 0, then

xr+2s+1
2r+2s+1[s] = (a∗a)rx2s+1

2s+1[s] = (a∗a)rA∗s(b∗a)s(B∗)s = (a∗a)r(b∗a)s,

which is equal to 1(a, r, s)1. If s = 0, then the equation is true since

xr+1
2r+1[0] = (a∗a)rx1

1[0] = (a∗a)r = 1(a, r, 0)1.

If r > 0, then

xs+1
2r+2s+1[s] = (a∗a)sx1

2r+1[s] = (a∗a)s(a∗b)r(B∗)s = (a∗b)r(b∗b)s = 1(b, r, s)1,

and if r = 0, then the equation is true since

xs+1
2s+1[s] = (a∗a)sx1

1[s] = (a∗a)s(B∗)s = (b∗b)s = 1(b, 0, s)1.

The next two equations are satisfied since

xr+1
2r+2s+1[0] = (a∗a)rx1

2s+1 = (a∗a)r(a∗b)s = 1(a∗, r, s)1.

x2r+s+1
2r+2s+1[r + s] = (a∗a)sx2r+1

2r+1[r + s] = (a∗a)s(A∗)r(b∗a)r(B∗)r+s

= (a∗a)s(B∗)s(b∗a)r = (b∗b)s(b∗a)r = 1(b∗, r, s)1.

Finally, we verify the four equations on the bottom right

2(a, r, s)1 = a(1(a, r, s)1) = axr+2s+1
2r+2s+1[s] = yr+2s+1

2r+2s+1[s].
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2(b, r, s)1 = b(1(b, r, s)1) = bxs+1
2r+2s+1[s] = ys

2r+2s[s].

If s > 0, then

2(a∗, 0, s)1 = b(1(a∗, 0, s− 1)1) = bx1
2s−1[0] = y0

2s−1[0].

If r > 0, then

2(a∗, r, s)1 = a(1(a∗, r − 1, s)1) = axr
2r+2s−1[0] = yr

2r+2s−1[0].

If s > 0, then

2(b∗, 0, s)1 = b(1(b∗, 0, s− 1)1) = bxs
2s−1[s− 1] = ys−1

2s−1[s− 1].

If r > 0, then

2(b∗, r, s)1 = a(1(b∗, r − 1, s)1) = ax2r+s−1
2r+2s−1[r + s− 1] = y2r+s−1

2r+2s−1[r + s− 1].

If r, s are both zero, then there is nothing to check, because 1(a∗, 0, 0)2 and

1(b∗, 0, 0)2 are not defined.

We can now state the crucial lemma.

Lemma 5.1.13. Set kl = ⌊ l
4⌋ (i.e. the integer part of l

4). The set L = ∪Luv

is a basis for Λ, where

L12 = {xi
2j [k2j ] : j ∈ N, 1 ≤ i ≤ 2j},

L22 = {yi
2j [k2j ] : j ∈ N, 1 ≤ i ≤ 2j},

L11 = {xi
2j+1[k2j+1] : j ∈ N, 0 ≤ i ≤ 2j + 1},

L21 = {yi
2j+1[k2j+1] : j ∈ N, 0 ≤ i ≤ 2j + 1}.

The proof of this lemma is quite long. The basic idea is to write the original

basis elements in terms of the xi
l [kl], y

i
l [kl], in such a way that it guarantees they

also form a basis of Λ. We split the proof into four separate parts, each part

showing that Luv is a basis of euΛev. We define chains of sets (Puv(m))m∈N,

(Luv(m))m∈N with the properties Puv(m) ⊆ Puv, ∪mPuv(m) = Puv and the

same with L replacing P . Note that although we use the (c, r, s) notation to
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write down the elements of Puv(m), they are identified if they correspond with

the same path. We show that for each m the following properties hold,

(†) |Luv(m)| = |Puv(m)|,

(‡) KPuv(m) ⊆ KLuv(m).

It then follows that Luv is a basis of euΛev. Namely,

(i) It spans euΛev. Given an element α of euΛev, we can write α as a linear

combination of elements of Puv (since Puv is a basis of euΛev). We can choose

m so that each of these elements is in Puv(m). Then by (‡), α ∈ KLuv(m), and

hence certainly in KLuv.

(ii) It is independent. If this is not the case, then some linear combination

of elements of Luv is zero. Choose m so that each of these elements lies in

Luv(m). Thus Luv(m) is not independent. However (‡) tells us that Luv(m)

spans KPuv(m), and (†) tells us that it has the same number of elements as a

basis of KPuv(m), and is therefore a basis. This is a contradiction.

The awkward part is proving (‡). Using Lemma 5.1.12, we write each element

of Puv as some xi
l [k] or yt

l [k], and then use the following fact.

Lemma 5.1.14. Given any xi
l [k], we can write it as a linear combination of

elements of L, specifically

xi
l [k] =

w∑

t=0

λtx
i+t
l+2t[kl+2t],

where the λt are scalars, and

w =





⌊ l
2 − 2k − 1⌋ if l

4 − k ≥ 1,

−⌊ l
2 − 2k⌋ if l

4 − k < 0,

0 otherwise.

The same formula also holds with x replaced by y.

Proof. First, note the following formula, which holds for all valid i, l.

xi
l [k] + xi+1

l+2 [k] + xi
l [k − 1] = 0. (5.1)
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This holds since xi+1
l+2 = aa∗xi

l , and so xi+1
l+2 + xi

l = −A∗xi
l . Multiplying on the

right by Bk or (B∗)k (depending on whether l is even or odd) gives the equation.

Note that the formula also holds with x replaced by y - For i = 1, . . . , l, multiply

the formula for x (with the same i) on the left by a, and for i = 0, multiply the

formula with i = 1 by b.

Let z(xi
l[k]) be the z-value of xi

l [k], defined to be l
4 − k. This measures how

close k is to kl. Clearly, xi
l [k] ∈ L if and only if 0 ≤ z(xi

l [k]) < 1. Note that

z(xi
l [k]) =

l

4
− k,

z(xi+1
l+2 [k]) =

l − 2

4
− k,

z(xi
l [k − 1]) =

l − 4

4
− k.

By choosing an appropriate term, we can use (5.1) as a substitution to write

xi
l [k] as a linear combination of elements with greater/lesser z-value, and repeat

until each z-value lies in the range [0,1), and thus each term is in L. That is,

we rewrite (5.1) in two different ways:

xi
l [k] = −xi+1

l+2[k] − xi
l [k − 1]. (5.2)

xi
l [k] = −xi

l [k + 1] − xi+1
l+2 [k + 1]. (5.3)

Then, for example, suppose we wish to express x3
10[0] in terms of the new basis

elements. Since z(x3
10[0]) = 5

2 we use (5.3).

x3
10[0] = −x3

10[1] − x4
12[1],

= x3
10[2] + 2x4

12[2] + x5
14[2],

= x3
10[2] − 2x4

12[3] − 3x5
14[3] − x6

16[3],

= x3
10[2] − 2x4

12[3] − 3x5
14[3] + x6

16[4] − x7
18[4].

Observe that we only use (5.3) on the terms whose z-value is at least 1 and we

leave the rest alone. If instead we wish to do the same with x3
10[4], then since

z(x3
10[4]) = − 3

2 we must use (5.2) (in this case only substituting the terms with
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z-value less than zero).

x3
10[4] = −x4

12[4] − x3
10[3],

= x5
14[4] + 2x4

12[3] + x3
10[2],

= −x6
16[4] − x5

14[3] + 2x4
12[3] + x3

10[2].

It is obvious that we can use this method to express any given xi
l [k] in the form

given in the statement of the lemma. One needs only check that the given w

is correct, which is the the maximum number of iterations of (5.3) needed. If

the z-value l
4 − k is at least one, then after n iterations, the maximum z-value

which occurs in the expression is l
4 − k − n

2 . We require this to be less than

one, i.e. we can take w to be the minimum integer n for which l
4 − k − n

2 < 1,

which is ⌊ l
2 − 2k− 1⌋. If the z-value l

4 − k is less than 0, then after n iterations

of (5.2) the minimum z-value is l
4 − k+ n

2 . We require this to be at least 0, i.e.

we can take w to be the minimum integer n for which l
4 − k − n

2 ≥ 0, which is

−⌊ l
2 − 2k⌋. If 0 ≤ z(xi

l [k]) < 1, then we can take w = 0.

Clearly, the same argument is valid with y replacing x throughout.

Part 1: u = 1, v = 2.

Since during this part we are dealing exclusively with paths of type 1(c, r, s)2

we can just write (c, r, s) (also recall that if c = a, b then r, s cannot both be

zero). Given an integer m > 0, let

P12(m) = {(c, r, s) ∈ P12 : r, s ≤ m if c = a, b , r + s < m if c = a∗, b∗},

L12(m) = {xi
2j [k2j ] : j ≤ 2m, j −m < i ≤ j +m}.

We verify (†). We count the number of distinct elements of P12(n)\P12(n−1)

(assuming P12(0) to be the empty set). We claim that this is equal to 6n − 2.

If n = 1, the four distinct basis elements are (a, 1, 0) = (b, 1, 0) = (a∗, 0, 0),

(a, 0, 1) = (b, 0, 1) = (b∗, 0, 0), (a, 1, 1), (b, 1, 1). There are no more, since

(a, 0, 0), (b, 0, 0) don’t make sense. For n > 1, there are 2(2n+ 1) + 2(n− 2) =

6n− 2 distinct elements, namely

(a, n, 0), (a, n, 1), . . . , (a, n, n− 1), (a, n, n), (a, n− 1, n), . . . , (a, 1, n), (a, 0, n),
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(b, n, 0), (b, n, 1), . . . , (b, n, n− 1), (b, n, n), (b, n− 1, n), . . . , (b, 1, n), (b, 0, n),

(a∗, 1, n− 2), (a∗, 2, n− 3), . . . , (a∗, n− 2, 1),

(b∗, 1, n− 2), (b∗, 2, n− 3), . . . , (b∗, n− 2, 1).

There are no more, since (a∗, 0, n − 1) = (b, n, 0), (b∗, 0, n − 1) = (b, 0, n),

(a∗, n− 1, 0) = (a, n, 0), (b∗, n− 1, 0) = (a, 0, n). So

|P12(m)| =

m∑

n=1

6n− 2 = 6

m∑

n=1

n− 2m = 3m(m+ 1) − 2m = 3m2 +m.

We compute the number of elements of L12(m).

|L12(m)| = |{xi
2j [k2j ] : j ≤ 2m, j −m < i ≤ j +m}|

= |{(i, 2j) ∈ N
2 : j ≤ 2m, j −m < i ≤ j +m, 1 ≤ i ≤ 2j}|

= |{(i, 2j) ∈ N
2 : j ≤ m, 1 ≤ i ≤ 2j}|

+|{(i, 2j) ∈ N
2 : m < j ≤ 2m, j −m < i ≤ j +m}|

=
m∑

j=1

2j + 2m2

= m(m+ 1) + 2m2

= 3m2 +m.

Thus (†) is satisfied. We now show (‡) is satisfied. First the case m = 1.

(a, 1, 1) = x3
4[1], (b, 1, 1) = x2

4[1],

(a∗, 0, 0) = x1
2[0], (b∗, 0, 0) = x2

2[1] = −x3
4[1] − x2

2[0],

each of which is in KL12(1). Assuming the claim has been proved for m − 1,

every element of P12(m−1) has been shown to be in KL12(m−1), and therefore

in KL12(m). We must therefore write down each element of P12(m)\P12(m−1)

as a linear combination of elements of L12(m), using Lemmas 5.1.12 and 5.1.14.

This splits into six cases (some of which overlap).

(1) For all r with 0 ≤ r ≤ m,

(a, r,m) = xr+2m
2r+2m[m] =

m−r∑

t=0

λtx
r+2m+t
2r+2m+2t[k2r+2m+2t].
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Each term is in L12(m), since setting it = r + 2m + t and jt = r + m + t, we

have jt = r+m+ t ≤ r+m+m− r ≤ 2m, and it = jt +m, so lies in the range

jt −m < it ≤ jt + m (we omit this verification in all subsequent cases, as it is

trivial to check).

(2) For all s with 0 ≤ s < m,

(a,m, s) = xm+2s
2m+2s[s] =

m−s−1∑

t=0

λtx
m+2s+t
2m+2s+2t[k2m+2s+2t].

(3) For all r with 0 ≤ r ≤ m,

(b, r,m) = xm+1
2r+2m[m] =

m−r∑

t=0

λtx
m+1+t
2r+2m+2t[k2r+2m+2t].

(4) For all s with 0 ≤ s < m,

(b,m, s) = xs+1
2m+2s[s] =

m−s−1∑

t=0

λtx
s+1+t
2m+2s+2t[k2m+2s+2t].

(5) For all r with 0 ≤ r ≤ m− 1,

(a∗, r,m− r − 1) = xr+1
2m [0] =

m−1∑

t=0

λtx
r+1+t
2m+2t[k2m+2t].

(6) For all r with 0 ≤ r ≤ m− 1,

(b∗, r,m− r − 1) = xm+r+1
2m [m] =

m∑

t=0

λtx
m+r+1+t
2m+2t [k2m+2t].

Thus (‡) is satisfied.

Part 2: u = 2, v = 2.

We write (c, r, s) for 2(c, r, s)2. Given an integer m > 0, let

P22(m) = {(c, r, s) ∈ P12 : r, s ≤ m if c = a, b , r + s ≤ m if c = a∗, b∗},

L22 = {xi
2j [k2j ] : j ≤ 2m, j −m ≤ i ≤ j +m}.

We verify (†). For convenience, set P22(0) = {e2}. For n ≥ 1, we claim that

the number of distinct elements of P22(n) \ P22(n− 1) is 6n. If n = 1, they are
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(a, 0, 1) = (b∗, 1, 0), (b, 0, 1) = (b∗, 0, 1), (a, 1, 0) = (a∗, 1, 0), (b, 1, 0) = (a∗, 0, 1),

(a, 1, 1), (b, 1, 1). For n > 1, there are 2(2n+1)+2(n−1) = 6n distinct elements,

namely

(a, n, 0), (a, n, 1), . . . , (a, n, n− 1), (a, n, n), (a, n− 1, n), . . . , (a, 1, n), (a, 0, n),

(b, n, 0), (b, n, 1), . . . , (b, n, n− 1), (b, n, n), (b, n− 1, n), . . . , (b, 1, n), (b, 0, n),

(a∗, 1, n− 1), (a∗, 2, n− 2), . . . , (a∗, n− 1, 1),

(b∗, 1, n− 1), (b∗, 2, n− 2), . . . , (b∗, n− 1, 1).

There are no more, since (a∗, 0, n) = (b, n, 0), (b∗, 0, n) = (b, 0, n), (a∗, n, 0) =

(a, n, 0), (b∗, n, 0) = (a, 0, n). So

|P22(m)| = 1 +

m∑

n=1

6n = 1 + 6

m∑

n=1

n = 1 + 3m(m+ 1) = 3m2 + 3m+ 1.

We compute the number of elements of L22(m).

|L22(m)| = |{yi
2j[k2j ] : j ≤ 2m, j −m ≤ i ≤ j +m}|

= 1 + |{(i, 2j) ∈ N
2 : 1 ≤ j ≤ 2m, j −m ≤ i ≤ j +m, 0 ≤ i ≤ 2j}|

= 1 + |{(i, 2j) ∈ N
2 : 1 ≤ j ≤ m, 0 ≤ i ≤ 2j}|

+|{(i, 2j) ∈ N
2 : m < j ≤ 2m, j −m ≤ i ≤ j +m}|

= 1 +

m∑

j=1

2j + 1 +m(2m+ 1)

= 1 +m(m+ 1) +m+ 2m2 +m

= 3m2 + 3m+ 1.

Thus (†) is satisfied. We now show (‡) is satisfied. First, the case m = 1.

Clearly e2 = y0
0 [0] ∈ L22(1), and so are

(b∗, 1, 0) = y2
2 [1] = −y3

4 [1] − y2
2 [0], (b∗, 0, 1) = y1

2 [1] = −y2
4 [1] − y1

2 [0],

(a∗, 1, 0) = y1
2 [0], (a∗, 0, 1) = y0

2 [0], (a, 1, 1) = y3
4[1], (b, 1, 1) = y1

4 [1].

Assuming the claim has been proved for m − 1, we must show that each

element of P22(m) \ P22(m − 1) lies in KL22(m). Again, this splits into six
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cases.

For r ≤ m, (a, r,m) = yr+2m
2r+2m[m] =

m−r∑

t=0

λty
r+2m+t
2r+2m+2t[k2r+2m+2t],

For s < m, (a,m, s) = ym+2s
2m+2s[s] =

m−s−1∑

t=0

λty
m+2s+t
2m+2s+2t[k2m+2s+2t],

For r ≤ m, (b, r,m) = ym
2r+2m[m] =

m−r∑

t=0

λty
m+t
2r+2m+2t[k2r+2m+2t],

For s < m, (b,m, s) = ys
2m+2s[s] =

m−s−1∑

t=0

λty
2s+t
2m+2s+2t[k2m+2s+2t],

For r ≤ m, (a∗, r,m− r) = yr
2m[0] =

m−1∑

t=0

λty
r+t
2m+2t[k2m+2t],

For r ≤ m, (b∗, r,m− r) = ym+r
2m [m] =

m∑

t=0

λty
m+r+t
2m+2t [k2m+2t].

Thus (‡) is satisfied.

Part 3: u = 1, v = 1.

We write (c, r, s) for 1(c, r, s)1. Given an integer m ≥ 1, let

P11(m) = {(c, r, s) ∈ P12 : r, s ≤ m if c = a, b , r + s ≤ m if c = a∗, b∗},

L11 = {xi
2j [k2j ] : j ≤ 2m, j −m+ 1 ≤ i ≤ j +m+ 1}.

We verify (†). The calculation of the number of elements of P11(m) is vir-

tually identical to the one for P22(m), and has the same answer, |P11(m)| =

3m2 + 3m+ 1.
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We compute the number of elements of L11(m).

|L11(m)| = |{yi
2j [k2j+1] : j ≤ 2m, j −m+ 1 ≤ i ≤ j +m+ 1}|

= 1 + |{(i, 2j + 1) ∈ N
2 : 1 ≤ j ≤ 2m,

j −m+ 1 ≤ i ≤ j +m+ 1, 1 ≤ i ≤ 2j + 1}|

= 1 + |{(i, 2j + 1) ∈ N
2 : 1 ≤ j ≤ m, 1 ≤ i ≤ 2j + 1}|

+|{(i, 2j + 1) ∈ N
2 : m < j ≤ 2m, j −m+ 1 ≤ i ≤ j +m+ 1}|

= 1 +
m∑

j=1

2j + 1 +m(2m+ 1)

= 1 +m(m+ 1) +m+ 2m2 +m

= 3m2 + 3m+ 1.

Thus (†) is satisfied. We now show (‡) is satisfied. First, the case m = 1.

Clearly e1 = x1
1[0] ∈ L11(1), and so are

(b∗, 1, 0) = x3
3[1] = −x4

5[1] − x3
3[0], (b∗, 0, 1) = y2

3 [1] = −y3
5 [1] − y2

3 [0],

(a∗, 1, 0) = y2
3 [0], (a∗, 0, 1) = y1

3 [0], (a, 1, 1) = y4
5[1], (b, 1, 1) = y2

5 [1].

Assuming the claim has been proved for m − 1, we can show it holds for m

by a similar process to the previous parts by splitting into six cases, and using

Lemmas 5.1.12 and 5.1.14.

For r ≤ m, (a, r,m) = xr+2m+1
2r+2m+1[m] =

m−r∑

t=0

λtx
r+2m+t+1
2r+2m+2t+1[k2r+2m+2t+1],

For s < m, (a,m, s) = xm+2s+1
2m+2s+1[s] =

m−s−1∑

t=0

λtx
m+2s+t+1
2m+2s+2t+1[k2m+2s+2t+1],

For r ≤ m, (b, r,m) = xm+1
2r+2m+1[m] =

m−r∑

t=0

λtx
m+t+1
2r+2m+2t+1[k2r+2m+2t+1],

For s < m, (b,m, s) = xs+1
2m+2s+1[s] =

m−s−1∑

t=0

λtx
2s+t+1
2m+2s+2t+1[k2m+2s+2t+1],

For r ≤ m, (a∗, r,m− r) = xr+1
2m+1[0] =

m−1∑

t=0

λtx
r+t+1
2m+2t+1[k2m+2t+1],

For r ≤ m, (b∗, r,m− r) = xm+r+1
2m+1 [m] =

m∑

t=0

λtx
m+r+t+1
2m+2t+1 [k2m+2t+1].
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Thus (‡) is satisfied.

Part 4: u = 2, v = 1.

We write (c, r, s) for 2(c, r, s)1. Recall that if c = a∗, b∗ then r, s cannot both be

zero. Given an integer m ≥ 1, let

P21(m) = {(c, r, s) ∈ P12 : r, s ≤ m if c = a, b , r + s ≤ m+ 1 if c = a∗, b∗},

L21 = {xi
2j [k2j ] : j ≤ 2m, j −m ≤ i ≤ j +m+ 1}.

We verify (†). For convenience, set P21(0) = {a, b}. For n ≥ 1, we claim that

the number of distinct elements of P21(n)\P21(n−1) is 6n+2. If n = 1, they are

(a, 0, 1) = (b∗, 2, 0), (b, 0, 1) = (b∗, 0, 2), (a, 1, 0) = (a∗, 2, 0), (b, 1, 0) = (a∗, 0, 2),

(a, 1, 1), (b, 1, 1), (a∗, 1, 1), (b∗, 1, 1). For n > 1 there are 2(2n+1)+2n = 6n+2

distinct elements, namely

(a, n, 0), (a, n, 1), . . . , (a, n, n− 1), (a, n, n), (a, n− 1, n), . . . , (a, 1, n), (a, 0, n),

(b, n, 0), (b, n, 1), . . . , (b, n, n− 1), (b, n, n), (b, n− 1, n), . . . , (b, 1, n), (b, 0, n),

(a∗, 1, n), (a∗, 2, n− 1), . . . , (a∗, n, 1),

(b∗, 1, n), (b∗, 2, n− 1), . . . , (b∗, n, 1).

There are no more, since (a∗, 0, n + 1) = (b, n, 0), (b∗, 0, n + 1) = (b, 0, n),

(a∗, n+ 1, 0) = (a, n, 0), (b∗, n+ 1, 0) = (a, 0, n). So

|P21(m)| = 2+

m∑

n=1

6n+2 = 1+6

m∑

n=1

n+2m = 2+3m(m+1)+2m = 3m2+5m+2.
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We compute the number of elements of L21(m).

|L21(m)| = |{yi
2j[k2j+1] : j ≤ 2m, j −m ≤ i ≤ j +m+ 1}|

= 2 + |{(i, 2j + 1) ∈ N
2 : 1 ≤ j ≤ 2m,

j −m ≤ i ≤ j +m+ 1, 0 ≤ i ≤ 2j + 1}|

= 2 + |{(i, 2j + 1) ∈ N
2 : 1 ≤ j ≤ m, 0 ≤ i ≤ 2j + 1}|

+|{(i, 2j + 1) ∈ N
2 : m < j ≤ 2m, j −m ≤ i ≤ j +m+ 1}|

= 2 +

m∑

j=1

2j + 2 +m(2m+ 2)

= 2 +m(m+ 1) + 2m+ 2m2 + 2m

= 3m2 + 5m+ 2.

Thus (†) is satisfied. We now show (‡) is satisfied. First, the case m = 1.

(a, 0, 0) = a = y1
1 [0], (b, 0, 0) = b = y0

1 [0],

(a, 0, 1) = y3
3 [1] = −y4

5 [1] − y3
3 [0], (b, 0, 1) = y1

3 [1] = −y2
5 [1] − y1

3 [0],

(a, 1, 0) = y2
3 [0], (b, 1, 0) = y0

3 [0], (a, 1, 1) = y4
5 [1], (b, 1, 1) = y1

5 [1],

(a∗, 1, 1) = y1
3 [0], (b∗, 1, 1) = y2

3 [1] = −y3
5[1] − y2

3 [0],

each of which lie in L21(1). Assuming the claim has been proved for m− 1, we

can show it holds for m by a similar process to the previous parts by splitting
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into six cases, and using Lemmas 5.1.12 and 5.1.14.

For r ≤ m, (a, r,m) = yr+2m+1
2r+2m+1[m] =

m−r∑

t=0

λty
r+2m+t
2r+2m+2t[k2r+2m+2t],

For s < m, (a,m, s) = ym+2s+1
2m+2s+1[s] =

m−s−1∑

t=0

λty
m+2s+t
2m+2s+2t[k2m+2s+2t],

For r ≤ m, (b, r,m) = ym
2r+2m+1[m] =

m−r∑

t=0

λty
m+t
2r+2m+2t[k2r+2m+2t],

For s < m, (b,m, s) = ys
2m+2s+1[s] =

m−s−1∑

t=0

λty
2s+t
2m+2s+2t[k2m+2s+2t],

For r ≤ m+ 1, (a∗, r,m− r + 1) = yr
2m+1[0] =

m−1∑

t=0

λty
r+t
2m+2t[k2m+2t],

For r ≤ m+ 1, (b∗, r,m− r + 1) = ym+r
2m+1[m] =

m∑

t=0

λtx
m+r+t
2m+2t [k2m+2t].

Thus (‡) is satisfied. Putting the four parts together completes the proof of

Lemma 5.1.13.

We are now finally in a position to complete the proof of Theorem 5.1.4. We

have the following description of the preprojective modules for Q, first obtained

by Kronecker.

Lemma 5.1.15. If M in an indecomposable preprojective module for KQ, then

M has dimension vector (n, n+ 1) for some integer n ≥ 0 and M is isomorphic

to the module corresponding to the representation

Kn

Kn+1

? ?




0 0 ··· 0
1 0 ··· 0
0 1 ··· 0...

...
...

...
0 0 ··· 1







1 0 ··· 0
0 1 ··· 0...

...
...

...
0 0 ··· 1
0 0 ··· 0
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Thus, if M is an indecomposable preprojective module, there are bases

{f1, . . . , fn} for e1M and {g0, . . . , gn} for e2M so that afi = bfi+1 = gi for

all i = 0, . . . , n− 1. The following diagram illustrates this,

xn

yn

?

S
S

S
S

SSw
yn−1

?

xn−1

S
S

S
S

SSw
yn−2

. . .

S
S

S
S

SSw
y1
?

x1

S
S

S
S

SSw
y0

where the vertical arrows represent multiplication by a, and the diagonal arrows

represent multiplication by b.

Write Λ as a representation of Q with respect to the basis given in Lemma

5.1.13. Since axi
l [kl] = bxi+1

l [kl] = yi
l [kl], it decomposes as

y0
0[0]

⊕

x1
1[0]

y1
1 [0]
?

S
S

S
S

SSw
y0
1 [0]

⊕

x2
2[0]

y2
2 [0]
?

S
S

S
S

SSw
y1
2 [0]
?

x1
2[0]

S
S

S
S

SSw
y0
2 [0]

⊕
. . .

. . .
⊕

xl
l[kl]

yl
l [kl]
?

S
S

S
S

SSw
yl−1

l [kl]
?

xl−1
l [kl]

S
S

S
S

SSw
yl−2

l [kl]

. . .

S
S

S
S

SSw
y1

l [kl]
?

x1
l [kl]

S
S

S
S

SSw
y0

l [kl]

. . .
⊕

Clearly this is isomorphic to the direct sum of all the indecomposable prepro-

jectives, with one taken from each isomorphism class.
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5.2 Are Λ and Π isomorphic as algebras?

Since we conjecture that Λ and Π are isomorphic as KQ-modules (and so have

the same dimension in the Dynkin case), a reasonable question to ask is whether

they could be isomorphic as algebras, especially since they obviously are in the

case of Q being type An. We consider the smallest non trivial case.

Lemma 5.2.1. If K has characteristic 2, then Π(Q) 6∼= Λ(Q), where Q is the

quiver given in Lemma 5.1.3.

Proof. Suppose that there is an isomorphism θ : Λ → Π. In steps (1)-(4), we

show that we can modify θ to an isomorphism satisfying increasingly stronger

properties, and so we only need show that there are no isomorphisms of the

type given in (4). Let S = Ke0 +Ke1 +Ke2 +Ke3.

(1) We can assume that θ(S) = S.

Let S′ = θ(S). Clearly S is a semisimple subalgebra of Π, and as vector spaces

Π = S ⊕ rad Π. Similarly, Λ = S ⊕ rad Λ and therefore θ(Λ) = θ(S) ⊕ θ(rad Λ),

i.e. Π = S′ ⊕ rad Π. By the Wedderburn-Malcev theorem, [15, Theorem 6.2.1],

there is an invertible element x ∈ Π such that S = x−1S′x. Let φ : Π → Π be

the automorphism defined by φ(y) = x−1yx. By composing θ with φ we obtain

an isomorphism θ′ : Λ → Π which does satisfy θ′(S) = S.

(2) We can assume that θ(ei) = eσ(i) for some permutation σ.

Assuming (1), we have that θ(ei) =
∑
tijej for some scalars tij . Now it is clear

that given i, at least one tij is nonzero, since otherwise θ(ei) = 0. Additionally,

given j, at most one tij is nonzero since if both tij and tkj are nonzero, then

0 = θ(eiek) = θ(ei)θ(ek) =

(
∑

r

tirer

)(
∑

s

tkses

)
=
∑

l

tiltklel 6= 0,

since tijtkj 6= 0. These two conditions show that there are exactly four nonzero

tij , and thus given i, exactly one tij is nonzero, (say j = σ(i)), and given j,

exactly one tij is nonzero, (say i = ρ(j)). Clearly σ and ρ are inverses of each

other, and so they are permutations, and θ(ei) = ti,σ(i)eσ(i). Since for all i we

have θ(ei) = θ(ei)
2, we have ti,σ(i)eσ(i) = (ti,σ(i))

2e2
σ(i), hence ti,σ(i) = (ti,σ(i))

2,

and therefore ti,σ(i) = 1. This completes the proof of (2).
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(3) We can assume θ(e0) = e0.

Suppose otherwise, i.e. θ(e0) = ei, where i = 1, 2, 3. Then θ(e0Λe0) = eiΠei.

However this is impossible, as dim e0Λe0 = 10 and dim eiΠei = 6 for i 6= 0 (see

Lemma 5.1.3).

(4) We can assume that θ(ei) = ei for all i.

Given any permutation ρ of {0, 1, 2, 3} which sends 0 to 0, there is an automor-

phism of Π which sends ei to eρ(i). Apply this with ρ = σ−1.

It therefore suffices to prove there is no isomorphism which satisfies (4), so

assume θ to be such an isomorphism. We have θ(a) = θ(e0)θ(a)θ(e1) = e0θ(a)e1,

that is, θ(a) is a linear combination of paths from 1 to 0. By Lemma 5.1.3, we

see that e1Πe0 is a 2 dimensional space with basis {a, bb∗a}, and so θ(a) =

λaa + µabb
∗a for some scalars λa, µa. Similarly, θ(a∗) = λa∗a∗ + µa∗a∗bb∗,

θ(b) = λbb + µbaa
∗b, θ(b∗) = λb∗b

∗ + µb∗b
∗aa∗, θ(c) = λcc + µcaa

∗c, θ(c∗) =

λc∗c
∗ + µc∗c

∗aa∗. Note that the λ scalars are all non zero, since otherwise θ is

not surjective.

Now 0 = θ(a∗a) = θ(a∗)θ(a) = λa∗λaa
∗a + µa∗λaa

∗bb∗a + λa∗µaa
∗bb∗a +

µa∗µaa
∗bb∗bb∗a = (µa∗λa + λa∗µa)a∗bb∗a (since the other terms are equal to

0 in Π). So µa∗λa + λa∗µa = 0 (since a∗bb∗a is not zero in Π). Similarly

µb∗λb + λb∗µb = 0 and µc∗λc + λc∗µc = 0.

Finally, 0 = θ(aa∗ + bb∗ + cc∗ + aa∗bb∗) = λaλa∗aa∗ + λaµa∗aa∗bb∗ +

µaλa∗bb∗aa∗+λbλb∗bb
∗+λbµb∗bb

∗aa∗ +µbλb∗aa
∗bb∗+λcλc∗cc

∗+λcµc∗cc
∗aa∗+

µcλc∗aa
∗cc∗ + λaλa∗λbλb∗aa

∗bb∗ = (λaλa∗ − λcλc∗)aa∗ + (λbλb∗ − λcλc∗)bb∗ +

(2(λaµa∗ −λbµb∗ +λcµc∗) +λaλa∗λbλb∗)aa∗bb∗ (using the formulas obtained in

the previous paragraph, and the reduction formulas obtained in Lemma 5.1.3).

Since aa∗, bb∗, aa∗bb∗ are independent in Π, the coefficients must be zero. In par-

ticular, since K has characteristic 2, λaλa∗λbλb∗ = 0, which is impossible.

Of course, if K does not have characteristic 2, then one can use this proof

to construct an isomorphism, e.g. define θ : KQ → KQ to be the map which

sends a to a + 1
2bb

∗a, a∗ to a∗ − 1
2a

∗bb∗ and each remaining arrow (and each

trivial path) to itself. Then one can check that θ(µ1) = ρ0 and thus θ induces a
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map Λ → Π. It is easy to construct an inverse, e.g. the map which sends a to

a− 1
2bb

∗a and a∗ to a∗ + 1
2a

∗bb∗, and each remaining arrow to itself. However,

this example doesn’t really suggest how this question can be answered in general,

because it is not practical to attempt this analysis for the larger Dynkin quivers.

The question is quite interesting to ask for the quivers of type Ãn. If we orient

the quiver cyclically, then it is easy to see that Π is a subalgebra of Λ. Namely,

construct Λ as described in Section 2.1, and observe that ρ =
∑

a∈Q1
ǫ(a)aa∗

is zero. Therefore the natural map KQ → Λ induces an inclusion θ : Π → Λ

because ρ is sent to zero. This is not an isomorphism, because the representation

X of Q with Xv = K for all v, Xa = 1, Xa∗ = −1 for all a ∈ Q1 is a

representation of Π, but not of Λ because each 1+XaXa∗ is zero and is therefore

not invertible. Thus the image of θ cannot contain la. Strictly, this does not

show that Π is not isomorphic to Λ as algebras, since we have not shown that

no isomorphism exists, only that θ is not an isomorphism.

5.3 Other questions

We list some other questions, whose answers may turn out to be of interest.

1. When is Λq(Q) ∼= Λq′

(Q)? We do have the following theorem, which may

suggest an answer to this question. It could have been placed in Chapter 2, as

it follows immediately from Theorem 2.3.1.

Theorem 5.3.1. Λq(Q) is Morita equivalent to Λq′

for all q′ ∈Wq.

2. Is there any significance to the numbers dim(Λ1(Q)≤i/Λ
1(Q)≤i−1)? Note

that Λ1(Q)≤i =
∑

i Λ1(Q)i where Λ1(Q)i is the span of the paths of degree i

using the oriented grading on KQ. The reason why these numbers may be of

interest is that the corresponding numbers for Π are equal to the dimension of

the module τ−i(KQ). The numbers for Λ will be different (provided Q does

not have type An), e.g. if Q is the quiver of type D4 given in 5.1.3, then

dim(e0Λ≤1e0/e0Λ≤0e0) is equal to 3 (because aa∗, bb∗ cc∗ are independent),

but dim(e0Π≤1e0/e0Π≤0e0) is 2.
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3. One can define a class of algebras KQ/Iρx , where ρx =
∑

a∈Q1
ǫ(a)aa∗+x

and x is a linear combination of paths formed by composing paths two or more

paths of the form aa∗. One can ask whether such algebras are isomorphic to Π,

or to Λ (Λ being one special case). This has been explored in the Dynkin case

in [5].

4. It may be interesting to consider the intersection between the ideals Iρ

and Iµ. We were surprised during our calculations how often the elements of Iµ

were homogeneous, and that these homogeneous elements were also elements of

Iρ (e.g. the ci in obtained in Lemma 5.1.5).
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Chapter 6

Preprojective algebras for

quivers with relations

The purpose of this chapter is to determine whether the construction of the

preprojective algebra (that is, an algebra satisfying the preprojective property)

can be generalised to algebras given by quivers with relations. The algebras

investigated are those arising from ‘pairings’. Such algebras can have both

finite and infinite representation type, but our results only apply in the finite

type case. We use the convention that all modules are preprojective (e.g. we

can use the definition of a preprojective module given by Auslander and Smalø,

[2]), so that a ‘preprojective algebra’ P (A) of an algebra A should have A as

a subalgebra, and should decompose as the direct sum of all indecomposable

modules for A, one from each isomorphism class. It would be desirable to obtain

some results for algebras of infinite representation type, but this appears to be

difficult.

In Section 6.1, we introduce the notion of a ‘pairing’ for a quiver, and show

that a quiver Q equipped with a pairing Σ gives rise to a new quiver QΣ with

relations (and hence an algebra A). We then can use the preprojective algebra

for Q to construct an algebra Π(Q,Σ). In Section 6.2, we conjecture that if Σ is a

certain type of pairing (an ‘end pairing’), then Π(Q,Σ) satisfies the preprojective

property for A (provided A has finite type). After giving a counterexample to

show that this is not true for all pairings, we prove that the conjecture holds
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in a special case (Sections 6.3 and 6.4). Finally, in Section 6.5, we show that

this result is sufficient to show that for any Nakayama algebra A, there exists

an algebra satisfying the preprojective property for A.

6.1 Pairings

Definition 6.1.1. A pairing Σ of a quiver Q is a triple (Q′, Q′′, σ) where Q′, Q′′

are full subquivers of Q, and σ : Q′′ → Q′ is an isomorphism.

We write v1 ∼ v2 if v1 = σ(v2) and extend ∼ to an equivalence relation on

Q0 (i.e. u ∼ v if and only if there is a sequence u = v1, v2, . . . , vk = w with

either vi = σ(vi+1) for all i or vi = σ(vi−1) for all i). We define an equivalence

relation on Q1 in the same way. Clearly if a1 ∼ a2, then h(a1) ∼ h(a2) and

t(a1) ∼ t(a2). This fact enables us to make the following definition.

Definition 6.1.2. We define the glued quiver QΣ to be the quiver with vertex

set Q0/ ∼ and arrows Q1/ ∼, with h(ã) = h̃(a), and t(ã) = t̃(a).

Example 6.1.3. Let Q be the quiver

s s s s- -
6 6

s s

1 2 5 3

6 4

a b

cd

and set Q′
0 = {2, 6} and Q′′

0 = {5, 4}. The corresponding glued quiver is

s s s- -
6

s

1̃ 2̃ = 5̃ 3̃

4̃ = 6̃

ã b̃

c̃ = d̃

Given a quiver Q and a pairing Σ, there is an induced pairing Σ = (Q′, Q′′, σ)

on Q, where σ is the extension of σ obtained by defining σ(a∗) to be (σ(a))∗.
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It is clear that the quiver Q
Σ

may be identified with QΣ. If we denote the set

of paths of Q by P , and the set of paths of QΣ by PΣ, then there is a map

η : P → PΣ which takes a path an . . . a1 to ãn . . . ã1 and a trivial path ev to eṽ.

For µ ∈ PΣ we define

θ(µ) =
∑

q∈η−1(µ)

q,

and extend to a vector space homomorphismKQΣ → KQ (note that if µ 6∈ Im η,

then the sum is taken to be zero).

Lemma 6.1.4. θ is an algebra homomorphism.

Proof. We need to check that θ(µ1µ2) = θ(µ1)θ(µ2) for all µ1, µ2 ∈ PΣ. This

follows from the fact that if µ1, µ2 ∈ PΣ with h(µ2) = t(µ1), then

η−1(µ1µ2) = {q1q2 ∈ P : q1 ∈ η−1(µ1), q2 ∈ η−1(µ2)}.

If h(µ2) 6= t(µ1), then h(q2) 6∼ t(q1) for all q1 ∈ η−1(µ1) and q2 ∈ η−1(µ2), and

so θ(µ1)θ(µ2) = 0 = θ(µ1µ2). Finally it is clear that θ(1
KQΣ) = θ(

∑
ṽ∈QΣ

0
eṽ) =

∑
v∈Q0

ev = 1KQ.

Clearly one can restrict θ to an algebra homomorphism θ : KQΣ → KQ.

Let IΣ = Ker θ. It is the ideal of KQΣ generated by the paths of QΣ not in

Im η (so in the example IΣ is generated by b̃ã). The algebra KQΣ/IΣ can be

embedded in KQ, namely, there is a map φ : KQΣ/IΣ →֒ KQ induced from θ.

Definition 6.1.5. Given a quiver Q with a pairing Σ, we denote the algebra

Imπθ as Π(Q,Σ) (recall that π denotes the natural surjection KQ→ Π(Q)).

Clearly Π(Q,Σ) inherits an oriented grading from the oriented grading on

Π(Q). It is clear that

πθ


 ∑

a∈QΣ
1

ǫ(a)aa∗


 = π


∑

a∈Q1

ǫ(a)aa∗


 = 0,

so Π(Q,Σ) is a quotient of Π(QΣ).

Lemma 6.1.6. KQΣ/IΣ is a subalgebra of Π(Q,Σ).
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Proof. The composition ξ : KQΣ θ
−→ KQ →֒ KQ ։ Π(Q) maps into Π(Q,Σ).

Clearly Ker θ ⊆ Ker ξ, and if x ∈ Ker ξ, then θ(x) ∈ Kerπ∩KQ, so θ(x) = 0. So

Ker ξ = Ker θ = IΣ, and there is an induced injective algebra homomorphism

KQΣ/IΣ → Π(Q,Σ).

Thus Π(Q,Σ) has a natural KQΣ/IΣ-module structure.

6.2 The main theorem

Given vertices u, v of a quiver, if there is a path from u to v, then u is said to

be a predecessor of v, and v a successor of u.

Definition 6.2.1. A pairing of a quiver Q is an end pairing if and only if

(1) There are non source vertices u1, u2, . . . , ul ∈ Q0 such that Q′ is the

full subquiver of Q with vertex set consisting of all successors of the ui, and if

a : u → v is an arrow of Q which is incident with a vertex of Q′, then either

a ∈ Q′
1 or v = ui for some i.

(2) There are non sink vertices w1, w2, . . . , wm ∈ Q0 such that Q′′ is the full

subquiver of Q with vertex set consisting of all predecessors of the wi, and if

a : u → v is an arrow of Q which is incident with a vertex of Q′′, then either

a ∈ Q′′
1 or u = wi for some i.

In particular, we see that a vertex with no successors in Q′ (i.e. a sink in

Q′) cannot have any successors in Q (so is a sink in Q), whereas a source in Q′

cannot be a source in Q because the only sources in Q′ are the ui. The same is

true for Q′′, but the other way round.

Example 6.2.2. (1) Let Q be the quiver

s s s s- - - s s s s
s

s

@
@

@R

�
�

��

s

s
�

�
��

@
@

@R

- -
1 2 5 6

4

3

7 8 9 10

11

12

r t v

u

s

w x

y

z
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One possible end pairing is determined by setting u1 = 5, u2 = 9, w1 = 8,

w2 = 10 and then Q′
0 = {5, 6, 9} and Q′′

0 = {7, 8, 10}. The corresponding glued

quiver is

s s s s- - - s
s

s

@
@

@@R

�
�

���

s

s
�

�
���

@
@

@@R

-
1̃ 2̃ 5̃ = 7̃ 6̃ = 8̃

4̃

3̃

9̃ = 1̃0

1̃1

1̃2

r̃ t̃ ṽ = w̃

ũ

s̃

x̃

ỹ

z̃

(2) Let Q be the quiver

s s s s- - -
1 2 3 4

x y z

Since Q′ cannot contain the source vertex 1, and is closed under successors, we

must have either Q′
0 = {4} or {3, 4} or {2, 3, 4}. The corresponding Q′′

0 are {1}

or {1, 2} or {1, 2, 3}. Note that Q′ and Q′′ may intersect, so the third case is

allowed. The corresponding glued quivers are

s
s s

@
@

@@I
-
�

�
��	

2̃ 3̃

1̃ = 4̃

x̃ z̃

ỹ

s s-
�

1̃ = 3̃ 2̃ = 4̃

x̃ = z̃

ỹ s��
��

1
1̃ = 2̃ = 3̃ = 4̃

x̃ = ỹ = z̃

(3) We can see by inspection that the pairing given in Example 6.1.3 is not

an end pairing, since there is a source 6 in Q′ which is also a source in Q, which

is impossible.

Conjecture 6.2.3. Let Q be a quiver with an end pairing Σ, and denote

KQΣ/IΣ by A. If A has finite representation type then Π(Q,Σ) has the prepro-

jective property for A.

It is almost certainly the case that the conjecture can be extended in some

way to the case of A being infinite representation type. Clearly one would have
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to instead use the category of ‘preprojective’ A-modules, but then the problem

arises that there are several different definitions of what a preprojective module

for a non-hereditary algebra should be, and it is unclear which we should be

using. The definition given by Auslander and Smalø works well enough in the

finite type case (in the sense that all modules are preprojective), but if this were

the correct definition to use, one might expect that (Π(Q,Σ))i would be the

direct sum of the modules in the i-th component of the preprojective partition,

but there are many examples to show this is not the case (e.g., one can take

a quiver of type D4 with the empty pairing, and then Π(Q,Σ) is the ordinary

preprojective algebra, which fails to satisfy this condition).

We are able to prove the conjecture in the following special case.

Theorem 6.2.4. Let Q be a quiver with an end pairing Σ, such that the con-

nected components Q′
i of Q′ have Dynkin type Ani

, oriented to have exactly

one source and one sink. If A = KQΣ/IΣ has finite representation type then

Π(Q,Σ) has the preprojective property for A.

We give an outline of the proof of the theorem, which relies on proving two

lemmas.

Label the vertices of each connected component Q′
i of Q′ as ui

1, . . . , u
i
ni

, and

arrows bi1, . . . , b
i
ni−1 so that t(bij) = ui

j and h(bij) = ui
j+1. We define a function

d : Q0 → N by

d(v) =

{
l if v = ui

l for some i

0 otherwise

We label the vertices of Q′′ in the same way as Q′, but use ‘w’ and ‘c’ instead of

‘u’ and ‘b’. Note that some vertices/arrows of Q may have two labels, although

the situations in which this may occur are quite restricted. That is, we claim

that if v = wi
m = uj

n, then v must be contained in a component Q̇ of Q of

type Ak for some k, and m > n. To see this, first note that Q̇ clearly contains

the predecessors of v in Q (which are the predecessors of v in Q′′, the wi
l for

l < m) and the successors of v in Q (which are the successors of v in Q′, the

uj
l for l > n). Therefore Q̇ contains the following subquiver, and there can be
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no arrow with head at wi
l with l ≤ m or with tail at uj

l with l ≥ n other than

those included in the diagram.

sss s s s sq q q q q q- - - -
wi

1 wi
2 wi

m−1 wi
m

uj
n uj

n+1 uj
nj−1 uj

nj

In fact Q is must be equal to this subquiver. Any arrow of Q with tail at wi
l with

l < m would, using the last part of property (2) of end pairings, have to be in Q′′

(i.e. must be the arrow already in the diagram, cil). Similarly there can be no

arrows with head at uj
l for l > n. One must have bjn+k = cim+k, uj

n+k = wi
m+k

for all k ∈ Z which make sense, and if n ≤ m, then Q′ contains uj
m−n+1 = wi

1,

which is a source in Q, a contradiction. Note that in this situation, there is

exactly one arrow of Q (namely cim−n) with head at ui
1, and conversely if more

than one arrow of Q ends at ui
1, then Q′

i is disjoint from Q′′.

Lemma 6.2.5. (Main Lemma 1.) Let k ≥ 0, ν ∈ QΣ
0 . As A-modules,

Π(Q,Σ)keν
∼=
⊕

v∈ν
d(v)≤k

Π(Q)kev,

where the module structure on the right hand side is restriction via φ of the

natural KQ-module structure.

The proof of this lemma is done in Section 6.3.

Now we relate the category of A-modules with the category of KQ-modules,

using the process described in [27]. Via the embedding φ : A →֒ KQ, any KQ-

module becomes an A-module by restriction. We can describe this in terms of

a functor F : RepQ→ RepA. Given a representation X of Q, let F (X) be the

representation Y of QΣ, where Yṽ = ⊕u∈ṽXu and if ã : ṽ → w̃ ∈ QΣ
1 then for

x ∈ Xu where u ∈ ṽ, define

Yã(x) =

{
Xb(x) if b ∈ ã with h(b) = u.

0 otherwise.

Note that this is well defined as if b exists, it is unique.
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Lemma 6.2.6. (Main Lemma 2.) F induces a bijection from the indecompos-

able representations X of Q with Xv 6= 0 for some v 6∈ Q′
0 to the indecomposable

representations of A.

The proof of this lemma is done in Section 6.4. Assuming that Theorem 6.2.4

is proved, this lemma gives rise to the formula dim(Π(Q,Σ)) = dim(Π(Q)) −

dim(Π(Q′)) (by applying Theorem 1.3.4).

Assuming the two Main Lemmas are proved, we prove Theorem 6.2.4 as

follows (this only proves the left modules part of the preprojective property, but

it should be easy to see that the every part of the proof can be done in the same

way with right modules). Using Main Lemma 1, and the fact that Π(Q,Σ) is

graded, we have that as A-modules

Π(Q,Σ) ∼=
⊕

ν∈QΣ
0

k≥0

Π(Q,Σ)keν
∼=
⊕

v∈Q0

k≥d(v)

Π(Q)kev.

In view of Theorem 1.3.4, this is equivalent to

Π(Q,Σ) ∼=
⊕

M∈Z\Z′

F (M),

where Z is a set of representatives for the category of representations of Q, and

Z ′ is the subset of Z consisting of those representations of Q which correspond

to Π(Q)kev, with k < d(v). We claim that M ∈ Z ′ if and only if Mu = 0 for all

u 6∈ Q′
0, and then Theorem 6.2.4 follows from Main Lemma 2.

Clearly, if M ∈ Z ′, then M corresponds to some Π(Q)kev with k < d(v).

If u 6∈ Q′
0, then any path from v to u most contain at least d(v) arrows in

Q∗
1, and thus euΠ(Q)kev = 0, and so Mu = 0. Conversely, if M ∈ Z \ Z ′,

then M corresponds to some nonzero Π(Q)kev with k ≥ d(v). That is, there is

some nonzero path p of degree k starting at some ui
d(v) for which π(p) 6= 0. By

‘normalising’, we can assume that p can be written as p = q(bi1)∗bi1r, where r

is the shortest path from ui
d(v) to ui

1, (see Lemma 6.3.5 for the details, but this

type of calculation should be familiar from previous chapters). Using property
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(1) of end pairings and the preprojective relation of ui
1, we have

π((bi1)∗bi1) =
∑

a∈Q1

h(a)=ui
1

π(aa∗).

Since π(p) 6= 0, there is some arrow a ∈ Q1 with h(a) = ui
1 such that π(aa∗r) 6=

0. Setting u = t(a), (which not in Q′) then euΠ(Q)ev 6= 0, and thus Mu 6= 0.

If Q and Σ satisfy Theorem 6.2.4, then it is reasonable to call Π(Q,Σ) a

preprojective algebra for A = KQΣ/IΣ. Of course, we would like to say that

Π(Q,Σ) is the preprojective algebra for A, but it is possible that A may be

obtained from more than one quiver and pairing, and would consequently have

more than one preprojective algebra. However we make the following conjecture,

which (if true) would eliminate this problem.

Conjecture 6.2.7. If Q̇ and Q̈ are quivers with end pairings Σ̇ and Σ̈ respec-

tively, such that KQ̇Σ̇/IΣ̇ ∼= KQ̈Σ̈/IΣ̈, then the pairings are isomorphic (i.e.

Q̇ ∼= Q̈ via an isomorphism which respects σ̇, σ̈), and so Π(Q̇, Σ̇) ∼= Π(Q̈, Σ̈).

Unfortunately, we are unable to prove this conjecture (even in the case where

Theorem 6.2.4 applies).

To end this section, we show that the conjectures cannot be extended to

apply to all pairings. Let Q̇ and Σ̇ be the quiver and pairing given in Example

6.1.3, and let A ∼= KQ̇Σ̇/IΣ̇. Let Q̈ be the quiver

s s s s- -
6

s

1 2 5 3

4

a b

c

and Σ̈ be the pairing determined by setting Q′
0 = {2}, Q′′

0 = {5} (which is not

an end pairing because 5 is a source in Q′′ which is not a source in Q). Then

A = KQ̈Σ/IΣ̈, which shows that Conjecture 6.2.7 does not hold if ‘end pairing’

is replaced by ‘pairing’.
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One can calculate using the Auslander-Reiten quiver the indecomposable

modules for A, and adding their dimensions we find that Π(Q,Σ) would have

to be 16 dimensional in order for it to satisfy the preprojective property. Since

Π(Q̈) is 14 dimensional, Π(Q̈, Σ̈) can be at most 14 dimensional (in fact it is 13

dimensional), and thus Π(Q̈, Σ̈) does not satisfy the preprojective property.

For the other pairing it is less obvious. We can calculate that {e1, a, a
∗, c∗a,

a∗c, aa∗, e3, b, b
∗, bc, c∗b∗, b∗, e2, e5, e4, e6, c, d, c

∗, d∗} is a basis for Π(Q̇), and that

Π(Q̇, Σ̇) is the subspace spanned by the first twelve elements and the elements

e2 + e5, e4 + e6, c + d, c∗ + d∗. Thus the dimension is correct, and one has to

investigate further. One can decompose Π(Q̇, Σ̇) as

Π(Q̇, Σ̇) ∼=
⊕

ν∈QΣ
0

k≥0

Π(Q̇, Σ̇)keν .

In particular, Π(Q̇, Σ̇)1e1̃ = Kc∗a ∼= S4 and Π(Q̇, Σ̇)2e3̃ = Kc∗b∗ ∼= S4. Thus

Π(Q̇, Σ̇) has two isomorphic indecomposable summands, and so Π(Q̇, Σ̇) does

not satisfy the preprojective property.

Note that one can relate the category of A-modules and the category of

KQ̇-modules as in Main Lemma 2 (see [27]), and in fact in can be checked that

Π(Q̇, Σ̇) does satisfy the preprojective property for right A-modules.

6.3 Proof of Main Lemma 1

We prove Main Lemma 1 by constructing an A-module isomorphism. Before we

can do this, it is necessary to prove several preliminary lemmas.

Lemma 6.3.1. If v ∈ Q′′
0 , then d(σ(v)) > d(v).

Proof. We have that v = wj
m for some j,m, and σ(v) = uj

m. If v 6∈ Q′
0, then

d(σ(v)) = m > 0 = d(v), so the result is true in this case. So suppose that

v = ui
n ∈ Q′

0. By the discussion after the statement of the theorem, we have

m > n, i.e. d(σ(v)) > d(v).

Thus if v1 = σn(v2), then n is uniquely determined, since if σn(v) = σm(v)
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for some n > m, then v = σn−m(v) which is impossible as d(σn−m(v)) > d(v).

Given a path p of Q′′ let ω(p) be the corresponding path of Q′ induced by σ.

Lemma 6.3.2. η(p) = η(q) ⇐⇒ p = ωn(q) for some n ∈ Z which is uniquely

determined.

Proof. The ⇐ implication is obvious. Assume that η(p) = η(q). Clearly t(p) =

σn(t(q)) for some uniquely determined n. We prove that p = ωn(q) by induction

on the length of the path. If p and q are trivial paths then we are done. Suppose

p = a1a2 . . . ak and q = b1b2 . . . bk. We must show ai = σn(bi) for all i. Since

η(p) = η(q), ak ∼ bk, and so ak = σm(bk). Clearly m = n since t(p) = t(ak) =

σm(t(bk)) = σm(t(q)), and thus h(ak) = σn(h(bk)). If k = 1, then we are

done, and if k > 1 then let p′ = a1a2 . . . ak−1 and q′ = b1b2 . . . bk−1, and one

clearly has η(p′) = η(q′). Since t(ak−1) = σn(t(bk−1)), we can use the induction

hypothesis to show that p′ = ωn(q′), and then ai = σn(bi) for i = 1, . . . , k − 1.

We already have this for i = k, and so p = ωn(q).

Thus if µ ∈ Im η, there is a total ordering on η−1(µ), for p, q ∈ η−1(µ)

define p ≤ q ⇐⇒ q = ωn(p) for some n ≥ 0 (equivalently p ≤ q ⇐⇒

d(t(p)) ≤ d(t(q))). Henceforth we write d(p) instead of d(t(p)). We define P̂

to be the set {p ∈ P : d(p) ≤ deg(p)}, and P̂max to be the set {p ∈ P̂ :

If ω(p) exists, then ω(p) 6∈ P̂}.

Lemma 6.3.3. If µ ∈ Im η, there is p̂ ∈ P̂max with η(p̂) = µ.

Proof. We need to show that η−1(µ) contains some element p ∈ P̂ . We can then

take p̂ to be the maximal such element. Suppose p is the minimal member of

η−1(µ), and assume for a contradiction that p 6∈ P̂ , i.e. that m > deg(p), where

m = d(p).

Clearly p must involve an arrow not in Q′ since otherwise ω−1(p) < p is

a member of η−1(µ). We write p = qr where r involves arrows in Q′ and is

chosen to be as long as possible. Since q must be non trivial, we can write

q = q′a where a is an arrow. We have t(p) = ui
m for some i. We must have

t(q) = ui
1 since this is the only vertex which is connected to ui

m and is incident
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with arrows not in Q′. Now deg(r) ≥ m − 1, since r must use each of the

arrows (bil)
∗ for 1 ≤ l ≤ m − 1, and deg(q) ≥ 1 because a ∈ Q∗

1 as the only

arrow of Q starting at ui
1 is bi1, and a = bi1 would contradict the choice of r. So

deg(p) = deg(q) + deg(r) ≥ m, a contradiction.

Lemma 6.3.4. Given q ∈ P̂max and p ∈ P such that p only involves arrows in

Q and t(p) = h(q), then pq ∈ P̂max.

Proof. Clearly in this case d(pq) = d(q) ≤ deg(q) = deg(pq), so pq ∈ P̂ . If

pq 6∈ P̂max, then ω(pq) ∈ P̂ , and hence ω(q) ∈ P̂ , which is impossible because

q ∈ P̂max.

We now derive some properties of P̂max relating to preprojective algebras.

We can extend the operation ω to an algebra homomorphism ω+ : KQ→ KQ,

which sends p to ω(p) if p only visits vertices in Q′′ and zero otherwise, and

similarly ω− : KQ→ KQ using ω−1. We can define ωn for all n ∈ Z by applying

ω+ (respectively ω−) n times if n is positive (respectively negative). Of course,

it is necessary to take care because ω+ and ω− are not mutual inverses. It is

clear that θη(x) =
∑

n∈Z
(ωn(x)).

Lemma 6.3.5. If p ∈ P̂ , then π(ω−(p)) = 0. Thus if p ∈ P̂ \ P̂max, then

π(p) = 0 (since p = ω−(p′) for some p′ ∈ P̂ ).

Proof. We can assume that p is a path of Q′ since otherwise ω−(p) = 0 anyway.

Thus t(p) = ui
m for some i, where m = d(p), and thus t(ω−1(p)) = wi

m. We

construct a sequence of paths (pj)0≤j≤n of Q′′ starting at wi
m, such that p0 =

ω−1(p), π(pj+1 − pj) = 0 and π(pn) = 0, which proves the result.

To construct pj+1 from pj , write pj = qjrj , where rj does not involve an

arrow in Q′′ and is chosen to be as long as possible. Let dj = deg rj . Since rj can

only involve the arrows (cil)
∗ for 1 ≤ l ≤ m−1 (each at most once), dj ≤ m−1,

so deg(qj) = deg(pj)− deg(rj) ≥ 1, and hence qj is not trivial. Write qj = sjtj ,

where tj uses only arrows in Q′′ and is chosen to be as long as possible. Let

lj = length(tj), and set fj = m− 1 + lj − dj . Since deg(sj) = deg(qj) ≥ 1, sj is
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not trivial, and can be written sj = s′j(cifj
)∗, and similarly tj = cifj

t′j . If fj 6= 1,

let pj+1 = s′j(cifj−1)∗cifj−1t
′
jrj . If fj = 1, then let n = j and stop.

The sequence has the desired property as π(pj+1 − pj) = s′j((cifj−1)∗cifj−1 −

(cifj
)∗cifj

)t′jrj = 0, and pn has the form s(ci1)∗ci1t for some paths s, t, and so

π(pn) = 0. Observe that stage n occurs when dj has its maximum value m− 1,

and lj has its minimum value 1. It must eventually be reached as the sequence

of ordered pairs (dj , lj) goes (d0, l0), (d0, l0 − 1), . . . , (d0, 1), (d0 + 1, lj1), (d0 +

1, lj1 − 1), . . . , (d0 + 1, 1), (d0 + 2, lj2), . . . , . . . , (m− 1, ljk
), . . . , (m− 1, 1).

Let π′ : KQ′ → Π(Q′) and π′′ : KQ′′ → Π(Q′′) denote the natural maps.

Clearly Kerπ ∩KQ′ ⊆ Kerπ′ and Kerπ ∩KQ′′ ⊆ Kerπ′′.

Lemma 6.3.6. If π(x) = 0 and ω+(x) ∈ K(P \ P̂ ), then π(ω+(x)) = 0.

Proof. Let x ∈ Kerπ. We can assume that x ∈ KQ′′ since otherwise ω+(x) = 0

anyway. Hence x ∈ Kerπ′′, and so y = ω+(x) ∈ Kerπ′ since ω+(Kerπ′′) =

Kerπ′. We want to show that y ∈ Kerπ. We can write

y =
∑

k≥0
v∈Q′

0

ykv

where ykv is a linear combination of paths of degree k starting at v. Now since

y ∈ K(P \ P̂ ), ykv = 0 if d(v) ≤ k, so it suffices to prove ykv ∈ Kerπ for all

k, v with d(v) > k. Since y ∈ Kerπ′ ⇐⇒ ykv ∈ Kerπ′ for all k, v, we have

ykv ∈ Kerπ′, i.e.

ykv =
∑

j

rj


∑

a∈Q′
1

aa∗ − a∗a


 sj

for some paths rj , sj with (in particular) deg(sj) ≤ deg(ykv) − 1 = k − 1 and

t(sj) = v. Now

∑

j

rj


∑

a∈Q′
1

aa∗ − a∗a


 sj =

∑

j

rj


∑

a∈Q1

aa∗ − a∗a


 sj

since if a ∈ Q1 \ Q′
1, h(a) 6= t(sj) because d(h(sj)) ≥ d(t(sj)) − deg(sj) ≥
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d(v) − k + 1 > 1 and d(h(a)) ≤ 1. Thus

ykv =
∑

j

rj


∑

a∈Q1

aa∗ − a∗a


 sj ∈ Kerπ

as required.

Lemma 6.3.7. If x ∈ KP̂max, then π(x) = 0 ⇐⇒ πθη(x) = 0.

Proof. Clearly πθη(x) = 0 ⇐⇒ π(ωn(x)) = 0 for all n, so the ⇐ implication

is obvious. For ⇒, assume that π(x) = 0. Then by the previous lemma,

π(ωn(x)) = 0 for all n > 0. By Lemma 6.3.5, π(ωn(x)) = 0 for all n < 0, and

thus πθη(x) =
∑

n∈Z
π(ωn(x)) = 0.

We now construct a map

ξ :
⊕

v∈ν
d(v)≤k

Π(Q)kev → Π(Q,Σ)keν ,

which will be shown to be an A-module isomorphism. Given p ∈ P̂max, with

t(p) = v ∈ ν, deg(p) = k, let

ξ(π(p)) = πθη(p) ∈ Π(Q,Σ)keν .

We set Pkv = {p ∈ P, t(p) = v, deg(p) = k}, and similarly with P̂ and P̂max
kv .

Lemma 6.3.8.
⊕

v∈ν
d(v)≤k

Π(Q)kev =
∑

v∈ν

π
(
KP̂max

kv

)
.

Proof. Clearly, one has

⊕

v∈ν
d(v)≤k

Π(Q)kev =
∑

v∈ν
d(v)≤k

π (KPkv) .

By definition of P̂ , this is equivalent to

⊕

v∈ν
d(v)≤k

Π(Q)kev =
∑

v∈ν

π
(
KP̂kv

)
.

The result follows by Lemma 6.3.5.
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In view of this lemma and Lemma 6.3.7, ξ extends to a well defined injective

vector space homomorphism.

Lemma 6.3.9. ξ is surjective.

Proof. Π(Q,Σ)keν is spanned by the elements {πθ(µ) : µ ∈ S}, where S is the

set of paths of QΣ starting at ν of degree k. Since θ(µ) = 0 for µ 6∈ Im η,

we can replace S by the set S′ of paths in Im η starting at ν of degree k. By

Lemma 6.3.3, each element of S′ has the form η(p) for some p ∈ P̂max. Thus

Π(Q,Σ)keν is spanned by the elements {πθ(p) : p ∈ Pmax
kv }, as required.

Lemma 6.3.10. ξ is an A-module map.

Proof. It suffices to check that if ρ ∈ PΣ and q ∈ P̂max, then ξ(π(φ(ρ)q)) is

the same as the A-module product ρξ(π(q)) which is by definition ρπθη(q) =

πθ(ρη(q)). We assume that there is a unique p ∈ P with η(p) = ρ and t(p) =

h(q), since otherwise φ(ρ)q and ρη(q) are both zero. Then ξ(π(φ(ρ)q)) = ξπ(pq).

Since pq ∈ P̂max by Lemma 6.3.4, this is πθη(pq) = π(θ(η(p)η(q)) = πθ(ρη(q))

as required.

This completes the proof of Main Lemma 1.

6.4 Proof of Main Lemma 2

We prove Main Lemma 2 by constructing a ‘inverse’ G of F . Note that G will

not be a functor. A representation Y of A can be identified with a representation

of QΣ which satisfies the relations

YγYb̃i
ni−1

. . . Yb̃i
1
Yβ = 0,

for all arrows β, γ ∈ QΣ
1 with t(γ) = wi

ni
, h(β) = ui

1. Given such a represen-

tation, define vector spaces Mv and Nv for all v ∈ Q0. If v = ui
m ∈ Q′

0, then

let

Nv =
∑

α∈QΣ
1

h(α)=ũi
1

ImYb̃i
m−1

. . . Yb̃i
1
Yα,
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and otherwise let Nv = Yṽ. If v = wi
m ∈ Q′′

0 , then let

Mv =
∑

α∈QΣ
1

h(α)=w̃i
1

ImYc̃i
m−1

. . . Yc̃i
1
Yα,

and otherwise let Mv = 0.

Lemma 6.4.1. (i) For all v ∈ Q0, we have Mv ⊆ Nv ⊆ Yṽ.

(ii) For all a : v → v′ ∈ Q1, we have Yã(Mv) ⊆Mv′ and Yã(Nv) ⊆ Nv′ .

(iii) Nui
m

= Mwi
m
. Thus, if we label the members of each ṽ as v1, . . . , vk so that

σ(vl) = vl+1, one has Nvl+1
= Mvl

.

Proof. (i) The only non trivial case is where v ∈ Q′
0 ∩ Q

′′
0 , i.e. v = uj

n = wi
m.

We know that m > n, and that b̃jn+k = c̃im+k for all k ∈ Z which make sense.

Thus clearly

Mv =
∑

α∈QΣ
1

h(α)=w̃i
1

ImYc̃i
m−1

. . . Yc̃i
1
Yα

⊆ ImYc̃i
m−1

. . . Yc̃i
m−n+1

= ImY
b̃

j
n−1

. . . Y
b̃

j
1
Yã

= Nv,

where a = cin−m is the unique arrow of Q with head at uj
1 = wi

m−n.

(ii) If v 6∈ Q′′
0 , then it is obvious, so assume that v = wi

m ∈ Q′′
0 . If m < ni, then

a = cim, and v′ = wi
m+1 and so Yã(Mv) = Mv′ . If m = ni, then Yã(Mv) = 0

because of the relations. The proof for N is similar.

(iii) is clear.

We define G(Y ) to be the representation X of Q given by Xv = Nv/Mv, and

Xa : Xv → Xv′ to be the map induced by Yã, i.e. for x ∈ Nv define Xa(x+Mv)

to be Yã(x) + Mv′ . Parts (i) and (ii) of the previous lemma show that this is

well defined, and part (iii) shows that

FG(Yṽ) =
⊕

v∈ṽ

Nv/Mv = Yṽ/Mv1 ⊕Mv1/Mv2 ⊕ · · · ⊕Mvk−1
,
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which can be identified with Yṽ, and hence FG(Y ) can be identified with Y .

We now need to show that if X is an indecomposable representation of Q with

Xv 6= 0 for some v 6∈ Q′
0, then GF (X) can be identified with X , which will

complete the proof.

Lemma 6.4.2. Let X be an indecomposable representation of Q with Xv 6= 0

for some v 6∈ Q′
0. For all i,

∑

a∈Q1

h(a)=ui
1

Xa = Xui
1
,

and each Xbi
m

is surjective.

Proof. Suppose otherwise. Let W be the representation of Q where Wui
1

is

the complement of the sum in Xui
1
, and the remaining Wv are zero. There is a

homomorphism f from X to W (take fui
1

to be the projection of Xui
1

onto Wui
1
).

However, this is impossible because the only indecomposable representations of

Q which have non zero maps to W have support contained in Q′. The second

part follows easily because we can restrict X to a representation Xi of each

connected component Q′
i of Q′. Each Xi decomposes as a direct sum ⊕jXij ,

with each (Xij)ui
1
6= 0 (because otherwise Xij is a proper summand of X),

and one therefore has that each (Xij)bi
m

is surjective, and therefore so is each

Xbi
m

.

Lemma 6.4.3. Let X be an indecomposable representation Q with Xv 6= 0

for some v 6∈ Q′
0, let Y = F (X), and define the spaces Mv and Nv. One has

Nv = ⊕w≥vXv and Mv = ⊕w>vXv.

Proof. If v 6∈ Q′
0, then v is the maximal element of ṽ, and so Nv = Yṽ = ⊕w≥vXv

is clear. Suppose then that v = ui
m ∈ Q′

0. If there is more than one arrow of

Q with head at ui
1, then v 6∈ Q′′

0 and so v is the maximal element of ṽ, and one
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has

Nv =
∑

α∈QΣ
1

h(α)=ũi
1

ImYb̃i
m−1

. . . Yb̃i
1
Yα

=
∑

a∈Q1

h(a)=ui
1

ImXbi
m−1

. . . Xbi
1
Xa

= Xv,

using the previous lemma. If there is exactly one arrow a of Q ending at ui
1,

then

Nv = ImYb̃i
m−1

. . . Yb̃i
1
Yã

=
⊕

ImXσl(bi
m−1) . . .Xσl(bi

1)
Xσi(a),

where the sum is taken over all l ∈ Z which make sense. Clearly a 6∈ Q′
0, so we

need only consider l ≥ 0. By the previous lemma, we have

ImXσl(bi
m−1)

. . . Xσl(bi
1)Xσl(a) = Xσl(ui

m),

for all l, which gives the result. The assertion for Mv follows from (iii) of Lemma

6.4.1.

6.5 Nakayama algebras

Although we are only able to prove the conjecture in a special case, the special

case is wide enough to show that a ‘preprojective algebra’ exists for all Nakayama

algebras.

Definition 6.5.1. A module is uniserial if its submodules are totally ordered

by inclusion.

Definition 6.5.2. A finite dimensional algebra is a Nakayama algebra if both its

indecomposable projective and indecomposable injective modules are uniserial.
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If A is an indecomposable Nakayama algebra, then one can label its inde-

composable projective modules P0, P1, . . . , Pn−1, so that Pi+1 is the projective

cover of radPi for i = 0, 1, . . . , n− 2, and P0 is the projective cover of radPn−1

if Pn−1 is not simple. The sequence (f0, f1, . . . , fn−1), where fi = length(Pi) is

called the admissible sequence of A. It has the property that fi+1 ≥ fi − 1 ≥ 1

for i = 0, 1, . . . , n − 2 and f0 ≥ fn−1 − 1. Any sequence with this property is

called admissible.

Theorem 6.5.3. [1] Given an admissible sequence (f0, f1, . . . , fn−1), there is

a Nakayama algebra A such that (f0, f1, . . . , fn−1) is the admissible sequence of

A.

Proof. If fn−1 = 1, then let Q be the quiver

s s ssq q q- - --
0 n− 11 n− 2

a1 an−1

If fn−1 > 1, then let Q be the quiver

s s ssq q q- - --

@
@

@I

�
�

�0 n− 11 n− 2

a0

a1 an−1

In either case let I be the ideal of KQ generated by the set of paths {pi : 0 ≤

i ≤ n− 1}, where pi is the unique path of length fi starting at vertex i. It can

be easily checked that A = KQ/I is a Nakayama algebra, and (f0, f1, . . . , fn−1)

is its admissible sequence.

Theorem 6.5.4. If A is a Nakayama algebra, then there is a quiver Q and a

pairing Σ satisfying the conditions of Theorem 6.2.4 such that A ∼= KQΣ/IΣ,

and thus Π(Q,Σ) is an algebra satisfying the preprojective property for A.

Let (f0, . . . , fn−1) be the admissible sequence corresponding to A. Let L be

the set {m : fm > fm−1 − 1} (assuming ‘f−1’ is equal to fn−1), and list its

members as l1, l2, . . . , lk so that li < li+1. Additionally, for later convenience,
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set l0 = lk −n and lk+1 = l1 +n (they are not members of L), and put fl0 = flk

and flk+1
= fl1 . We write down some easy properties of these numbers which

are required for later.

Lemma 6.5.5. We have the following properties.

(1) Given l ≤ m , if there exits i ∈ L with l < i ≤ m then fl + l < fm + m,

otherwise fl + l = fm +m.

(2) For i = 1, 2, . . . , k − 1, li+1 ≤ li + fli − 1.

(3) l1 ≤ fn−1 − 1 (with equality only when fn−1 = 1).

(4) lk + flk = fn−1 + n− 1.

Proof. (1) Provided l + 1, l+ 2, . . . ,m are not in L, one has fm +m = fm−1 +

m− 1 = · · · = fl + l. Otherwise at least one equality must be replaced by >.

(2) Assuming (1), we have 2 ≤ fli+1−1 = fli−li+1+li+1, which is equivalent

to (2).

(3) Observe first that if fn−1 = 1, then l1 = 0 as required. We can therefore

suppose that fn−1 6= 1, and assume that l1 > 0 (since otherwise the claim is

obviously true). Then by (1), fl1−1 + l1 − 1 = f0, and since l1 > 0, we have

f0 = fn−1 − 1, and thus l1 = fn−1 − fl1−1 < fn−1 − 1.

(4) Follows immediately from (1).

We define Q to be the quiver with vertex set {(m, i) ∈ N
2 : 1 ≤ m ≤ k, lm ≤

i ≤ lm + flm − 1} and arrows {(m, i) → (m, i + 1) : 1 ≤ m ≤ k, lm ≤ i ≤

lm + flm − 2}. Clearly Q has k connected components, a typical one being

s s s q q q s- -- -
(m, lm) (m, lm + 1) (m, lm + 2) (m, lm + flm − 1)

Set Q′, Q′′ to be the full subquivers of Q with vertex sets {(m, i) : lm+1 ≤ i ≤

lm + flm − 1} and {(m, i) : lm ≤ i ≤ lm−1 + flm−1 − 1} respectively. Given

(m, i) ∈ Q′′
0 , define

σ((m, i)) =

{
(m− 1, i) if m > 1

(k, i+ n) if m = 1
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Lemma 6.5.6. Σ = (Q′, Q′′, σ) is an end pairing satisfying the hypothesis of

Theorem 6.2.4.

Proof. We have (1, i) ∈ Q′′
0 ⇐⇒ l1 ≤ i ≤ l1 + fl0 − 1 ⇐⇒ l1 + n ≤ i + n ≤

l0 + n + fl0 − 1 ⇐⇒ lk+1 ≤ i + n ≤ lk + flk − 1 ⇐⇒ (k, i + n) ∈ Q′
0,

and if m > 1 it is clear that (m, i) ∈ Q′′
0 ⇐⇒ (m − 1, i) ∈ Q′

0. Thus σ

is a well defined bijective map, and can be extended to a quiver isomorphism

σ : Q′′ → Q′. Thus Σ = (Q′, Q′′, σ) is a pairing. Since clearly lm+1 > lm and,

using (1), lm−1 + flm−1 − 1 < lm + flm − 1 for all m, it is and end pairing, which

clearly satisfies the hypothesis of Theorem 6.2.4.

Lemma 6.5.7. QΣ is the quiver given in Theorem 6.5.3, and IΣ is the corre-

sponding ideal.

Proof. For j = 0, 1, . . . , n− 1, set vj = {(m, i) ∈ Q0 : i ≡ j mod n}. We claim

that each vj is an equivalence class. It is clear that if v ∈ vj and v′ ∈ vj′ with

j 6= j′, then v 6∼ v′, so it remains to check that all members of each vj are

equivalent. This is done in several stages.

First we show that if (m1, i), (m2, i) ∈ Q0 with m1 ≤ m2, then (m1, i) ∼

(m2, i). Given m with m1 ≤ m ≤ m2, we have (m, i) ∈ Q0 because lm ≤ lm2 ≤ i

and i ≤ lm1 +flm1
−1 ≤ lm+flm−1 using (1). Now if (m, i), (m+1, i) ∈ Q0, then

(m+ 1, i) ∈ Q′′
0 since i ≥ lm+1. Thus (m, i) ∼ (m+ 1, i) for all m1 ≤ m < m2,

and so (m1, i) ∼ (m1 + 1, i) ∼ · · · ∼ (m2, i).

Now we show that if (m1, i), (m2, i + n) ∈ Q0, then (m1, i) ∼ (m2, i + n).

We have l1 ≤ lm1 ≤ i and i + n ≤ lm2 + flm2
− 1 ≤ ln−1 + fln−1 − 1 using the

fact that (m2, i+ n) ∈ Q0 and (1). Thus i ≤ ln−1 − n+ fn−1 − 1 = l0 + fl0 − 1,

and so (1, i) ∈ Q′′
0 and then σ(1, i) = (k, i + n) ∈ Q0. Since (m1, i) ∼ (1, i) ∼

(k, i+ n) ∼ (m2, i+ n), we have the result.

Finally, we check that {i : (m, i) ∈ Q0 for some m} = {i : l1 ≤ i ≤ lk + flk −

1}. The ⊆ inclusion is obvious. Suppose i lies in the range l1 ≤ i ≤ lk + flk − 1.

If (m, i) 6∈ Q0 for all m, then for each m either i < lm or i > lm + flm − 1. Since

l1 ≤ i, the set {m : lm ≤ i} is non empty. Choose its maximal member j, we
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must have i > lj + flj − 1. Since i ≤ lk + flk − 1, i < lk, so j 6= k. Thus we have

i < lj+1 (since j was maximal) and i > lj + flj − 1 which is impossible by (2).

This completes the proof that each vj is an equivalence class, since if (m, i),

(m′, i′) ∈ Q0 with i′ = i + kn, there is m0,m1, . . . ,mk such that m0 = m

and mk = m′ such that (mj , i + jn) ∈ Q0 for all j. We then have (m, i) =

(m0, i) ∼ (m1, i+n) ∼ · · · ∼ (mk, i+kn) = (m′, i′). Finally since lk +flk − l1 =

n − 1 + fn−1 − l1 ≥ n (using (1) and (3)), each equivalence class has at least

one member.

We now check the arrows are correct. First suppose fn−1 = 1, (and thus

l1 = 0). We claim there is an arrow vj → vj+1 for j = 0, 1, . . . , n− 2. For each

j, there is some (m, j) ∈ Q0. If additionally (m, j + 1) ∈ Q0, there is clearly an

arrow as required. Supposing (m, j + 1) 6∈ Q0, we must have j = lm + flm − 1,

and thus m < k (as using (1), lk + flk = fn−1 + n − 1 = n > j + 1). Then

we have lm+1 ≤ j using (2), and j + 1 ≤ lm+1 + flm+1 − 1 using (1), and thus

(m+ 1, j), (m+ 1, j+ 1) ∈ Q0, and there is an arrow vj → vj+1. It is clear there

are no other arrows (there is no arrow starting at vn−1 because (m,n) 6∈ Q for

all m since lk + flk − 1 = n− 1).

Now suppose that fn−1 > 1. We show that there is an arrow vj → vj+1 for

all j. We know that (m, j) ∈ Q0 for some m, and as above we can assume that

j = lm + flm − 1. Suppose m = k. Using (3) and (4), we have l1 ≤ fn−1 − 2 =

flk + lk − n − 1 = j − n, and using (1) and (4), j − n + 1 = lk + flk − n =

fn−1 − 1 ≤ f0 ≤ l1 + fl1 − 1, and thus (1, j − n), (1, j − n+ 1) ∈ Q0. If m < k,

then (m+ 1, j), (m+ 1, j + 1) ∈ Q0 as in the fn−1 = 1 case. Either way, there

is an arrow vj → vj+1.

The final thing to check is that IΣ is the correct ideal. Given i, let pi

be the path starting at i of shortest length which is not in Im η. We claim

length(pi) = fi, and thus IΣ coincides with the ideal given in Theorem 6.5.3.

Clearly there is a path of length d starting at vi in Im η if and only if there

exists (m, j) ∈ Q0 with j ≡ i mod n and (m, j + d) ∈ Q0.

If there exists m with lm ≤ i, then let m be the maximal such m. Then one

has (m, i) and (m, i+fi−1) in Q0 because lm ≤ i and i+fi−1 = lm +flm −1 by
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(1). Thus there is a path of length fi − 1 starting at vi in Im η, which is clearly

the longest possible. Otherwise, if there is no such m, then one has (k, i + n)

and (k, i + n + fi − 1) in Q0 because lk ≤ i + n is clear and i + fi + n − 1 =

f0 + n − 1 = fn−1 + n − 2 = lk + flk − 1, using (1) and (4). Again we have a

path of length fi − 1 starting at vi, which is clearly the longest possible.

This completes the proof of Theorem 6.5.4. It is possible to give the pre-

projective algebra of a Nakayama algebra as a quiver with relations. That is,

suppose A = KQ̇/I, where Q̇ is a quiver of type An or Ãn, and I is the ideal

generated by paths pj = aj1aj2 . . . ajnj
. It has been stated in Section 6.1 that

Π(Q,Σ) is a quotient of Π(Q̇) and it is reasonably straightforward to see that it

is the quotient generated by the paths µ such that πθ(µ) = 0, i.e. the paths µ

such that π(p) = 0 for all paths p such that η(p) = µ. It can be shown that (but

the proof is long and is omitted) that this quotient is the same as the quotient

by the paths pjk, where pjk = a∗jk . . . a
∗
j1aj1 . . . ajnj−k. We can illustrate it with

an example. Suppose Q̇ is the quiver

s s ssss- - - - -

@
@

@I

�
�

�0 51 2 3 4

a0

a1 a2 a3 a4 a5

and let I be the ideal generated by the paths a2a1 and a5a4a3a2. Then if Q is

the quiver

s s ssss- - - -

@
@

@I

�
�

�0 51′ 2′′ 3′′ 4′′

a0

a1 a′′3 a′′4 a5

s s ss- - -
1′′ 2′ 3′ 4′

a′4a2 a′3

and Σ is the pairing with Q′ (respectively Q′′) being the full subquiver of Q

consisting of the vertices marked with ′ (respectively ′′), we have QΣ = Q̇ and

IΣ = I. It is easy to see that if µ is any of the paths a2a1, a∗2a2, a∗1a
∗
2, a5a4a3a2,
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a∗5a5a4a3, a∗4a
∗
5a5a4, a∗3a

∗
4a

∗
5a5, a∗2a

∗
3a

∗
4a

∗
5, then πθ(µ) = 0. In each case there is

at most one path p of Q such that η(p) = µ, and then one has π(p) = 0. To

see that these are the only relations, one can in theory calculate the dimension

Π(A) (by constructing a basis), and show that it is the same as the dimension of

Π(Q,Σ) (which is known to be the direct sum of the indecomposable modules

for A), which in this case is 65. [Another way to calculate the dimension of

Π(Q,Σ) is to use the formula given after the statement of Main Lemma 2,

dim(Π(Q,Σ)) = dim(Π(Q)) − dim(Π(Q′)). The dimension of a preprojective

algebra of type An is 1
6n(n + 1)(n + 2), so dim(Π(Q)) = 56 + 20 = 76 and

dim(Π(Q′)) = 10 + 1 = 11, so the formula is satisfied].
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Appendix A

The Reduction Algorithm

Given a K-algebra A which is presented by generators and relations, it is desir-

able to obtain a standard form for the elements of A which is unique, i.e., two

elements of A are equal if and only if they have the same standard form. The

most obvious example of this is a basis for A, since then we can express the

elements of A uniquely as a linear combination of the basis elements. For some

algebras, however, it is not obvious how to construct a basis. This problem has

been considered many times before, e.g. in [4], [6], in settings far more general

than is necessary for our purposes. In this Appendix we simplify this material

so that we can more easily apply it to the algebras studied in this thesis.

A.1 Introduction

The following example illustrates the purpose of this Appendix.

Example A.1.1. Let A be the algebra

K〈b, c〉/(b3, c2, cb2c− cbcb− bcbc).

Can we find a basis for A? We write down a naive argument, which produces

an incorrect answer, then analyse what is wrong with it.

(1) A is spanned by the set of all words formed from b and c.

(2) Since b3 = c2 = 0, A is spanned by the set of all words formed from b, c

which do not include bbb or cc as a subword.
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(3) If w is a word containing cbbc as a subword (say w = ucbbcv), then

w = ucbcbv + ubcbcv since cb2c = cbcb + bcbc. We can repeat until we have

expressed w as a linear combination of words not including cbbc as a subword.

Hence A is spanned by the set of words not including bbb, cc or cbbc as a subword.

(4) Since we have used all relations, this is a basis for A.

Now whilst statements (1) and (2) are correct, the logic of (3) is flawed

because if w = cbbcbc then it reduces to cbcbbc+ bcbcbc and then if we attempt

to reduce cbcbbc we only end up where we started. This mistake might be

considered obvious but in a complicated situation it may not be so easy to see

whether such a statement is valid. There may be several statements involved in

a circular argument. Statement (4) is also clearly wrong since cbcbc = (cb2c −

bcbc)c = (cb2 − bcb)c2 = 0 so the set of irreducible words is not independent.

The idea of starting with a spanning set and obtaining equations which

enable us to reduce it is correct, but we need to formulate some rules which will

prevent such errors in logic from occurring. Explicitly we need to ensure that

1. There is no possibility of circular arguments such as that in (3).

2. There is a condition which can be used to guarantee that a set of irre-

ducible words is a basis.

In the following sections we describe a suitable algorithm which consists of

forming a sequence of improving ‘reduction systems’ from which we can find

spanning sets for A. Section A.2 defines reduction systems and shows why they

produce a spanning set for A. Section A.3 explains how a reduction system can

be modified into a ‘better’ one. Section A.4 tells us how we can determine when

we have have arrived at the best possible reduction system, one which leads to

a basis for A.

We describe the setup which is used throughout this appendix. Let A be

an algebra generated by X = {x1, . . . , xn} with relations R = {r1, . . . , rm}

(we assume that X and R are finite for simplicity). We write K〈X〉 for the

algebra K〈x1, x2, . . . , xn〉. Let W be the set of words formed from x1, . . . , xn,
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and denote the length of a word u by |u|. Let ≤ be a partial ordering on W

with the following properties:

(†) If u < v then rus < rvs for all r, s, u, v ∈ W.

(‡) ≤ has descending chain condition.

Note that in [4], a partial ordering satisfying (†) is called a semigroup partial

ordering. We are assuming (‡) so that all words will be ‘reduction finite’. Section

A.6 discusses some possible orderings of this type.

A.2 Reduction Systems

Definition A.2.1. [6] Let v ∈ K〈X〉. If there is a word v such that v = λv−z,

where z is a linear combination of words strictly less than v (with respect to ≤)

and λ is a nonzero scalar, then v is the leading word of v. If additionally λ = 1,

then v is said to be monic.

If ≤ is a total ordering then every nonzero element of K〈X〉 must have a

leading word, but otherwise there may be incomparable words.

Definition A.2.2. A reduction system for A = K〈X〉/IR is a set Ω ⊆ K〈X〉

of monic elements such that IΩ ⊆ IR. A reduction system Ω is full if IΩ = IR.

If v is the leading word of some v ∈ Ω, then we say v is an illegal word. Let WΩ

be the set of illegal words. We say a word is irreducible (with respect to Ω) if it

has no subword in WΩ, otherwise we say w is reducible. Let W irr
Ω be the set of

irreducible words.

If we choose an ordering which is sufficient to ensure the elements of R all

have leading words (e.g. a total ordering), then we can form a reduction system

by monicising the elements of R, that is, we divide an element by the coefficient

of its leading word. Clearly if we take Ω to be the set of all monicised elements of

R, then Ω is a full reduction system. If we only take a subset, then the reduction

system may not be full. We allow the possibility that a reduction system may not

be full because sometimes (e.g. Lemma 3.3.4) we are only interested in finding a
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spanning set for A, and it is convenient to ignore some of the relations. Clearly

A is a quotient of K〈X〉/IΩ, so a spanning set for K〈X〉/IΩ is a spanning set for

A. If Ω is a full reduction system then A = K〈X〉/IΩ, so any basis of K〈X〉/IΩ

is a basis of A.

Lemma A.2.3. If Ω is a reduction system then K〈X〉/IΩ (and hence A) is

spanned by the set of irreducible words.

Proof. Clearly K〈X〉/IΩ is spanned by the set of of words. We show that each

word in W \W irr
Ω can be expressed as a linear combination of words in W irr

Ω .

Supposing otherwise, we can choose such a word w1 ∈ W \ W irr
Ω which

cannot be so expressed. Since w1 6∈ W irr
Ω , w1 has an illegal subword v ∈ WΩ,

say w1 = rvs. Now there is an element v = v − z ∈ Ω, where z =
∑

j λjuj for

some scalars λj and words uj < v. Now

w1 − rzs = r(v − z)s = rvs ∈ IΩ,

and therefore

w1 = rzs =
∑

j

λjrujs,

as elements of K〈X〉/IΩ. We assumed that w1 cannot be expressed as a linear

combination of irreducible words, so some ruls 6∈ W irr
Ω . Let w2 = ruls. Now

ul < v so by (†), ruls < rvs, that is, w2 < w1. We repeat the same process with

w2, obtaining w3 < w2. Continuing, we obtain an infinite non stabilising chain

w1 ≥ w2 ≥ w3 ≥ . . .

contradicting (‡), and completing the proof.

The proof of the lemma leads us to the following definitions.

Definition A.2.4. Suppose w = rvs for some v ∈ Ω. Let z = v − v. We say

rzs is a single step reduction of w and write w 7→ rzs. Clearly we can extend

this definition in the obvious way to apply to any element of K〈X〉, not just

words. Namely, if y = λw + y′ for some y′ ∈ K〈X〉, then y 7→ λrzs + y′. If

157



y1 7→ y2 7→ . . . 7→ yk is a sequence of one or more single step reductions then

we say yk is a reduction of y1 and write y1 → yk. If additionally yk is a linear

combination of irreducible words (so cannot be reduced further), then we say

yk is a complete reduction of y1 and it is customary to write y1  yk.

Note that a single step reduction is just an addition of the element −rvs ∈ IΩ,

so if w → y, w = y as elements of K〈X〉/IΩ (and as elements of A).

We can now see what went wrong with Example A.1.1. In statement (2)

we were effectively working with the reduction system {b3, c2} which is fine,

but in order for statement (3) to make sense, we require the leading word of

cb2c− bcbc− cbcb to be cb2c. Namely, we would have to find some partial order

≤ on the set of words satisfying (†) and (‡) with cbbc > bcbc, cbcb. This is

impossible, as by (†) we must have both

(cbbc)bc > (cbcb)bc, cb(cbbc) > cb(bcbc).

So in order to get a full reduction system, we must make either bcbc or cbcb the

leading term (in both cases we can define an ordering suitable for this purpose).

A.3 Modifying reduction systems

Given a reduction system Ω, the above describes how we write a reducible

word w as a linear combination of irreducible words. However it may be the

case that forming a reduction system by monicising the relations does not give

a suitable set of irreducible words. In this case we wish to add some more

elements to the reduction system which will result in a smaller set of irreducible

words. Sometimes one may be able to see a suitable element by inspection,

but sometimes it may not be obvious. In this case we can use the ‘resolving’

method. It turns out that we can use the fact that the reduction system is not

suitable to improve it. We refer back to Example A.1.1 to illustrate this.

We gave the equation cbcbc = 0 to show that the set of irreducible words

was not independent (we ignore the fact that this isn’t a valid reduction system

because that is not relevant here). This equation was obtained by looking at
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the reductions of cb2c2. This has both cb2c and c2 as a subword, and so could

be reduced in two different ways,

(cb2c)c 7→ (cbcb− bcbc)c 7→ cbcbc,

and

cb2(c2) 7→ 0.

and so cbcbc = 0 as an element of K〈X〉/IΩ. This leads to the following defini-

tion.

Definition A.3.1. [4] Given a reduction system Ω, and a word w we can

resolve w, which means we compute all possible complete reductions of w. If all

complete reductions are equal then we say w is reduction unique.

If w is not reduction unique, then we have unequal elements w1, w2 ∈ K〈X〉

such that w  w1 and w  w2, and hence w1 − w2 ∈ IΩ. By multiplying

by a scalar (and refining the partial ordering if necessary) we can assume that

w1 − w2 is a monic element v, and let Ω′ = Ω ∪ {v}. The ideals IΩ′ and IΩ are

equal (since v ∈ IΩ) and so Ω′ is a reduction system. Clearly W irr
Ω′ ⊆ W irr

Ω , so

Ω′ is an ‘improved’ reduction system.

Lemma A.3.2. If all words are reduction unique then KW irr
Ω ∩ IΩ = {0}.

Proof. We claim that KW irr
Ω ∩ IΩ = {y : w y for some w ∈ IΩ}.

⊆ is trivial since any element of IΩ which is a linear combination of irre-

ducible words is already reduced.

For ⊇ we require that a reduction of an element of an element of IΩ is in IΩ.

This is clear since each single step reduction is just an addition of an element

of IΩ.

We also claim that each element of IΩ has a reduction to 0. This is true

because if x ∈ IΩ then x =
∑

i xi, where xi = rivisi = ri(vi − zi)si for some

vi ∈ Ω. Now each rivisi 7→ rizisi, so each xi  0, and so x 0. Now since all

words are reduction unique, this is the only possible complete reduction, so by

the first claim we have the result.
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Lemma A.3.3. [4, Theorem 1.2, (b) ⇒ (c)]. If Ω is full reduction system in

which all words are reduction unique, then W irr
Ω is a basis for A.

Proof. Suppose that some linear combination of irreducible words y is equal to

0 in A, i.e., y ∈ IR. Then y ∈ IΩ since Ω is a full reduction system. Now by

the previous lemma, y = 0, and so W irr
Ω is a linearly independent set. Since we

know it spans A, it is therefore a basis.

A.4 The Diamond Lemma

Definition A.4.1. [4] A word w is said to be minimally ambiguous if w = rst

for some words r, s, t which satisfy the following conditions.

(i) rs, st ∈ WΩ, with r, t having length at least 1,

(ii) s, rst ∈ WΩ.

In the first case we say w is an overlap ambiguity, in the second we say that w

is an inclusion ambiguity.

Lemma A.4.2. [4, Theorem 1.2, (a′) ⇒ (b))]. If Ω is a reduction system such

that all minimally ambiguous words are reduction unique, then all words are

reduction unique.

Proof. Assuming the conditions of the theorem are satisfied, we prove by in-

duction that any word w is reduction unique. Assume that all words less than

w are reduction unique. Let w = r1v1s1 where v1 ∈ WΩ is chosen so that if

w = r2v2s2 with v2 in WΩ then either |r1| > |r2| or |r1| = |r2| and |v2| ≥ |v1|.

Since v1 ∈WΩ, then there is v1 ∈ Ω such that v1 = v1−z1. Let y1 = r1z1s1.

Clearly w 7→ y1. By the induction hypothesis, y1  y for some unique y. We

want to show that if w  y′, then y′ = y. A reduction of w must start with

some single step reduction w 7→ y2. Suppose w = r2v2s2 and y2 = r2z2s2 where

v2 = v2 − z2 ∈ Ω and y2  y′.

We claim that y2  y, and this will complete the proof, since y2 is reduction

unique by the induction hypothesis, so y′ = y. By the choice of v1, we must

have one of the following cases.
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(1) |r1| ≥ |r2| + |v2|, so that v1 and v2 do not intersect.

In this situation we can write w = r2v2tv1s1 for some word t, and so we have

y1 = r2v2tz1s1 and y2 = r2z2tv1s1. We have y1 7→ r2z2tz1s1 (using the single

step reduction of v2), and since y1  y is unique, r2z2tz1s1  y. Now since

y2 7→ r2z2tz1s1 (using the single step reduction of v1), we see y2  y, as claimed.

(2) |r1| < |r2| + |v2| and |r1| + |v1| > |r2| + |v2| so that v1 and v2 overlap.

We can write w = r2rsts1 where rs = v2 and st = v1, so y1 = r2rz1s1 and

y2 = r2z2ts1. We know rst is reduction unique, since it is minimally ambiguous,

say rst  u. In particular, rst 7→ rz1, so rz1  u and similarly rst 7→ z2t, so

z2t u. We have y1 = r2rz1s1 → r2us1, so r2us1  y (since y1  y is unique).

Now y2 = r2z2ts1 → r2us1, and so y2  y, as claimed.

(3) |r1| < |r2| + |v2| and |r1| + |v1| ≤ |r2| + |v2| so that v2 includes v1.

This follows in the same way as the previous case, again using the fact that rst

is reduction unique since it is minimally ambiguous.

The proof can be illustrated with the following diagram.
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y1 y2
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only possible
reduction

single step
reduction

unique
reduction

For this reason this result is known as ‘The Diamond Lemma’.

Corollary A.4.3. If Ω is a full reduction system in which all minimally am-

biguous words are reduction unique, then W irr
Ω is a basis for A.

A.5 How this works in practice.

It is possible use the Diamond Lemma to formulate an algorithm which would

allow a computer to find bases in this way. However, there are problems with
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this, e.g.

1. It is not always obvious which ordering we should use without doing some

initial calculations. If an unsuitable ordering is chosen, then one may end up

with an unfeasibly large reduction system.

2. One may be able to spot suitable elements of a reduction system ‘by

inspection’, and not by resolving some ambiguity. This happens frequently in

the case where the algebra has invertible elements. It is sensible to use whatever

tools we have available, rather than restrict ourselves to one set of rules.

3. In some cases, we are only interested in showing an algebra is finite

dimensional, and so, instead of trying to find the best possible reduction system,

we can stop once the set of irreducible words becomes finite.

4. When dealing with an infinite class of algebras (e.g. when showing Λq(Q)

is finite dimensional for all quivers of type Dn), one needs an argument which

deals with all the cases.

So instead, we write out our proofs like this:

(1) Prove a set Ω is a reduction system.

This may be done by showing the elements of Ω lie in IR by a direct calculation,

or by the following step by step process.

(i) Set Ω0 = R with respect to some partial ordering ≤.

(ii) Given Ωi, we form Ωi+1 by finding some elements si1, . . . , sik ∈ IΩi
(usually

resolving some ambiguities in Ωi). Set Ωi+1 = Ωi ∪{si1, si2, . . . , sik} and repeat

(note that sometimes we may remove elements from Ωi before continuing).

If we are only interested in finding a spanning set for the algebra, then this

is sufficient. In the cases where we are trying to find a basis, we must prove (2)

and (3) which follow.

(2) Prove Ω is a full reduction system.

For this, we need only show that IR ⊆ IΩ, or equivalently each r ∈ IΩ for all

r ∈ R.

(3) Prove all minimally ambiguous words are reduction unique.

To do this, we list all minimally ambiguous words in order {w1, w2, . . . , wn}.
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Note that if w1, . . . , wk−1 have been shown to be reduction unique, then all words

below wk are reduction unique. So to show wk is reduction unique, we need to

consider all its single step reductions (usually only two), say xk1, . . . , xkm. Then

we find some y so that each xkj has a reduction to y. Since each xkj is reduction

unique, y is the unique reduction, and so wk is reduction unique.

Example A.5.1. We return to the example given at the start of this Appendix,

and show how the reduction algorithm works. Let A be the algebra

K〈b, c〉/IR,

where R is the set of elements {b3, c2, cb2c − cbcb− bcbc}. Can we find a basis

for A?

We must choose a suitable partial ordering on the set of words. This or-

dering must make either cbcb or bcbc the leading word as we have already seen

that we cannot make cb2c the leading word. The obvious ordering to use (see

the next section) is the length-lexographic ordering with b < c. We claim that

Ω = {b3, c2, cbcb−cb2c+bcbc, cb2cb2−bcb2cb+b2cb2c} is a full reduction system in

which all minimally ambiguous words are reduction unique and therefore the set

of irreducible words {1, b, c, b2, bc, cb, b2c, bcb, cb2, cbc, b2cb, bcb2, bcbc, cb2c, b2cb2,

b2cbc, bcb2c, cb2cb, b2cb2c, bcb2cb, cb2cbc, b2cb2cb, bcb2cbc, b2cb2cbc} is a basis for

A.

We first prove that Ω is a reduction system. We only need show that cb2cb2−

bcb2cb+ b2cb2c ∈ IR. This could be done in several ways, but the simplest is to

consider R as a reduction system. This has an ambiguity cbcb3. We resolve it:

cbc(b3) 7→ 0.

(cbcb)b2 7→ cb2cb2 − b(cbcb)b

7→ cb2cb2 − bcb2cb+ b2(cbcb)

7→ cb2cb2 − bcb2cb+ b2cb2c− (b3)cbc

7→ cb2cb2 − bcb2cb+ b2cb2c.

Equating the two reductions shows that cb2cb2 − bcb2cb+ b2cb2c ∈ IR.
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It is obvious that Ω is a full reduction system. We now show that all mini-

mally ambiguous words for Ω are reduction unique. Arranging them in order,

they are {c3, b4, b5, c2bcb, cbcb3, cbcbcb, cb2cb3, c2b2cb2, cbcb2cb2, cb2cb2cb2}. The

first three are clearly reduction unique.

(c2)bcb 7→ 0.

c(cbcb) 7→ (c2)b2c− (cbcb)c 7→ 0 − cb2(c2) + bcb(c2) 7→ 0.

cbc(b3) 7→ 0.

(cbcb)b2 7→ (cb2cb2) − b(cbcb)b 7→ bcb2cb− b2cb2c− bcb2cb+ b2(cbcb)

7→ −b2cb2c+ b2cb2c− (b3)cbc 7→ 0.

(cbcb)cb 7→ cb2(c2)b− bcb(c2)b 7→ 0.

cb(cbcb) 7→ (cbcb)bc− cb2cbc 7→ −b(cbcb)c 7→ −bcb2(c2) + b2cb(c2) 7→ 0.

cb2c(b3) 7→ 0.

(cb2cb2)b 7→ b(cb2cb2) − b2cb2cb 7→ (b3)cb2c 7→ 0.

(c2)b2cb2 7→ 0.

c(cb2cb2) 7→ (cbcb)bcb− cb2cb2c 7→ cb2(cbcb) − b(cbcbcb) − cb2cb2c

7→ cb2cb2c− c(b3)cbc− cb2cb2c 7→ 0.
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cb(cb2cb2) 7→ cb2cb2cb− c(b3)cb2c 7→ cb2cb2cb.

(cbcb)bcb2 7→ cb2(cbcb)b− b(cbcbcb)b 7→ cb2cb2cb− c(b3)cbcb

7→ cb2cb2cb.

cb2(cb2cb2) 7→ cb3cb2cb− cb4cb2c 7→ 0.

(cb2cb2)cb2 7→ bcb2(cbcb)b− b2cb2(c2)b2 7→ b(cb2cb2)cb− bc(b3)cbcb

7→ b2cb2(cbcb) − (b3)cb2c2b 7→ b2(cb2cb2)c− b2c(b3)cbc

7→ (b3)cb2cbc− b4cb2(c2) 7→ 0.

A.6 Orderings for reduction systems

In this section we discuss some orderings which satisfy (†) and (‡), so are suitable

for reduction systems. We start with the two most obvious examples.

Definition A.6.1. The length ordering, ≤len is defined by

u ≤len v if and only if |u| < |v| or u = v.

Given a letter a, define |w|a to be total number of occurrences of the letter a in

w. The a-degree ordering ≤a is defined by

u ≤a v if and only if |u|a < |v|a or u = v.

It is clear that these orderings satisfy (†) and (‡). In fact they satisfy a

stronger version of (†), namely, u < v if and only if rus < rvs. From now

on, when we refer to (†), we mean this stronger property. We can combine

orderings which satisfy (†) and (‡) in the following way to produce some more

refined orderings satisfying (†) and (‡).

Definition A.6.2. Given two partial orderings ≤∗, ≤∗∗, we define the following

combination ordering, ≤∗,∗∗ by

u ≤∗,∗∗ v if and only if u ≤∗ v or u 6≤∗ v and v 6≤∗ u and u ≤∗∗ v
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In other words, to compare u and v we first examine them under the ≤∗

ordering. Only if they are incomparable do we then try the ≤∗∗ ordering. For

example, let u = aaca, v = bbca, w = cabbab. Some relations are v ≤len,a u,

w ≤a,len u, u ≤len,a w. The last two show that ≤∗,∗∗ is in general not the same

as ≤∗∗,∗.

Lemma A.6.3. If ≤∗, ≤∗∗ satisfy (†) and (‡), then so does ≤∗,∗∗.

Proof. Denote ≤∗,∗∗ by ≤. We need to show that for all r, s, u, v,

u < v if and only if rus < rvs.

There are three ways u and v can be related with respect to ≤∗. We check

this statement for each case. If u <∗ v then rus <∗ rvs by (†) for ≤∗ and

the statement follows since both sides are true. If v <∗ u, then rvs <∗ rus

and the statement follows since both sides are false. So suppose that u and v

are incomparable with respect to ≤∗. The left hand side is true if and only if

u <∗∗ v which is true if and only if rus <∗∗ rvs (using (†) for ≤∗∗), which is

true if and only if rus < rvs. The last part is true because rus and rvs are

incomparable (using (†) for ≤∗).

To check (‡) is satisfied, we let

u1 ≥ u2 ≥ u3 ≥ . . .

be an infinite non stabilising descending chain for ≤. Define a sequence of

integers in inductively by i0 = 1 and in+1 to be the least integer satisfying

uin+1 < uin
. The sequence must be infinite for if in is the last member then

uin
≥∗∗ uin+1 ≥∗∗ uin+2 ≥∗∗ . . .

is an infinite non stabilising descending chain for ≤∗∗. However we now have an

infinite descending chain for ≤∗, namely

ui0 ≥∗ ui1 ≥∗ ui2 ≥∗ . . .

which is a contradiction.
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Sometimes it is possible that no such combination of the length and degree

orderings will give a sufficiently refined ordering. If two words have the same

number of occurrences of each letter (and so are the same length), then they are

incomparable under the length and degree ordering (and so are incomparable

under any combination of them). So if a relation involves two or more such

words (as in Example A.1.1), then in order to write the relation into standard

reduction form, it is necessary to introduce another way to compare words.

One example is the (left) lexographic ordering. First one chooses a total

ordering ≤ on the letters and then define

u ≤lex v if and only if u = v or u = rbs and v = rct where b < c.

This does not satisfy (‡), since c ≥ bc ≥ b2c ≥ . . . is an infinite non stabilising

descending chain. Instead one will generally use the length-lexographic ordering

≤len,lex. This is a total ordering, so this would always be sufficient to write all

equations in standard reduction form.

In some cases, the length-lexographic ordering is not suitable, and instead

we use more complicated base ordering, defined below.

Let u be a word, and let a, b be letters, and let i be an integer between 0

and |u|b. Let fa,b
i (u) be the number of occurrences of a between the i-th b and

the i+ 1-th b (counting from the left). For example, if u = acbaaccabbcaa, then

fa,b
0 (u) = 1, fa,b

1 (u) = 3, fa,b
2 (u) = 0, fa,b

3 (u) = 2. Let m > 0 be an integer.

Define

ga,b
m (u) =

|u|b∑

i=0

fa,b
i mi

So for the word above, ga,b
m (u) = 1 + 3m+ 2m3.

Lemma A.6.4. For all words u, v

ga,b
m (uv) = ga,b

m (u) +m|u|bga,b
m (v).
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Proof. For simplicity write fi and g instead of fa,b
i , ga,b

m .

g(uv) =

|uv|b∑

i=0

fi(uv)mi

=

|u|b−1∑

i=0

fi(uv)mi + f|u|b(uv)m|u|b +

|uv|b∑

i=|u|b+1

fi(uv)mi

= g(u) − f|u|b(u)m|u|b + f|u|b(uv)m|u|b +m|u|b

|u|b∑

j=1

fj(v)mj

= g(u) + f0(v)m|u|b +m|u|b

|v|b∑

j=1

fj(v)mj

= g(u) +m|u|bg(v).

Definition A.6.5. Define the base ordering, ≤(a,b;m) by

u ≤(a,b;m) v if and only if gm
a,b(u) < gm

a,b(v) or u = v.

Lemma A.6.6. The ordering ≤b,(a,b;m) satisfies (†) and (‡).

Proof. Write ≤ for ≤b,(a,b;m). It is clearly a partial order with satisfying (‡).

Clearly (†) is satisfied in the case that |u|b 6= |v|b. So suppose |u|b = |v|b. Using

the previous lemma,

gm
a,b(rus) = gm

a,b(r) +m|r|bgm
a,b(u) +m|ru|bgm

a,b(s),

gm
a,b(rvs) = gm

a,b(r) +m|r|bgm
a,b(v) +m|rv|bgm

a,b(s).

Since |ru|b = |rv|b, gm
a,b(rvs) − gm

a,b(rus) = m|r|b(gm
a,b(v) − gm

a,b(u)). Now

rus < rvs ⇔ gm
a,b(rvs) − gm

a,b(rus) > 0,

⇔ m|r|b(gm
a,b(v) − gm

a,b(u)) > 0,

⇔ gm
a,b(v) − gm

a,b(u) > 0,

⇔ u < v.

So ≤(a,b;m) satisfies (†), and therefore so does ≤b,(a,b;m).
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