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Abstract

In this thesis, we investigate two ways of generalising the preprojective algebra.

First, we introduce the multiplicative preprojective algebra, A%(Q), which
is a multiplicative analogue of the deformed preprojective algebra, introduced
by Crawley-Boevey and Holland. The special case ¢ = 1 is the undeformed
multiplicative preprojective algebra, which is an analogue of the ordinary (un-
deformed) preprojective algebra. We adapt the middle convolution operation
of Dettweiler and Reiter to construct reflection functors, which are used to de-
termine the possible dimension vectors of simple modules for A?(Q). We show
that A4(Q) is finite dimensional if @ is Dynkin, and that e;A*(Q)e; is a com-
mutative integral domain of Krull dimension 2 if @) is extended Dynkin with
1 an extending vertex. The proofs of these results depend on applying the re-
duction algorithm as described by Bergman, which is recalled in the appendix.
We conjecture that the undeformed multiplicative preprojective algebra is a
‘preprojective algebra’ in the sense of Gelfand and Ponomarev, in that as a
K Q-module, it is isomorphic to the direct sum of the indecomposable prepro-
jective K @-modules.

Second, we extend the notion of a preprojective algebra of a quiver to the
notion of a preprojective algebra for a quiver with relations. Our results show
that for any Nakayama algebra A, there exists an algebra P(A) such that P(A)

is isomorphic to the direct sum of all indecomposable A-modules.
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Chapter 1

Introduction

1.1 Background

In recent decades, the representation theory of quivers has played a fundamental
role in the theory of finite dimensional algebras. The first major result was ob-
tained by Gabriel [17], when he showed that the indecomposable representations
of Dynkin quivers were in correspondence with the root systems of the corre-
sponding Lie algebra (this was generalised to all quivers by Kac [21]). Thus the
only quivers with finitely many indecomposable representations are the Dynkin
quivers. A number of techniques for studying quiver representations were devel-
oped in the 1970’s, including the reflection functors of Bernstein, Gelfand and
Ponomarev, Coxeter functors and the Auslander-Reiten translation.

The notion of a preprojective algebra was introduced by Gelfand and Pono-
marev [18]. Their aim was to construct an algebra which contains the path
algebra as a subalgebra and is isomorphic to the direct sum of the indecompos-
able preprojective modules for the path algebra, and thus one easily obtains the
indecomposable representations of the quiver. This work was subsequently gen-
eralised by Dlab and Ringel [14]. Preprojective algebras had many connections
with the known tools of representation theory. For example they had been used
implicitly in work by Riedtmann on Coxeter functors [26], and the definition of
the preprojective algebra involves relations resembling the mesh relations of the

Auslander-Reiten quiver. Indeed later, an alternative definition was proposed



by Baer, Geigle and Lenzing [3], which defined the preprojective algebra directly
in terms the Auslander-Reiten translate. It was eventually proved by Ringel [28]
that the two definitions were the same, although this had always been generally
accepted.

Besides being used to study representations of quivers, the preprojective
algebra was found to appear naturally in a wide variety of situations. These
applications include work by Lusztig on quantum groups [23], [24], Kronheimer’s
work on differential geometry [22], and in particular Kleinian singularities. In
order to study deformations of Kleinian singularities, the deformed preprojective
algebra was introduced by Crawley-Boevey and Holland [10].

More recently, the deformed preprojective algebra was used by Crawley-
Boevey [9] to solve the additive Deligne-Simpson problem, which asks for so-
lutions to equations involving sums of matrices. This problem has connections
with Fuchsian systems of ordinary differential equations.

The aim of this thesis is to investigate the question, “Is it possible to ‘gener-
alise’ the notion of a preprojective algebra?”. Of course, this question is rather
vague, as ‘generalise’ has at least two different meanings in this context. One
can form algebras closely related to preprojective algebras by using similar con-
structions (e.g. by taking a quotient of the path algebra of the double of the
quiver by a similar relation). In particular, we look for a multiplicative analogue
of the deformed preprojective algebra which can be applied to study the multi-
plicative Deligne-Simpson problem. Alternatively, one can seek a preprojective
algebra for a quiver with relations in the spirit of Gelfand and Ponomarev,
namely, construct an algebra which contains the path algebra modulo the rela-
tions as a subalgebra, and decomposes as a direct sum of the indecomposable

‘preprojective’ modules for this algebra.

1.2 Basic definitions

In this section, we give a brief overview of quivers, representations and root

systems, introducing the notation which will be used, and stating some well



known results. First we state some conventions. Throughout, K denotes an al-
gebraically closed field. An algebra is a K-vector space equipped with a bilinear
associative product, and is always assumed to have an identity element. Mod-
ules will typically be left modules, and are usually finite dimensional. Functions
are always written on the left, so that ¢ means ‘first apply ¢, then 6’. If r is an
element of an algebra, then I, denotes the ideal generated by r, and similarly

if R is a set of elements or relations, then Iy denotes the ideal generated by R.

Quivers. A quiver Q = (Qo, Q1, h,t) consists of a set Qg of vertices, a set
@1 of arrows, and functions t,h : Q1 — Qgo. For each a € @1, the vertices
t(a), h(a) are called the tail and head of a respectively (alternatively start/end
or initial/terminal vertex etc.). We assume that the sets Qo, Q1 are finite. The
underlying graph of @ is the graph obtained by ‘forgetting’ the orientation. If v
is a vertex such that no arrow starts (ends) at v, then v is called a sink (source).
A quiver is bipartite if every vertex is a source or a sink. Quivers are typically
given as diagrams, with vertices represented by dots, and arrows pointing from

the tail to the head, e.g.

[ ]
NN )
w

A path of @ of length n is a word a, ...a; where each a; € Q1 and h(a;) =
t(ai41) for i =1,...,n — 1. Additionally for each v € Qg there is a trivial path
of length zero denoted by e,. For a path p, define h(p), t(p) by h(e,) = t(e,) = v
for trivial paths and t(ay, ...a1) = t(a1), h(ay ...a1) = h(a,). An oriented cycle
of a quiver is a non trivial path with h(p) = ¢(p). In the above quiver, the paths

are eq, es, €3, €4, €5, a, b, ¢, d, ba, cb, db, cba, dba, and there are no oriented cycles.

Path algebras. Given a quiver @), there is a path algebra K@, which is the



algebra whose basis is the set of paths of ), and the multiplication of paths p;
and ps is defined to be the concatenation pips if h(p2) = t(p1), and zero oth-
erwise. This can easily be seen to be an associative product, and the element
Zver ey is the identity. The (e,)veq, are a complete set of primitive orthog-
onal idempotents. It is easy to see that the path algebra is finite dimensional if
and only if there are no oriented cycles in ). The path algebra of the example
quiver is 14 dimensional, and some examples of products are a.e; = a, e¢1.a = 0,

d.b=db, d.c =0 etc.

Representations. A representation X of a quiver @ is given by a vector
space X, for each v € Qg and a linear map X, : Xy,) — Xp(q) for each a € Q1.
The dimension vector of X, is dimX = (dim X, )veq,. The support of X is the
set {v € Qo : X, # 0}. The following diagram indicates a representation of the

example quiver of dimension vector (1,2,2,1,1).

There is an equivalence between the category of K@Q-modules and the cat-
egory of representations of (). Given a left K@Q-module M, we define a repre-
sentation X by setting X, = e, M for each v € Qq, and if a : v1 — vy is an
arrow, X, : X,, — X,, is the map which takes m € e,, M to am € e,, M.
Conversely if X is a representation of @), there is a module M = ¢X,, where
e, acts as the projection onto X, and a : v; — v acts as the composition

M = X, 2% X,, < M.

More generally, one can speak of representations of quivers with relations.
Namely, suppose R = {r1,r2,...,r} is a set of elements of K@ such that for

each i there are vertices u;, v; with 7; € e, KQe,,, and let A = KQ/Ig. Given



a representation of (), one may consider the linear map X; : X,, — Xy, ob-
tained from the expression of r; by replacing each arrow a by X,, and each e,
by the identity map 1x,. One can identify the category of A-modules with the
category of representations of () in which the linear maps satisfy the relations

X,; =0 for all 7.

Roots. The Ringel form for a quiver @ is the bilinear form

(o, B) = Z ay By — Z Ah(a)Bt(a)-

vEQRoD aceQ1
This gives rise to the symmetric bilinear form (—, —) defined by («, 8) = (o, 3)+
(B, ), and a quadratic form ¢ defined by ¢(a) = (o, ).
If v is a loopfree vertex of @, there is a reflection s; : Z¢0 — ZQ0 defined by
sy(@) = a—(a, €,)€,, where €, is the coordinate vector at v. The Weyl group W
is the subgroup of Aut(Z®?°) generated by the s, and the fundamental region

is the set
F ={a e N% :q+#0,a has connected support and (a, €,) < 0 for all v}.

The real roots for Q are the orbits of €, under W, and the imaginary roots are
the elements of the form +wa, where a € F', w € W and a root is a real root or
an imaginary root. It can be shown that if « is a root then either « is positive
(o € N¥0) or negative (—a € N@0).

Observe that ¢(s,(a)) = ¢(«), and so if « is a real root, then ¢(a) = 1, and

if o is an imaginary root, then g(a) < 0.

Dynkin quivers and extended Dynkin quivers. The extended Dynkin
quivers are the quivers whose underlying graph is one of the following graphs,
where the number of vertices is the subscript plus one. In each case, we mark

a dimension vector § by writing an integer ¢, instead of a dot to represent a



vertex.

A'runzo 1 1 e 1 1

1 1
1
Fy 2
1 2 3 2 1
~ 2
E 7 ‘
1 2 3 4 3 2 1
Fy 3

The vertices v for which §, = 1 are called extending vertices. A Dynkin quiver
is a quiver which can be obtained from an extended Dynkin quiver by removing

an extending vertex.



For all Dynkin quivers, it can be shown that the quadratic form is pos-
itive definite, and thus all roots (of which there are finitely many) are real.
For extended Dynkin quivers, the quadratic form is positive semi-definite, and
q(a) = 0 if and only if « is a multiple of §. Thus the imaginary roots are the
multiples of 4, and the remaining roots (of which there are infinitely many) are

real.

Theorem 1.2.1. [21] For a loopfree quiver @, there is an indecomposable rep-
resentation of QQ with dimension vector « if and only if o is a positive root. If
« s a positive real root, the indecomposable representation is unique up to iso-
morphism. If « is a positive imaginary root, there are infinitely many pairwise

non-isomorphic modules of dimension vector «.

Representation type. An algebra has finite representation type if there
are only finitely many isomorphism classes of indecomposable modules (other-
wise, it has infinite representation type). From the above, it is evident that a
path algebra K@ has finite representation type if and only if @ is a Dynkin

quiver, a theorem originally due to Gabriel.

Preprojective Modules. For a finite dimensional algebra A, there exist
several competing definitions of a preprojective module. In the case where A is
the path algebra K(Q of a quiver, these definitions coincide with the following
definition, which uses the Auslander-Reiten translate 7 and its inverse 7~ (it can
be shown that 7(M) = D Exty.o (M, KQ) and 7~ (M) = Extyq (DM, KQ)).
An indecomposable module M for A is preprojective (respectively preinjective)
if 77(M) = 0 (respectively if 7="(M) = 0) for some positive integer n. If
T"(M) # 0 for all n € Z then M is regular. If K@ has finite representation type
then all its modules are preprojective and preinjective. If it has infinite repre-
sentation type, then the isomorphism classes of indecomposable preprojective
modules and indecomposable preinjective modules are disjoint and there are an
infinite number of each, as well as an infinite number of isomorphism classes of

indecomposable regular modules.



Only in Chapter 6 of this thesis does the definition in general become rel-
evant, and then only in the finite type case. We use the definition given by
Auslander and Smalg, [2], which for finite type algebras means all modules are

preprojective and preinjective.

1.3 Preprojective algebras

In this section, we define the preprojective algebra, and state some well known

results.

Definition 1.3.1. Given a quiver @, the double of Q, denoted by Q, is defined
to be the quiver obtained by adjoining a reverse arrow a* for each arrow a of
Q with h(a*) = t(a) and t(a*) = h(a). We extend the operation a — a* into
an involution on the arrows of @, by defining (a*)* = a. We define a function
€:Q, — {-1,1} by
(a) = {1 %fa €0,
-1 ifa* € Q.

There is a grading on KQ defined by assigning trivial paths degree 0, and
the arrows degree 1, which we call the unoriented grading. Alternatively, one
may assign the trivial paths and elements of @; degree 0, and the elements of
@7 degree 1, and this gives rise to an oriented grading. We typically work with
the oriented grading.

Definition 1.3.2. Given a quiver Q, the preprojective algebra T1(Q) is defined
to be the algebra KQ/I,, where
p= Z e(a)aa™.
ae@l
The two gradings on K@Q both induce a grading on II(Q), since in either

case p is a homogeneous element.

Definition 1.3.3. Let P(A) be an algebra with a finite dimensional subalgebra

A. P(A) satisfies the preprojective property for A if, as a left (right) A-module,

PA) = P M

MeZ



where Z is a set of indecomposable representatives for the category of prepro-
jective left (right) A-modules (i.e. Z contains exactly one module from each

isomorphism class of indecomposable preprojective modules).

Theorem 1.3.4. If Q has no oriented cycles, then II(Q) has the preprojective
property for KQ.

Thus it follows quickly from Gabriel’s theorem that II(Q) is finite dimen-
sional if and only if @ is a Dynkin quiver. Note that II(Q) is not necessarily the
only algebra which satisfies Theorem 1.3.4. For example, with p' = Zae@ aa*,
one could define the algebra KQ/I »» which would also satisfy the preprojec-
tive property, and is only known to be isomorphic to the ordinary preprojective
algebra if the quiver is bipartite.

An alternative definition of the preprojective algebra was given by Baer,
Geigle and Lenzing [3]. This is not important for the purposes of this thesis,
but is given for completion, and it also helps understand why the preprojective
algebra has the preprojective property. Given a ring A and an A — A—bimodule
M, let T4(M) be the tensor algebra, which is defined as

Ta(M) =P M*,
i>0
where M®? denotes the i-fold tensor power of M, with M®° = A. The product
of z € M® and y € M®/, is defined to be z ® y € M®(+J), One can then
define II(Q) = Trq(7~ (KQ)). This algebra has a natural grading, where the
elements of M®? are in degree i. This definition is equivalent to Definition 1.3.2,
(see [28]), and the grading coincides with the oriented grading.

If @ is extended Dynkin, then II(Q) has many interesting properties which
are given in [3]. There is also the following nice description of the ring e1I1(Q)eq
where 1 is an extending vertex. This follows from work by Cassens and Slodowy,
[7] and shows the connection of preprojective algebras to Kleinian singularities.
The equations below are not the traditional equations associated to the Kleinian
singularities (but can be shown to be equivalent after a simple change of vari-

ables), but are written in this way for later comparison.



Theorem 1.3.5. If QQ is extended Dynkin and 1 is an extending vertex, then

elll(Q)e1 is a commutative algebra. More precisely,
elll(Q)e; 2 K[X,Y, Z]/J,
where J is the ideal generated by

VAR 'e e if Q type fln,
Z? - XY? - X™Y if Q type Doy,
22— XY?+ X™Z  if Q type Do,
Z2+X2Z+Y® i Q type Es,
Z2+Y3+ XY if Q type B,

Z2—y3 - X° if Q type Fx.

In order to study deformations of Kleinian singularities, Crawley-Boevey and

Holland introduced the following generalisation of the preprojective algebra.

Definition 1.3.6. [10] Given a quiver @ and a weight A € K%, the deformed
preprojective algebra TI*(Q) is defined to be the algebra K@/Ipx, where p* is

the element

Z e(a)aa® — Z Ap€y.

aeél vEQo

Clearly, the preprojective algebra is the special case A = 0.

Note that the ideal I,» is the same as the ideal generated by the elements

pﬁzevp)‘ev: E aa® — g a*a — \yeyp.

a€Q1 a€Q
h(a)=v t(a)=v

This is helpful when considering representations of I1*(Q), as they can be iden-
tified with representations of @) in which the linear maps satisfy the following
relation at each vertex v € Q.

> OXaX;— Y XiXa—Mlx, =0.

a€@Q1 a€Q
h(a)=v t(a)=v

10



The following lemma is easy, but it is helpful to write out a proof, for later

reference.
Lemma 1.3.7. I1N(Q) is independent of the orientation of Q.

Proof. Suppose Q' is obtained from @ by removing an arrow b and replacing it
with an arrow ¢ satisfying t(c) = h(b), h(c) = t(b). There is an isomorphism
0 : KQ — KQ' which sends each e, to ey, b to —c*, b* to ¢ and each remaining

arrow to itself. Now

0 Z e(a)aa® — Z Avey = e(a)aa™ — c*c+ cc* — Z Avey

a€Q, vEQo a€Q, vEQq
a#b,b*
= Z e(a)aa™ — Z Ay €y,
acQy veQq
and so 6 induces an isomorphism IT(Q) — I (Q"). O

Some important properties of deformed preprojective algebras are given in
[10] and [8]. In the remainder of this section we recall those which are of

particular interest for this thesis.
Theorem 1.3.8. [10] If Q is a Dynkin diagram, then IT1* is finite dimensional.

An important tool for studying the representations of deformed preprojective
algebras are reflection functors. Given a loopfree vertex v € @, define r, :
K@ — K% as (1,(A)u = A — (€0, €u)Ap. This reflection is dual to the

reflection s,, namely, A.s,(«) = r,(A).a, where .o = > Ay Qy.

vEQo

Theorem 1.3.9. [10] If v is a loopfree vertex of Q with A, # 0 there is an
equivalence E, from the category of representations of II* to the category of

representations of II"™*N) which acts as s, on dimension vectors.

Theorem 1.3.10. /8] There is a simple representation of 1IN of dimension
vector v if and only if o is a positive Toot, A.a = 0, and p(a) = >_p(G;) for
any decomposition « = > ; as a sum of two or more positive Toots with each

A.Gi =0 (where p(a) =1 — gq(a)).

11



This classification of the simple modules is used in [9] to solve the additive

Deligne-Simpson problem.

1.4 Main results and thesis layout

As already stated, the aim of this thesis is to generalise the preprojective algebra,
by answering the questions “Is there a multiplicative analogue of the deformed
preprojective algebra?”, and “Given an algebra A presented by a quiver with re-
lations, is it possible to define an algebra P(A) which satisfies Theorem 1.3.47”.
Of the two questions, we were more successful with the first, and most of the
thesis (Chapters 2,3,4,5) is concerned with the definition and properties of these
algebras. Many of the results of these chapters can be described as the multi-
plicative analogue of a known result for the ordinary preprojective algebra (that
is, we replace II by A, A by ¢, and the condition that A.ae = 0 by ¢© = 1). For
the second question, we were able to define a ‘preprojective algebra’ for a quiver

with certain types of relations. We now describe our main results in more detail.

Chapter 2 is concerned with the definition of the multiplicative preprojective
algebra, and its properties in the general case. This material (other than Section
2.2) is due to be published in [11], where it is used to give a partial solution to
the Deligne-Simpson problem. Given a quiver @ equipped with an ordering <
on the arrows, and an element g € (K*)?0, we define an algebra A?(Q, <). The

first main result is the following theorem.

Theorem 2.1.3. A%(Q, <) is independent of the orientation of Q and the or-

dering <.

Thus we can write A?(Q) instead of A%(Q, <) (and in the special case of
the undeformed multiplicative preprojective algebra, where ¢, = 1 for all v, we
write AY(Q)). In Section 2.2 we investigate whether AY(Q) can be defined as a
quotient of K@, which would be easier than using the given definition (which
involves localising certain elements of K Q). In [11], it was shown that this is the

case for star-shaped quivers (which was the only case necessary for the purpose

12



of solving the Deligne-Simpson problem). This is still yet to be fully understood,
but we have obtained some further results. In Section 2.3, we adapt work of
Dettweiler and Reiter [12] to obtain the following multiplicative analogue of
Theorem 1.3.9, thus showing that reflection functors also exist for multiplicative
preprojective algebras. Let t, : (K*)?0 — (K*)?° be the reflection given by
to(q)u = quq;(éu’e”). This is dual to the s, as (t,(q))® = ¢%(®), where ¢® =

Hver qg"-

Theorem 2.3.1. If v is a loopfree vertex of Q with g, # 1, there is an equiva-
lence E,, from the category of representations of A1(Q) to the category of repre-

sentations of A9 (Q) which acts as s, on dimension vectors.
In Section 2.4 we use reflection functors to prove the following results.

Theorem 2.4.4. If X is a simple representation of A1(Q) of dimension vector

«, then « is a positive Toot for Q.

Theorem 2.4.5. Let o be a positive real root for QQ. There is a simple rep-
resentation of A1(Q) of dimension vector « if and only if ¢* = 1 and there is
no decomposition « = > 3; as a sum of two or more positive roots with each

@ =1.

These results give evidence towards the truth of the following conjecture,
which if true would be the multiplicative analogue of Theorem 1.3.10. The
truth of this conjecture would lead to a solution of the multiplicative Deligne-

Simpson problem, see [11] for more details, and a proof of one implication.

Conjecture 2.4.1. There is a simple representation of AY(Q) of dimension
vector « if and only if « is a positive root, ¢* = 1 and p(a) = > p(B;) for
any decomposition o = §; as a sum of two or more positive roots with each

qﬁi - 1.

In chapters 3 and 4 we move on to considering the properties of multiplicative

preprojective algebras in the Dynkin and extended Dynkin case respectively.

13



The main results of these chapters are following two theorems, the multiplicative

analogues of Theorems 1.3.8 and 1.3.5 respectively.
Theorem 3.1.1. If Q is a Dynkin quiver, then A%(Q) is finite dimensional.

Theorem 4.1.1. If Q is extended Dynkin and 1 is an extending vertex, then

e1AY(Q)ey is a commutative algebra. More precisely,
eiA (Q)er 2 K[X,Y, Z]/J,
where J is the ideal generated by

Z" L XY + XY Z if Q type A,

Z° —pn(X)XZ 4+ pp1(X)XPY = XY? - XY Z if Q type D,
2+ X*Z+YP-XYZ  ifQ type Eg,

Z24+Y3 4+ XY - XYZ if Q type Fr,

Z2-Y3 - XS4+ XYZ if Q type F,

where k = n—4, and the py, are polynomials defined inductively by p_1(X) = —1,
po(X) =0 and pi41(X) = X(pi(X) + pi—1(X)) fori>1.

Unfortunately the proofs of these results involve a case by case analysis, and
are therefore quite long. It would certainly be desirable to obtain shorter proofs.

At the end of each of these chapters, we include a short section on open problems.

In Chapter 5, we investigate some further open questions regarding multi-
plicative preprojective algebras, in particular whether A'(Q) is a ‘preprojective
algebra’ in the sense of satisfying Theorem 1.3.4. If this was true in general
then it would perhaps lead to a better understanding (and easier proofs) of the
results of Chapters 3 and 4. We show that the conjecture is true for some small

examples, as well as in the easiest infinite type case.

Theorem 5.1.4. Let () be the quiver
b

e——3e

1 a 2

14



AY(Q) has the preprojective property for KQ.

We also consider whether A'(Q) and II(Q) could be isomorphic as algebras,

and list some other interesting questions.

In Chapter 6, we consider the second interpretation of our initial question.
In Section 6.1, we define what is meant by a ‘pairing’, and show that if @ is a
quiver equipped with a pairing ¥, then it gives rise to a quiver Q*, an ideal I>

in the path algebra KQ*, and an algebra I1(Q, X).

Conjecture 6.2.3. If ¥ is an ‘end pairing’, and A = KQ¥/I* has finite
representation type, then we conjecture that 11(Q,X) satisfies the preprojective

property for A.

For a certain type of end pairing, we can prove this conjecture (which is
Theorem 6.2.4). This is done in Sections 6.2-6.4. In Section 6.5 we prove the

following result, which could be said to be the main result of this chapter.

Theorem 6.5.4. If A is a Nakayama algebra, then there is a quiver QQ and a
pairing ¥ satisfying the conditions of Theorem 6.2.4 such that A = KQ¥/I*,
and thus TI(Q, X)) is an algebra satisfying the preprojective property for A.

It had been hoped that this chapter would lead to slightly better results. For
example, it would be desirable to obtain some results in the case where A has in-
finite representation type, but none of our results apply to this case. It had even
been hoped that one could show that preprojective algebras exist for any finite
dimensional algebra, but we have a counterexample to show the conjecture is not

true if we replaced ‘end pairing’ by ‘pairing’, thus suggesting this is not the case.

Finally, in the appendix, we discuss the ‘reduction algorithm’, which enables
us to find spanning sets (or even bases) for algebras presented by generators
with relations. None of this material is new (the main reference is [4]), but it is

helpful for understanding the proofs in Chapters 3 and 4.
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Chapter 2

The Multiplicative
preprojective algebra

The material in this chapter (except for Section 2.2) appears in [11]. Our aim
is to develop a multiplicative analogue of the deformed preprojective algebra.
After giving a definition in Section 2.1, we explore whether we can give a sim-
pler definition (Section 2.2). We then develop the theory of reflection functors
(Section 2.3), which we use in Section 2.4 to give some conditions regarding the
existence of simple modules.

The study of properties of the algebra for the Dynkin and extended Dynkin

case is reserved for later chapters.

2.1 Definition

Let Q be a quiver, with vertex set Qo, and let ¢ € (K*)?°. We define € : Q; —
{—1,1} as in Definition 1.3.1. Choose an ordering < on the set of arrows in
@, and label the arrows as a; so that a1 < as < --- < a,. Given an algebra

homomorphism 6 : KQ — A, we consider the properties (1) and (7).

(1) 0(1 + a;a;) is invertible in A for all .
@ T1O0+aa) @ = 3 bge.).
=1 VEQQ

Definition 2.1.1. [11] The multiplicative preprojective algebra is defined to
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be the algebra A(Q, <) equipped with a homomorphism ¢ : KQ — AY(Q, <)
which is universal for homomorphisms satisfying (1) and (f). Namely, ¢ satisfies
(1) and (1) and if # : KQ — A satisfies (1) and (1), there exists a unique map
¥ A(Q, <) — A such that ¥)¢ = 6. Since it is defined by a universal property,
the multiplicative preprojective algebra is unique up to isomorphism (provided
it exists). The undeformed multiplicative preprojective algebra is the special case

where g, = 1 for all v, and we write A'(Q, <).

We now prove the multiplicative preprojective algebra exists by constructing

it. First an easy lemma.

Lemma 2.1.2. If e is an idempotent in a ring A and z € eAe then 1 + z is
invertible if and only if e + z is invertible in eAe. Note that we can replace

“mvertible’ by ‘left invertible’ or ‘right invertible’ throughout.

Given an arrow a of Q, let r, = €n(a) +aa” and s, = 1+ aa®, and let Q;
be the quiver obtained from @ by adjoining a loop I, at h(a) for each arrow a
of Q. Let Lg = KQ,;/J where J is the ideal of KQ; generated by the relations
laTa = €n(a)s Tala — €n(a) for all a € Q. The relations ensure each r, has inverse
lo in epqyLgen(a), and by the above lemma, each s, is invertible in Lg, with

inverse I, + 1 — ep(q). We can therefore define

n
HQ,< = ]:[S(Ez(i%) - Z qQuvey € LQ?
=1 VEQo

and form the quotient Lg/I,, .. We claim that this is equal to the multi-
plicative preprojective algebra. For this we must show that the obvious ho-
momorphism ¢ : KQ — Lg/lu, . (which clearly satisfies () and (})) is
universal for homomorphisms 6 : KQ — A satisfying () and (). Given
such a homomorphism, we can define z/; : Lg — A to be the homomorphism
which sends x to 6(z) if = is a trivial path or an arrow of @, and each [,
to (6(ry))~t, (possible by Lemma 2.1.2 since 6 satisfies (1)). This is well
defined since ¥(larq) = (0(ra)) 10(rs) = O(en(a)) = z/;(eh(a)), and similarly

Q/Z(Tala) = lz(eh(a))' Since Q/Z(NQK) = H?=1(9(1 + aiaf))e(ai) - Z’uEQO 9(q7jev)
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(which is zero since 0 satisfies (1)), ¢ induces the map 1 : Lg/1,, . — A which

is clearly uniquely determined.

Theorem 2.1.3. [11] A1(Q, <) is independent of the orientation of Q and the

ordering <.

Proof. First prove independence of orientation. It clearly suffices to show that
AU(Q', <) 2 AY(Q, <) in the case where Q' is obtained from @ by removing an
arrow ¢ and replacing it with an arrow b with h(b) = t(c), t(b) = h(c), and <’ is
the ordering on the arrows of Q' obtained from < with ¢ replaced by b* and c¢*
replaced by b. There is an algebra homomorphism 6 : Lo, — Lg which sends
b to c*, b* to —l.c, lp to rex, lp« to 7. and sends the remaining arrows, each
remaining [, and all trivial paths to themselves. To be well defined, we must

check that for all a € Q_’l, O(lara — €n(a)) =0, and O(rqla — ep(q)) = 0. We have
O(lyry — enw)) = e (en(e) — €leC) = eper)y = Tax — ' TeleC — epery = 0,

O(roly — enp)) = (en(e) = CleC)Ter — ey = Tar — € leTeC — epery = 0,

and similarly for a = b*, and for the remaining arrows it is obvious. There is a
map ¢ : Lg — Lg/ defined similarly, sending ¢ to —b*ly, c* to b, I to 7y, I
to 7. Since 0(p(c)) = 0(—=b*lp) = lccrex = leree = ¢ and ¢(0(0*)) = Pp(—lcc) =
rp«b*ly = brply, = b, 6 and ¢ are mutual inverses, and are therefore isomor-
phisms. Clearly 0(ug/ <) = pg,< since 0(1+bb*) =1 —c*l.c = (1 +c*¢)~! and
(1 +b*b) =1 —lecc* = (1 +cc*)™ L, and so AY(Q', <) 2 A1(Q, <).

=1

We now prove independence of the ordering. First note that I, 1o, <o

HQ,<
where <° is the ordering with az <° ag <° -+ <° a, <° a; (this follows
by conjugating pg,« by s;‘l‘“’). It therefore suffices to show that A%(Q, <) =
AY(Q, <), where <” is the ordering with as <” a3 <" a3 <" --- <" a,. If
h(a1) # h(az), then it is trivially true since pug < = pg,<», so assume that
h(a1) = h(az). If a1 = ab, then a; is a loop, and then A%(Q,<") is the same
as A1(Q',<’) where @' and <’ are obtained by reversing a;, and the argument

above shows that this is isomorphic to A?(Q, <).
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So assume that a; # a3, and by reversing arrows if necessary that e(a;) =
€(az) = 1. Define an isomorphism 6 : Lo — Lg which sends a1 to ¢ a1, a}
to aflay, lay 10 Tayla,la, and each remaining arrow, each remaining [/, and each
trivial path to themselves. It is clear that 0(lare—epn(q)) = 0 and 0(rala—en(q)) =

0 for each arrow a, the only non trivial case being a;, which follows since
0(ray) = €n(ay) + Taz @107 lay = TayTa;lay-

Since 8(1 + a1a})(1 + agal) = (1 +re,a103la,) (1 + azal) = (1 + agal)(1 4+ ara?)
and 6(1 + aja1) = 1 + afaq, it is clear that O(ug <) = p,<~, and therefore
A(Q, <) = A%(Q, <). O

We can therefore write A?(Q) (or sometimes A?) instead of A?(Q, <).

2.2 Alternative definitions

In [11, Lemma 8.1], it is shown that if @ is a star shaped quiver, the multiplica-
tive preprojective algebra can be defined as a quotient of K@, rather than using
localisation. One can ask whether this is possible for other quivers, and in this
section we investigate this interesting question.

First some notation. For all arrows a of @, denote €n(a) T aa® and 1 + aa®
by r, and s, respectively. Henceforth ‘r, is invertible’ is taken to mean ‘r, is
invertible in epq)A?(Q)en(q)’. We say an ordering on the set of arrows of Q is

admissible if a € Q1, b* € Q1 implies a < b.

Definition 2.2.1. Given an admissible ordering < on the set of arrows of Q, we

define /~\q(Q, <) tobe K @/ I,q, where I,q is the ideal generated by the elements

ko by
q _ —
Hy = Hram Gv H Tavi
i=1

i=ky+1
where the a,; are the arrows of Q with head at v, labelled so that a,1 < ape <
-+ < @y, , and k, is the number of arrows of () with head at v (so each a,; with
i > k, is of the form a* for some a € @1 with t(a) = v). The empty product is
taken to be e,. [Note that we can understand ‘u?’ to be the element Zver ul

as well as the set {u? : v € Qo} since the ideal ‘I’ is the same in both cases.]

19



At first sight, this is perhaps a more natural definition of a ‘multiplicative
preprojective algebra’ (note the similarity with the definition of the of the de-
formed preprojective algebra). However it is almost certainly not the case that
A?(Q, <) is independent of < (which will be illustrated in Example 2.2.4), and
so the original definition seems the correct one. It is more desirable to speak of
‘the’ multiplicative preprojective algebra for a quiver (), rather than have one
for each ordering of the arrows, which may or may not be isomorphic to each
other. We are interested in whether or not AQ(Q, <) is isomorphic to the mul-
tiplicative preprojective algebra. Let ¢ be the natural map KQ — AQ(Q, <),

and make the following definition.
Definition 2.2.2. If ¢ satisfies (1), then we say < is a good ordering.
Lemma 2.2.3. If < is a good ordering, then A9(Q, <) = AY(Q) (via ¢).

Proof. Let <’ be the ordering defined as follows,

W< bif a<bandb1I.1Q1
b < aand b*in Q.

We show that ¢ satisfies (1) for this ordering. Note that if we label the arrows
as in Definition 2.2.1, one has ay;, <’ ay1,—1 <"+ <' @y k,+1. In view of this,

we clearly have
Ko Ly—ky—1
I (é(sa)@ = > (H <z>(ram->> ( II ¢(rav,w>1> :
a€qQ, vEQ \i=1 i=0
Using the relations p, this equals
L, Ly—ky—1
5 oo I o) (T st 7).
vEQo i=ky+1 i=0
Each ¢(r,,,) cancels with a ¢(r,,,) "}, so it equals
Z P(qvew).
vEQo

Hence ¢ satisfies both () and (f), and is clearly universal. O
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In view of Lemma 2.1.2, it is clear that an ordering is good if and only if
each ry is invertible. The key tool for showing that the r, are invertible is the

following property.
(%) rq is (left/right) invertible if and only if .- is (left/right) invertible.

This follows easily from Lemma 2.1.2 and the fact that if z,y are elements of
a ring such that 1 + xy is invertible, then 1 + yx is also invertible with inverse

1—y(1+a2y) ta.

Example 2.2.4. Let Q be the quiver

—ts

1 c 2
There are two fundamentally different orderings to consider, < and <’ where
b<ec<c*<bandc<' b< ¢ < b*. We show that < is good whereas <’
isn’t.

In the first case we have AY(Q,<) = KQ/1,, where I, is generated by
Q1T Ty — €1, Tpre — g2ea. Clearly the relations make r. left invertible and
rex right invertible, and by (*), both are invertible. Similarly r, and rp« are
both invertible and so the ordering is good and by Lemma 2.2.3, AQ(Q, <) is
isomorphic to the multiplicative preprojective algebra.

In the second case, we have A = /~\q(Q, <"y = KQ/I,, where I, is generated
by q17exTpx —e1, Tery — gae2. If we attempt a similar argument to the one above,
we can only show the invertibility of each r, on one side. This suggests that
the elements are not all invertible in A, which we now prove by constructing
a representation X of A in which the corresponding linear maps (denoted by
X,,) are not invertible, and so A is not the multiplicative preprojective algebra
via the natural map. [Of course there may still be a universal map KQ — A
satisfying () and (%), thus making A the multiplicative preprojective algebra.
However, since the natural map fails, this seems highly unlikely.] Note that such
a representation must be infinite dimensional since a linear map between finite

dimensional vector spaces is invertible if it is invertible on one side.
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Let V' be the vector space with countable basis {v; : i € N}. Let X be the
representation of Q with X; = Xo =V,

Xy, = Iqlfl(Sqil,I — 1\/), Xp = IQ17
X, = (Sqt —1y)lyy, Xew=1Ip-1,
where Iy, S, S;r are the linear maps defined as follows

I(v;) = g¢'v; for all i,

S;r(’ui) = quiy1 for all i,

_ 0 ifi=0
Sq (U’L) = {

qui_1 ifi>1.
Note that I,-1S1 I, = S; since
(Ig-157 Ig)(vi) = ¢' (Ig1 S (i) = ¢ (Ig-1) (i) = vig1 = ST (v),
and 145, I;-+ =57 since if i > 0 we have
(IgSy I-1)(vi) = ¢ " (1S, ) (vi) = ¢' 7" (Ig) (vie1) = vi—1 = ST (vs),

and if i = 0, we have (I, S, I;-1)vo = (I;S; )vo = 0 = S (vo). We therefore

have

X = WHXpXe=S5 1,

Xp, = ly+XoXpe =Ip, 1S, Iy, = ST,
X,. = ly+XeXe=1,-18,1, =57,
X, = ly+X.Xe =57,

Now since Sq_S,‘J‘ = grly, we have ¢ X,,. X, . = 1y and X, X,, = @21y, s0 X

is a representation of A, but none of the X,., are invertible.

We would like to obtain a classification of the quivers which have a good
ordering, but this is a difficult problem which remains open. The previous
example is a special case of the following lemma, which is the most general

result we have obtained.
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Lemma 2.2.5. If Q) is a bipartite quiver, then Q has a good ordering.

Proof. Choose any ordering on the arrows of () and label them so that a; <
as < --- < a,. Extend this to an admissible ordering of the arrows of Q:
ifae@,be @ anda <b,
a < bif and only if ¢ if a € Qq, b* € Q1,
ifa* € @1, 0" € Q1 and b* < a™.
We claim that each r, is invertible in /~\q(Q, <). Since every vertex of @Q is a
source or a sink, there are no arrows with tail at h(a;). Since a; is the minimal
arrow, F‘Z(al) has the form r4, Z—qp(4,)€n(a,) for some product x of some r,; with
¢ > 1. This makes 74, right invertible. Similarly, the are no arrows with head
at t(ay1), and af is the maximal arrow, so ”Z(al) has the form g;(q,)yra,* — €4(a),
where y denotes a product of some r,,- with ¢ > 1. This ensures that rq, - is
left invertible. Hence both r,, and r,,~ are invertible.

Assuming that r,, and r4,~ are invertible for all ¢ < k, we show that r,, and
Tq,+ are invertible. By a similar argument to the one above, ”Z(ak) has the form
WTay T = Qh(ay)Ch(ay) (Where w, z denote a product of some rq, with i <k, i >k
respectively). Using the invertibility of w, I, contains rq, 2w = qu(a,)Cn(ayr)
which makes r,, right invertible. Similarly r,, - is left invertible, so both are
invertible.

Hence it follows by induction that < is a good ordering. O

Along with the result for star-shaped quivers, Lemma 3.3.2, this shows that
good orderings exist for most of the quivers we consider in this thesis (so that
in Chapters 3,4,5, we can always assume that A?(Q) = K@/[ltq). However, this

is far from a complete understanding, as is shown by the following example.

Example 2.2.6. Let ) be the quiver obtained by orienting the complete graph
on vertices 1,2,3,4 so that if a : w — v is an arrow, u < v. Changing the notation

slightly, for each arrow a : u — v of Q, let 7, denote the element e, + aa*. Let
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I be the ideal of K(@Q generated by the relations

r12T13714 = {qi1€1, (2.1)
724723 = (2721, (2.2)
T34 = (3731732, (2.3)

€4 = Q4741743742 (2-4)

Property (*) now reads r,, is invertible if and only if r,, is invertible. Using
this, we can work through the quiver and eventually show all the 7., are invert-
ible. From (2.4), 741 is right invertible and from (2.1), r14 is left invertible, so
both are invertible. Since 712 is right invertible by (2.1), so is ro1, and then by
multiplying (2.2) by this right inverse, so is r94. Since 149 is left invertible by
(2.4), both r42 and ro4 are invertible. It follows that ry3 is invertible, and so is
r34. Then multiplying (2.3) by the right inverse of r34 shows that rs; is right
invertible. Using the invertibility of r4 and (2.1) shows r13 is left invertible,
and so both r3; and 713 are invertible. It quickly follows that 713, 721, 732, 723

are all invertible, and so the ordering is good and AY(Q) = KQ/I.

For simplicity, we now assume that ¢ = 1 (in any case, it seems likely that
the question of whether an ordering is good or not does not depend on ¢). We
now attack the problem from the other direction, namely, instead of determining
the quivers possessing good orderings, we give examples of quivers for which no
ordering is good. We say such quivers are bad. Unfortunately, it is quite difficult
to prove a quiver is bad, as they must be quite complicated, and checking every
possible ordering is a lengthy process. For example, if we had instead chosen
(2.3) to be 134 = g3r32rs31 in the above example, then the ordering is not good,
but we have to work through most of the calculation to show this. Note that
we work under the assumption that if we can’t prove that the r. are invertible
by using (x), then they aren’t invertible - one can prove it by constructing a
representation as in Example 2.2.4.

The following lemma is useful for obtaining examples of bad quivers.
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Lemma 2.2.7. If a quiver is bad, then all quivers which contain it are bad.

Proof. Let Q be a bad quiver and suppose )’ contains @ as a subquiver. Given
an ordering <’ on the arrows of Q’, let < be the induced ordering on the arrows
of Q. Since @ is bad, there exists a representation X < of A(Q, <) in which X
is not invertible for some arrow a of Q. Let Y < be the representation of Q’
where Y,© = X, if v € Qg and zero otherwise, and let Y,;< = X, if a € Q,, and
zero otherwise. It is clear that Y'< is a representation of A(Q’, <') in which Y

is not invertible. This can be done for all orderings, and so Q' is bad. O

So we can attempt to find the minimal bad quivers, the quivers which are

bad, but all subquivers of them are not. We have obtained the following list.

Minimal Bad Quivers.
1. A quiver of type A, which is oriented cyclically.
2. A quiver of type Ai,j;m,n; which is a quiver without an oriented cycle with
a source u of outdegree 2, a sink w of indegree 2, a vertex v of indegree 2
and outdegree 2, and all other vertices being outdegree 1 and indegree 1. The
numbers i, j refer to the length of the two paths between u and v, and m,n to
the length of the two paths between v and w. The simplest quiver of this type

is A1 1.1.1, which looks like

sdady

3. There are others, e.g.

Of course, the multiplicative preprojective algebra depends only on the un-

derlying graph of @ (see Theorem 2.1.3), and it is possible to reorient the above
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quivers (other than the loop) so that they have good orderings. One might
conjecture that, given any graph without loops, one can find an orientation @
with a good ordering <, and thus one can define the multiplicative preprojective
algebra as AQ(Q, <). However this is not the case. We say a graph is bad if any
orientation of it is bad. The following graphs are bad because any orientation

must contain one of the bad quivers above as a subquiver.

Bad Graphs.
1. The graph on three vertices, with two edges between each vertex (any orien-
tation must contain an oriented cycle or 141171;1,1).
2. The complete graph K5. Any orientation without oriented cycles must have a
source and a sink (labelled 1 and 5 say). Consider the remaining three vertices,
any non cyclic orientation of the three arrows between them must determine a
relative source 2 and a relative sink 4. Labelling the remaining vertex 3, we

have a bad subquiver A; 2,1 2:

3. An orientation of the following graph must contain either an oriented cycle,

A1,1;1,1, A1,1;1,2 or A1,2;1,1~

It is possible that these graphs have some graph-theoretic property which
may give rise to a characterisation (the presence of K5 suggests this), but we

have not be able to see it.



Going back to the question raised at the start of the section, we have been
interpreting the question ‘Can we define A(Q) as a quotient of KQ?’ in a re-
stricted way, by effectively the condition ‘by an ideal generated by the obvious
multiplicative relation at each vertex’. This is the natural question to investi-
gate, but it is interesting to answer question without this restriction, especially
since we can obtain the nice answer that it is possible for all quivers without
loops (with the drawback being that in practice it will be difficult to write
down exactly what the quotient is). In the case where @ does contain a loop
then little can be done, e.g., if () consists of one vertex v and a loop a, then
KQ = K{a,a*). If one takes the quotient by the relation u! = aa* — a*a,
the algebra obtained is the commutative ring in two variables, which is already

smaller than AY(Q) = K|z, y, (1 + xy)~1].
Theorem 2.2.8. If Q has no loops, A%(Q) is isomorphic to a quotient of KQ.

Proof. Since A9(Q) is independent of ordering and orientation, we can assume
that @ has no oriented cycles (this would obviously be impossible if @ had a
loop), and choose an admissible ordering <. We define an ideal .J of @ as being
generated by a set of elements {p,; : v € Qo,1 < j < I}, where [, is the
number of arrows of @ with head at v (except in the case that v is a source,
when [, = 1). These elements are defined in the course of the proof. Eventually
we show that A(Q, <) is isomorphic to KQ/.J.

Define a k-sink to be a vertex v where the maximal length of a path starting
at v is k (so that a O-sink is just a sink). At stage k we write down the p,;
where v is a k-sink.

Stage 0.
Since @ has no oriented cycles, it has a 0-sink v. We label the arrows of Q) with

head at v so that a1 < --- < a;,. Let j be in the range 1,...,l, and define

Hvj = Ta;Tajpq -+ Tay,Tay -+ Taj_1 — Qu€o-

Let



and since J contains both i, = ¢uTa;la; — quer and iy it1 = qula;Ta;, — Guveu, We

see l,, is the inverse of ., in e,(KQ/J)e,. Repeat with all other 0-sinks.
Stage k.

We assume that stage & — 1 has been done. Namely, if w is an Il-sink with

I <k —1, then each p,; has been defined and if a is an arrow with head at u,

7, is invertible in KQ/J. Suppose that v is a k-sink, and label the arrows of

with head at v so that a; < --- < qay,, and let j be in the range 1,...,1,. Define

Hoj = Ta;Tajyy - Tay,tolay -+ Ta;_y — Quéo,

where t, = Ht(a):'u rail with the product taken in the order given by <. Note
that . makes sense as 7, is invertible by the comments above. By a similar
argument to that in stage 0, each r,, is invertible. Repeat with all the other
k-sinks. Note that in the case that a k-sink has no arrows with head at v, we
define p,1 to be t, — qyey.

Since all vertices of Q must be a k-sink for some k, this completes the
definition of .J, and shows that for each arrow of Q, s, is invertible. Since

additionally

n = H Saﬁ(a) - Z Gu€y = Z M1,

acqQ, vEQo vEQQ
the natural map ¢ : KQ — KQ/J satisfies (1) and (1). To show KQ/J is the
multiplicative preprojective algebra, we must show that ¢ is universal. Clearly
if 0 : KQ — A satisfies (f) and (i), then there is a unique induced map 1 :
KQ/J — A, provided 6(J) = 0. This is satisfied since 0(j1,1) = 0(eype,) = 0,
~1

_ -1
and py; =7Tq;_, < Tay  fwiTay -+ Ta;_y- O

2.3 Reflection functors

In [10] it was shown that there exist reflection functors for deformed prepro-
jective algebras. In this section we adapt the ‘middle convolution’ operation of
Dettweiler and Reiter [12] to show that an analogue of these reflection functors

exist for multiplicative preprojective algebras. The construction is very similar
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(but the calculations are more complicated).

We can identify representations of A? with representations of Q which satisfy

1x, ., T XaXq~ is an invertible endomorphism of X}, for all a € Q,, (2.5)

[T (xn + XaXa )™ = gu1x,,,, for all v € Qo. (2.6)

aeél
h(a)=v

Given a € Z%°, define ¢* = IL; ¢". Recall that if v is a loop free vertex then
there is a simple reflection s, : Z2° — Z90 given by s,(a) = o — (@, €,)ey.
There is a reflection ¢, : K% — K% given by t,(q)., = Gugy ). This is
dual to the s,, as (t,q)* = ¢*(¥).

Theorem 2.3.1. [11] If v is a loopfree vertex of Q with g, # 1, there is an
equivalence E, from the category of representations of A(Q) to the category of

representations of At“(Q)(Q) which acts as s, on dimension vectors.

The proof of this theorem comprises the rest of this section. We assume
that v is a sink and denote the arrows with head at v as a1, as,...,a, so that
a; < a;41 for all i. Let X be a representation of A9. We identify X with a
representation of @ satisfying in (2.5) and (2.6). In particular, the relation at

the vertex v guarantees that
(Ix, + Xoy Xay)(Ix, + Xax Xaz) - - - (Ix, + Xa, Xaz) = @ulx, (2.7)
For 1 <i <n+4 1, we define
§i = (Ix, + Xa, Xap)(Ix, + Xay Xag) .- (Ix, + Xa, , Xaz_)-

Lemma 2.3.2. We have the following formulas.

i—1
Znganaj = gi - 1XU; (28)
j=1
n
Zngana; = (g — Dlx,, (2.9)
j=1
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i—1 n
1 1-

D 6%Xa,Xa + =D 6Xa, Koy +— g 0. (2.10)
v v

j=1 j=i
Proof. The first equation is obvious, and the second follows by putting i = n+1
in (2.8) and noting that (2.7) says &,+1 = qvlx,. Finally, the third equation is

equivalent to

1 & gy — 1 1-¢
q_ Zngana; + - Zngana; + ygi =0,
v v

= G = Qv

and using (2.8) and (2.9), this is equivalent to

1 v — 1 1—
—(qo — Dlx, + (6 —1x,) +

Qv Qv v

which is obviously true. O

Let
Xo =P Xia))-
j=1

We denote the natural inclusions and projections between Xg and X4,y by ¢;

and m; respectively. Define maps ¢ : X, — Xg, 7: Xg¢ — X, by

n n
1
L:ZLan;, ’/T:q _1Z§anj’/Tj.
v j=1

Using (2.9), we have

so tm and € = lx, — 7w are idempotent endomorphisms of Xg¢. Now define
®i+ Xi(ay) — Xas

n

1—1
1 1—g¢q
P = ZLan;Xai + q—v ZLJXG;XM + o yLi.
j=1 j=i

Note that if j < 4,
Tj¢i = Xar Xa, (2.11)

Lemma 2.3.3. [11] For all i, m¢; = 0.
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Proof. We have

TP = ak ZLJX +Xa, +_ZLJ'X“§X“I'+1;U%”
) _
= z:: € Xa, Xa: Xa, +U;§] a
1 I—q
= = Z i Xa, Xas +_ZZ£]X‘”X G X
=0 ) ]
using (2.10). O

Lemma 2.3.4. [11] For all 0 < m < n we have

1— gy
(Ixg + ¢1m1)(Ixg + d2m2) ... (Ixg + dmmm) = 1x, + . & > ey

Proof. By induction on m. If m = 0 there is nothing to prove. Assume that the

formula is true for [ = m — 1. We want to show that it holds at m, namely that

m— m
l—¢q
lxg + Z Ty 1X® + éf)mﬂm) =1lxg + - Zaﬂrj.
-: v ]:1
Multiplying out and rearranging, this is equivalent to
-1
1—¢q 1's
¢m7rm = ve mTm — — Z Ljﬂ_j(ﬁm’]rm
Qv Qv =1
Using (2.11), the right hand side of this is
1 q m—1
0 “(1xg — o) |t — Z L X, Xap | Tm-
j=1
Multiplying out, this becomes
1 m— m—1
Z Xa,, — Uy + 7 Z LiXa Xap | Tm-

J=1
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. R ; . . .
Now since m¢; = qv_lijaj this is

1_ q m—1 1 m—1
“em = Y X Xy |+ — 6 Xa, — Y 16 Xa, X X, | 7o
qy 1 qv i—1
J= j=
Using (2.8), this simplifies to
1— m—1
L\ i > X X, | + —1Xa, | Tm
Qv = ! Qv
Substituting the expression for ¢, this equals
1 q n m—1
Lm + — Z 1 X; Xa,, + Z i X2 Xa, | T™m,
v v —
Jj=m Jj=1
which is ¢, . O

We define a representation X’ of Q. Let X = Im(e) = Ker(itmr) = Ker(n)
and let X/ = X, if u # v. Denote by ¢/ the inclusion of X in Xg. If a is not
incident with v, let X/ = X,. Otherwise, let X/ . = m;//, and let X be the
unique map such that ¢; = /X . This is possible since Im ¢; C X by Lemma
2.3.3 and is uniquely determined since ¢’ is injective. Now let ¢’ = ¢,(g), and

let o be the dimension vector of X.
Lemma 2.3.5. [11] X' is a representation of A7 (Q) of dimension vector s, ().

Proof. We must check that the X/ satisfy the following relation for all v € Qo,

I (xg + X0X0)“@ = g 1x,.
a€Q,
h(a)=v

At vertices different from v and the ¢(a;), this is trivial. For all ¢, it is clear that

1Xt(ai) + XL/leL/lZ = 1Xt(ai) + 7Ti¢i
1- Qv

1
= 1Xt<rm + q_UXa;-*Xai + 1Xt(ai>

1
(]‘Xt(ai) + Xa;-* Xai)a

v
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so that the relation is satisfied if v = t(a;) (recall that qg(al) = qt(ai)q;k, where k
is the number of arrows between v and t(a;)). Finally, we put m = n in Lemma

2.3.4 and we have

1_
(1X@+¢1771)(1X@+¢27T2)---(1X®+¢n77n):1X®+ qUG.
Restricting to X gives
1
(1x, + Xg, Xg,-)(Ix, + X0, Xg,-) ... (Ix, + X5, X ) = o X
v

which shows the relation at v holds. We have Xg = Im(vr) @ Im(1 — o) =
X, © X, so dim X}, = dim Xg — dim X, = ), a4(a,) — @ = Sy(), and hence
dim X’ = (sy(@))w. O

One can define a functor by setting F,(X) = X’ for any object X, and if
by (Ey(6))u = 6, if u # v and
Jo =225 Or(ar) Ux-

Lemma 2.3.6. [11] E, is an equivalence of categories.

6 : X — Y is a morphism, we define E, (0

~_

(Ey((0), to be the unique map with ¢}, (E, (0

Proof. Clearly we can define a functor E! which takes a representation X' of
A7 to a representation X” of At(?) = A4 We show that there is a natural

isomorphism X” — X, and thus E! is the inverse of E,. Note that

n n
D Xio,) = D Xota) = Xo,
j=1 j=1
and
n n
ZLJ»X;; = ZLjﬂ'jL' =/,
j=1 j=1
so that X, = Xg and ¢ is the analogue of ¢ constructed from X'. Let 7, &} be

the analogues of m and &; respectively. Note that

& (1x, + X, Xoo)(Ixy + X0, Xo:) .- (Ix, + Xg, XGx )
(Ixg + o1m1)(Ixg + 2m2) ... (Ixg + Pim1miz1)

restricted to X/. Thus by Lemma 2.3.4 we have

1 _ i—1
& =1x, + p fv ZGLjﬂ'j (2.12)
v _]:1
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restricted to X,. We claim that /7" = 1x, — 7. We have

1 n
Jrlo= p— VEX,
v =1
n 1—1
= 1 — Z ¢17Tz + Z Z GLJWJ¢ZW15
dv =1 j=1
using (2.12). Now
1 1 <
€Ly = Lj — LTl = Lj — ibijaj Y do — 1 ;Lan;’;nga

Substituting this and using (2.11), the expression for /7’ becomes

n i—1 n i—1 n
m+ZZLJX Xam——@ZchX 265X, Xox Xo, T
1=1 j=1 =1 j=1 k=1

By (2.8), this is equal to

n i—1 n n
T —i—ZZL]X « Xo,mi — —3 ZZLkX —1)Xq, ;.
i=1 j=1 =1 k=1

By rearranging, we obtain

n n i—1
Jnl = 1L Zcf)mi 1  Xas Xo, i
% i=1 =1 j=1
n n n
1
Xa; Xami + 7 D> e Xap &iXa,mi.
i=1 j=i V=1 k=1

By expanding using the formula for ¢;, we obtain
n n
Jrt=1x, + ZZ 1 Xaz §iXa,mi = — o,
i=1 k=1
as required.
Thus € = 1x, — /7’ = vr and X = Im(¢’) = Im(ewr) = Im(¢). The
inclusion ¢’ of X!' in Xg can therefore be identified with «. Clearly, for all

remaining vertices u we have X, = X,. The linear maps of X" are given by
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Xg o« =mit = Xg;~ and

i—1 n
1 1—¢
X[ = D XX =Y X X+ ,q@ L
— i ql, i s
j= j=i
i—1 n
= > umdi+aw Y ki + (g — D
j=1 j=i
i—1 n 1 1— q
= ZLanfXai + qy ij_Xa*fXai + ULZ‘ + (qv — 1)Li
— — g, 0
J= J=1
n
= D uXu X,
j=1
= 1 X,
Thus X = X,, and X” = X as required. O

This completes the proof of Theorem 2.3.1.

2.4 Simple modules

The main goal regarding simple modules for multiplicative preprojective alge-
bras is a proof of the following conjecture, which would (see [11] and [9]) lead

to a solution of the multiplicative Deligne-Simpson problem.

Conjecture 2.4.1. There is a simple representation of A1(Q) of dimension
vector a if and only if « is a positive root, ¢* = 1 and p(a) > Y p(B;) for
any decomposition « = > B; as a sum of two or more positive Toots with each

@i =1.

Unfortunately, this has not been accomplished. However, we can discuss
some special cases, and some results related to this conjecture. We start with

an easy lemma.

Lemma 2.4.2. If X is a finite dimensional representation of A1(Q) with di-

mension vector «, then ¢¢ = 1.

Proof. By [19, Theorem 1.3.20], if M; is an m by n matrix, and M is an n
by m matrix, then det(I,, + M1 M>s) = det(I,, + M3M;). Thus for each arrow

35



a:i—j, det(lth + X Xo) = det(lxt(a) + Xo+X,). In particular

I det(ix, ., + XaXae) @ =1
ae@l
since det(lxhw + XaXa*)det(lxtw + X4+ X,)"! =1 for each arrow a (recall

that det(1x, ., + XoXq~) is always non zero due to (2.5)). Hence, using (2.6),

(a)
¢ = H qi}liva — H det(quxv) = H det(lxh(a) +XaXa*)e(a) —1.
veRo vEQo ae@

O

Observe that if dim X = ¢,, then this lemma tells us that ¢, = 1. Of course
this had to be the case, since otherwise we could apply Theorem 2.3.1 to obtain
a representation of A (@ of dimension vector —e,, which is clearly nonsense.

This is worth noting when following some of the later proofs.

Lemma 2.4.3. [11] If X is a simple representation of AY(Q) of dimension

vector « and v is a vertex, then either o =€, or q, # 1 or (a,€,) < 0.

Proof. Suppose otherwise, i.e. that a # €,, ¢, = 1 and (a,€,) > 0. The last
condition ensures that v is loopfree. We assume that v is a sink and denote the
arrows of () with head at v as aj,as,...,a, so that a; < a;41 for all i. As in

the discussion after Theorem 2.3.1, let
& = (1XU + XalXaI)(le + XazXa;) e (1XU + Xai—lXa:,l)'

Let
n
X = @ Xt(ai)-
i=1
Let 6 : X, — Xg be the linear map with components Xa;_x andlet ¢ : Xg — X,
be the linear map with components & X,,. Using (2.8) with ¢, = 1 we have
@0 = 0.
Suppose @ is not injective. Then X has a subrepresentation with vector space
Ker(#) at vertex v and the zero subspace at all other vertices. By simplicity
X is equal to this subrepresentation. Since v is loopfree, this implies that its

dimension vector is €,, a contradiction, and so 6 is injective.
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Suppose ¢ is not surjective. We claim that X has a subrepresentation given
by the vector space U = Im(¢) at vertex v and the whole space X, at all
the other vertices w. Clearly, this will be the case if this subrepresentation
makes sense, i.e. if Im(X,,) C U for all i. We prove this by induction on
i. Clearly we have Im(§;X,,) C U for all . If ¢ = 1, then & = 1, so this
proves Im(X,,) C U. Assuming that Im(X,,) C U for all i < k, it follows
that (1x, + Xo,Xo:)(U) € U for all i < k, and since (1x, + X4, Xa2) acts
invertibly on X, this is an equality and we also have (1x, + X4, Xox) ' (U) = U.
Thus (&)~ HU) = (1x, + Xaklea;,l)_l o (1x, +Xa1XaT)_1(U) = U. Now
Im (&, X,,) € U, and hence Im(X,,) C & '(U) = U as required. Since X is
simple, X is equal to this subrepresentation, so ¢ is surjective.

It follows that ¢ induces a surjective linear map Xg/Im(0) — X,, so
dim Xg > dim X, +dimIm# = 2dim X, (since 0 is injective), and then (o, €,) =

200, — Y, Qy(q,) < 0, contradicting (o, €,) > 0. O

Theorem 2.4.4. [11] If X is a simple representation of A1(Q) of dimension

vector «, then « is a positive root for Q).

Proof. Assume that the theorem is true for all § < «. We can assume that
(a, €,) > 0 for some vertex v (which must be loopfree) since otherwise « is in
the fundamental region, and is therefore a root.

If g, = 1, then by Lemma 2.4.3, a = ¢, and is therefore a root.

If g, # 1, then since v is loopfree, we can apply Theorem 2.3.1 at v. Namely,
X corresponds to a simple representation of A*(9) of dimension vector s, ().
Since s,(a) = a — (@, €,)€, < @, the induction hypothesis applies, and so s, ()

is a root, and hence so is a. O

In view of this theorem, the conjecture is equivalent to the statement that
for any positive root for @, there is a simple representation of dimension vector
a if and only if ¢* = 1 and p(«) > > p(B;) for any decomposition a« = > 3; as a
sum of two or more positive roots with each ¢% = 1. If a is a positive real root,

this can be simplified because p(a) = 0 for all roots «, so any decomposition
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will automatically have p(a) < > p(8;). We can use reflection functors to
prove the conjecture is true in this case, and we can solve the rigid case of the

Deligne-Simpson problem (see [11]).

Theorem 2.4.5. [11] Let o be a positive real root for Q. There is a simple
representation of A1(Q) of dimension vector o if and only if ¢* = 1 and there
is no decomposition o =Y 3; as a sum of two or more positive roots with each

@ =1.

Proof. Again, assume that the theorem is true for all 8 < a. There is a vertex
v with (o, €,) > 0 (since otherwise « is in the fundamental region, so is an
imaginary root).

Suppose ¢, = 1. By Lemma 2.4.3 the first condition holds if and only if
« = €,. The second condition also holds if and only if a = €, because if a # €,,
then there is a decomposition o = s,(«) + (@, €, )€, into a sum of at least two
positive roots (and clearly there is no decomposition if & = ¢,). Thus the two
conditions are equivalent.

If g, # 1, then by Theorem 2.3.1, there is a simple representation of A? of
dimension vector « if and only if there is a simple representation of At (9 of
dimension vector s, («) (since s, () is a real root less than «). By the induction
hypothesis, this holds if and only if £, (¢)**(®) = 1 and there is no decomposition
sy(a) = 37 B; as a sum of two or more positive roots with each ¢,(q)% = 1. We
claim that this condition is equivalent to the same condition for «, which proves
the theorem. First, it is obvious that ¢® = 1 if and only if ¢, (q)s“(“) =1, and
there is a decomposition v = ), 8; of «v into a sum of positive roots with @P=1
if and only if s,(a) = > s, () is a decomposition for s,(a) into positive roots
with each ¢, (q)s"(ﬁ*) = 1. This is true because the reflection at v of any positive
root except €, is a positive root, and €, cannot appear in either decomposition

because (t,(q))y = ¢» = ¢** = 1. Thus the theorem is true for a. O
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Chapter 3

The Dynkin case

In this chapter we examine the properties of A?(Q) in the case of @ being a
Dynkin diagram. Sections 3.1-3.5 prove the main result of this chapter, that
A9(Q) is finite dimensional. In the last section we consider some further ques-

tions that can be asked.

3.1 The main theorem

Theorem 3.1.1. If Q is a Dynkin diagram then A9(Q) is finite dimensional.

The proof of the corresponding theorem for deformed preprojective algebras
(Theorem 1.3.8) given in [10] depends on two ingredients.

1. Tt is known that I1(Q) is finite dimensional for all Dynkin quivers (Theo-
rem 1.3.4).

2. The oriented grading on K@ induces a filtration on II*. One can then
show that the associated graded ring gr IT* is a quotient of II, and then it follows
that II* is finite dimensional.

Unfortunately, for the multiplicative case, this simple approach is not avail-
able. There does not seem to be a filtration on A9 which is suitable for this
argument, and even if there was, we do not have the result corresponding to
Theorem 1.3.4 for A'(Q) (although see Chapter 5). Instead we are forced to
adopt a lengthy case by case analysis of the Dynkin diagrams.
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3.2 Type A,

There is nothing to do in this case, due to the following lemma.

Lemma 3.2.1. If Q has type A, then A%(Q) is isomorphic to a deformed pre-

projective algebra.

Proof. We can assume (see Lemma 3.3.2, but it should be clear in any case)
that A9 = KQ/I,a where Q is the quiver

ai a2 as Gn—1
*¢——@

and I« is the ideal generated by the elements

(e1 +a1a]) — qreq ifi=1,
pd =< (e +aial) — qi(e; +a jaiq) if2<i<n-—1,
en — qnlen +a}_1an-1) if i =n.

Let 6 : KQ — KQ be the isomorphism which takes e, to ey, a; to x;a;, and
al to af where z; = (¢ ...qi+1) " for 1 < i < n —1. Clearly 0 induces an

isomorphism KQ/I,« — KQ/0(I,4). Now
O(ui) = e1 + z1010] — qrer = x1(ar1a] — (1 — 1)g2 - . . qnea),
O(pl) =en — qulen + Tp_1a;,_1an_1) = —ay,_1an-1 — (¢n — L)en,
and fori=2,...,n—1,
O(uf) = (ei+ziaia;) — qile; +xi1a]_ja; 1)
= wzi(a;a; —ai_qja;—1 — (¢ — 1)qig1 - - - qnei).
Let A = (A)ieqy, where \; = (¢; — 1)giy1 - - - ¢, for all i. We have

O0Lua) = (O(pd);---,0(u7), -, 0(ul))

* * * *
= (a1a] — Ae1,...,aq;a] —af_1Gi—1 — A€y ..., —Q}_1an_1 — An€n)

(P1, P2, P])

= I

Therefore 6§ induces an isomorphism A = KQ/I,.a — KG/IM =11 O
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Therefore we can use the results in [10] regarding the deformed preprojective

algebra. In particular by Theorem 1.3.8 we have the following corollary.

Corollary 3.2.2. If Q has type A, then AL(Q) is finite dimensional.

3.3 Star-shaped quivers

In this section we prove some facts regarding the multiplicative preprojective
algebra of a general star shaped quiver which will help us understand the re-

maining cases of Dynkin quivers.

Definition 3.3.1. A quiver Q) is star-shaped if it has the form

[171] [152] [1,11}1 _1]
g @12 ¢ e a1,w,—1
@11/ 12,1] [2,2] [2,we — 1]
° ° e o oe———— @
/ a9 A2 wo—1
o (21
0 . . .
ag1
a/kQ ak,wk—l
° e e ee—— @
[ka 1] [ka2] [kawkil]
That is, there are integers k > 1, wq, ..., w; > 2 such that

Q1 ={aij :1<i<k1<j<w,—1},

where the arrows satisfy ¢(a;;) = [¢,j] and h(a;;) = [i,j7 — 1]. Note that we

understand that [, 0] means the vertex 0.

The Dynkin quivers are all star-shaped (provided they are given the suitable

orientation), each with k = 3.

D, :w=n-—2,wy=2,w3 =2.
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EGS’U.)l :3,?1)2:3,?1)3:2.
E7:wy =4, we = 3, w3 = 2.
Eg:w1 :5,w2=3,w3=2.

Throughout the rest of this section ) denotes the quiver above and we write
eij instead of ef; ;) to denote the trivial path at vertex [i, j]. We work towards
Lemma 3.3.7, which gives a presentation of egA?(Q)eo in terms of generators

and relations.

Lemma 3.3.2. [11, Lemma 8.1]
A(Q) = KQ/I,

where I, is the ideal generated by the elements (ul)yeq, with

q . * *
po = (eo+anaiy)...(eo+ akiag) — qoeo,
q _ - . * (e * . - R
Kij = €ij +Qij4+10; 11 — Qij (eij +ajjaij), forj=1,...,w; =2,
q _ *
Hiw;—1 = Ciwi—1— Giywi—1(€iyw;—1 + ai,wiqai,wi—l)-

Definition 3.3.3. Given integers m,n,k with 1 <k <m+1,n+ 1, we say a
path p of Q has type (A, m, k,n) if it has the form

pP=ar,, ...0rask - .. Qsy fOr some T, S.

Given integers m,n, I, with m,n > 0 we say a path p of Q has type (B,m,1,n)

it is has the form

P=ary, .- -anq(ai, 10, 1) (i 107 1)as .. asn

for some r,s and i1,...,%. In either case, we say p is normalised. Note that
in the above we are understanding that the extreme cases ‘ay.,, ...ar,, ;" and
:

‘s n+1 - - - Asp’ mean the trivial paths ey, and e, respectively.

Some examples of normalised paths are given below.
eo has type (B,0,0,0),
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ei; has type (4,5 —1,7,7 — 1) for all 4,
a12a13 has type (4,1,2,3),
a19011011a71021G5;G11012G13a14 has type (5,2,2,4).
Lemma 3.3.4. AY(Q) is spanned by the set of normalised paths.

Proof. By Lemma 3.3.2, A? is a quotient of K@, so is spanned by the set P

of paths in Q. We set up a reduction system € on P. For each arrow a in

*

Q let d(a) = j if a = ay; or a = af

d(p) = Y. _, d(a,,) and let < be the partial ordering on P defined by

m=1

For each path p = a,,...a1 € P, let

p1 < po if and only if d(p1) < d(p2) or p1 = pa.

This clearly satisfies () and (1) of the Appendix. Let  be reduction system

consisting of the elements
{aijai; — qij—1a;;_1aij-1 — (qij—1 — Deij1:1<i<k,2<j <w; — 1}

The elements are obtained by monicising the elements u;’j for 1 < j < w;—2 with
respect to <. Note that we ignore u¢ and M?,qu so this isn’t a full reduction
system. By Lemma A.2.3, A9 is spanned by the set of irreducible paths, namely
those which do not contain a subpath a;;a;; with j > 1.

We claim that the irreducible paths are exactly all the normalised paths. No

normalised path has a subpath a;;a;;

with 5 > 1, so all normalised paths are
irreducible. We now suppose p is an irreducible path and show by induction on
the length it is normalised. If p is trivial or an arrow then it normalised. We
assume that the claim is true for all paths of length less than p. Suppose that
p = bp’ where b is an arrow. Since p is irreducible then so is p’, and by the
induction hypothesis p’ is normalised. There a number of cases to consider.
Case 1. p’ has type (A, k — 1,k,n), i.e. p=ask...asn.
Then either (i) b = a¥,, and then p has type (A, k,k,n), or (ii) b = as,—1, and

then p has type (A,k — 2,k —1,n) (or type (B,0,0,n) if k = 2).
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Case 2. p' has type (A, m,k,n) where m > k, i.e. p=al,, ...a% a5k ... Gon.
Then either (i) b = a,,, which contradicts the irreducibility of p since it has a
subpath a,,ay,,, or (i) b = a;,, ., and then p has type (A,m +1,k,n).

Case 3. p’ has type (B,0,l,n), i.e. p= (a; 10 1) (@10} 1)as1 ... asp.
Then b = a for some r and p has type (B, 1,1, m).

Case 4. p' has type (B,1,1,n), i.e. p=a;i(ai 10}, 1) ... (a1} 1)as1 ... asn-
Then either (i) b = a},, and then p has type (B,2,l,m), or (ii) b = a,1, and p
has type (B,0,l+ 1,n).

Case 5. p' has type (B,m,l,n) where m > 1, i.e. p=ay,...a;(a; 10}, )
. (ail,lafhl)asl e Qg

Then either (i) b = a; ,, 1, and then p has type (B,m +1,1,n), or (i) b = aym,

which contradicts p being irreducible since it has a subpath a,n,,a},,. O
Lemma 3.3.5. ¢gA9(Q)eq is generated by the paths apnaly, 1 <i<k.

Proof. By Lemma 3.3.4, A9 is spanned by the set of normalised paths. So egA%¢eq
is spanned by the set of normalised paths which start and end at 0, namely, the
set of paths of type (B,0,[,0). Clearly each path of type (B,0,[,0) can be

formed by taking a product involving the paths a;1a};, 1 <¢ < k. O

We now have a generating set for egA%eq, and we now perform some calcu-
lations which will give the relations. We define scalars s where 1 < i < k

mn’

and 1 <m <n < w;,
n—1
mn __ —1
S; = H Qi
l=m
—1 J+1,

where the empty product is taken to be 1. Note that sgl =q;; Si if j <1,

and in the special case where ¢;; = 1 for all 4, j, each s]"" = 1.

Lemma 3.3.6. Working in A%(Q), we have the following equations.
(i) For all i, and j <,

il _ i+1,1
afjai; — (s — Deij = q;;" (@i jr1af j1q — (8770 = Deyy).
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(ii) For alli, and 1 <t <w; — 1,

Wi

t—1
[[(ainai = (si = 1)eo) = (H qfrwi> F,
r=1

j=1
where F; represents the expression

Wi

g1 ... A4t H (a;ait — (Szj — 1)eit) a:t .. .afl.
j=t+1
(1i1) For all i,
wy
H(aﬂafl — (s;7 = 1)eg) = 0.
j=1

Proof. (i) Rewriting the relation ufj, we have that

* _ 1 * —1 .
@i = Q5" Qij+105 j4q + (qij — 1eij.

Subtracting (sgl — 1)e;; from both sides gives the required equation.

ii) By induction on t. Since s!! = 1, we have
y 7 )

w; wi;
[T(ainas = (si? = Deo) = anajy | [J(anaj; = (57 = 1)eo)
j=1 j=2

Rearranging the brackets, this is

Wi

a1 H(a;}aﬂ — (Sij —Dea) | ajy,
j=2

which is F}. We now show that F;1, = qft_w" F; for all t. We have

w;
o * tj * *
F = a;...ai H (aj,ai — (s —Dew) | afy ... af;
j=t+1
w;
_ t—w; ¥ t+1,5 " X
= Q1. Guqy H (a¢,t+1ai7t+1 —(s;77 = Dew) | ay...aly
j=t+1

by using (i) on each term of the product. We take qft_ “i to the front, and
substitute s!* =1, to obtain

wi
t—w; * * t+1,7 * *
Qi Qi - Qit@it4+1G; 4 H (@ip10ai 401 — (5,7 —Dea) | agy ... a5y

j=t+2
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Rearranging the brackets, this is

wy
t—w; * 41,5 x x x
Tt Qi1 - - - QitQi g4 H (i ;1105041 — (5 —Deips1) | aipp1ai - a5
j=t+2

which is ¢, “* Fyy1.
(iii) By (ii), this is equivalent to showing that any of the expressions F; equal

zero. It is obvious that F3,,_1 is zero since it equals

) ) * ) _ (Qwi—Lwi . * *
@it - G, 1 (0 a1 G —1 — (8] D)eiw—1)@7 ;-1 - - - Gi1-

which is
1 . . . * * 0
9 ;11 - - - Qi —1 i w; — 1@ gy —1 - - - @1 = U

O

Lemma 3.3.7. Let S = K(Ay, Aa, ..., Ar)/Ig, where R is the set of relations
(A1 +1)(A2+ 1) ... (A + 1) = qo,

[T4 — (s —1)=0, fori=1,....k
Let S¢ = K{a1,ao,...,ak)/Ige, where R is the set of relations

a1 ... 0 = qo,

Wk

H(ajfsij), fori=1,... k.

j=1
Then egA1(Q)eg is isomorphic to both S and S°.

Proof. By Lemma 3.3.5 there is a surjective homomorphism
0 : K(Al, ey Ak> — EOAqeo,

in which A; is sent to a;1a};. Clearly (41 +1)(As +1)...(Ax + 1) — qo is sent
to ju, which is zero, and by the previous lemma, [T}, (4; — (s — 1)) is also
sent to 0. Therefore 6 induces a surjective homomorphism 6 : S — eqA%eq. Let

I =Ker#. We claim that I = 0 and so 6 is an isomorphism.
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To prove this we show that any S-module M is the restriction by @ of an
egAlepg-module. So, given M, we construct a representation X of A%. Let

Xo =M and

Xij= (A — (s = 1)) .. (A — (sP2 = 1) (A — (s)t —1))M

2

Let X,,; be the inclusion of X;; in X;; 1 and let Xa;j be multiplication by
(5i7) Y (A; — (s} —1)). This clearly defines a representation of Q, so for X to
be a representation of A?, the X, must satisfy the appropriate relations. Since

each st =1,
(14 Xapy Xaz ) oo (T4 XamXazl) =1+A4;)...(1+ Ar) = qo.
and so the X, satisfy the relation at 0.

ai;(1+ Xa; Xar)) = a(1+ (s7) M4 = (77 — 1))

= () A ()

= LA 6T 1)

2

1+ X X

. . *
Qi 41555 5490

and so the X, satisfy the relations at [i, j] where 1 < j < w; — 2.

Qi,wifl(l + Xa;w% Xai’w%il) = q'i,wifl(]- + (Sifwifl)fl(Ai — (Sivwifl _ 1))

(i) 7 A = (57" = 1)) + 1,

—1

and the X, satisfy the relations at [i,w; — 1] since (A; — (s — 1))
because (A; — (s2" —1))... (A; — (s = 1))(4A; — (s} — 1)) = 0.

3

Xijw; -1 — 0

Therefore X can be regarded as a A%-module, and so M = eyX can be
regarded as an egA%ey module. For each m € M, and each i, 1 < ¢ < k, the
eoA9ey product a;1af;m is equal to Xa“X;“(m), which is the same as the S-
module product (s}')71(4; — (s} — 1))m. Since s}! = 1, this is simply A;m.
Since 0(A;) = a;ia};, we have shown that if r € S is a generator, the S-module
product rm is the same as the eqA%ep-module product §(r)m. Since it holds for
all generators, it holds for any element and we have shown that any S-module

can be obtained by the restriction of an egA%ey module.
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Consider in particular the case M = S, as a module over itself. Then S is
an egA%eq = S/I module. For each i € I, we have i = i.1g = 0(i).1g = 0, and
so I =0.

The algebras S and S¢ are clearly isomorphic since the map S — S¢ which
takes A; to a; — 1 and the map S¢ — S which takes «; to A; + 1 are mutual

inverses. u

Lemma 3.3.8. AY(Q) is finite dimensional if and only if egA?(Q)eq is finite

dimensional.

Proof. Suppose egAfeq is finite dimensional. As in the proof of Lemma 3.3.5
eo\e is spanned by the set P of paths {p : p is normalised of type (B,0,1,0)}.
Since egAeg is finite dimensional we can choose a finite subset P’ of P so that P’
spans egAZeg. Choose the maximal ¢ such that there is a path of type (B, 0,t,0)
in P’. We claim A? is spanned by the set

U = {p:p has type (4, m,k,n)} U{p: p has type (B, m,l,n) where | < t}.

To prove this we need to show that any path of type (B, m,l,n) with [ > t can be
written as a linear combination of paths in P. Let p = ay,, ... ay(a;, 1af, 1) - -
*

(ai,,1a}, 1)asi .. asp be such a path. Now po = (a4, 167, 1) - - (a;,10;, 1) € P so

po = »_; \ip; for some \; € K and p; € P'. Then

* *
P = Ay -.-0rP0GsI - - Qsp

* *
= g AiQypy o A Dilsl - - - Gy,
i

expresses p as required. Finally we need to show that U is a finite set. There
are only finitely many paths of a given type, and since the number of possible

types is bounded (m,n, k < max{ws,...,w}, I <) this is clear. O

We are now ready to prove Theorem 3.1.1 for the remaining Dynkin dia-
grams. We have a presentation for egA%ey so we apply the method described
in Section A.5 to obtain a reduction system which gives a finite spanning set.

Note that it is impractical to try to find a basis for egA%eq, since that would
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depend on gq. We use the second presentation S° as this allows us some shortcuts
when resolving ambiguities, due to the fact that we know that the generators
are invertible (they correspond with elements of egA%e of the form ey + aa*,
which are invertible). In S¢ the inverse of «; is a polynomial in «; of degree

w; — 1 which can be calculated from the relation involving «;. We can always

-1
i

reduce the expression ‘a;a; *’ to 1. Note that we are always allowed to divide

by any ¢, since they are always nonzero.

3.4 Type D,

We assume that @ is the star shaped quiver

?{;
-~ aj a Am—-1

- 0 1,1] [1,m —1]

3

By Lemma 3.3.7 we know that egA%eq 22 5S¢ = K{a, 8,v)/I, where I is the ideal

generated by the set of elements

ro = afy—qo,
ra = (a=1D(@—gq).. (@—an' - dim1),
o= (B-1(B-aq),
ryo= (y=1D(r—g)
Note that
7= (1 +g3) — a5, (3.1)
B = (1+q) — g2, (3.2)

Lemma 3.4.1. (i) The following elements ra, 13, 14 all lie in I.

ro = of—qo(1+g3) + q0g37,
rs = YW—qy e s a—(1+g )y —(1+g )8+ 1+g)(1+gh),
rg = vya—qo(l+q)+ qap.
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(i) The set Q = {rq,rg,7y,72,73,74} is a (full) reduction system for S° and

therefore the set of irreducible words is a finite spanning set.

Proof. (i) This could be done by considering the set R® = {rg,rq,73,7y} as
a reduction system and resolving the ambiguities, but the following method is

equivalent and quicker.

1 1

I contains roy~ ', so contains a8 — qoy~' = 1o by substituting (3.1). I
contains ro371, so contains a — qo(1 + ¢3)37 ' + 0378~ = —qogaqars by
substituting (3.2), and therefore contains r3. I contains a~!rga, so contains
Bya—qo. Set this equal to ;. Then I contains 37171, so contains ya—qo3~! =
r4 by substituting (3.2).

(ii) The elements of 2 are monic, so is  is a reduction system. [In fact
is full since the ideals I and I are equal - I C I was proved in part (i), and
ro = 12y — q37ry € In, so I C Ig. However, this is not necessary for the rest of
the proof]. The illegal words are {a™, 32,72, a3,v3,va}, so if w is irreducible
it must have the form B‘a/~v* where i,k € {0,1}, j € {0,...,m — 1}, and so
there are only finitely many possibilities. By Lemma A.2.3 this is a spanning

set for S€. O

Hence ey Afey is finite dimensional and by Lemma 3.3.8 we have the following

corollary.

Corollary 3.4.2. If Q has type D,, then A1(Q) is finite dimensional.
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3.5 Type E67 E7, Eg

We consider a general ‘type E’ star shaped quiver

NG

i

[1,1] [1,k—1]
3

Se

By Lemma 3.3.7 we know that egA%eq 22 5S¢ = K{a, 8,v)/I, where I is the ideal

generated by the elements

ro = aBy—qo,
ro = (a—=D(a—q7"). . (0 —q7'q - a),
s = (B-1)(B-a¢31")B-an'tm),
o= (y=Dy—a5')
Note that
B = ¢3q228? — (B1qee + qo1q22 + q21)8 + (14 o1 + g21¢22), (3.3)
U= (1+g) - @ (3.4)

and that a~! is a polynomial in o of degree k — 1, where the coefficient of o*~1

. k=1 k—i s 1
is Hi:l gy; = which is nonzero.
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Lemma 3.5.1. The following elements all lie in I.

T1

T2

T3

T4

Ts

Te

Proof. Let W be the set of words formed from «, 3, and let < be the ordering
<,pon W (see Section A.6). Observe that 71, ..
the ordering (the leading word being the first word as written out above), but
r5,7¢ do not have a leading word because the ordering is not sufficiently refined.

Note that we keep expressions in terms of a1, for the purposes of the ordering

v=(+g") +q a5 ap,

B+ 40205 dar'tan B — ay (1 + 03 a4
—(1+ a5 + 051655 )8 + (021°055 + a1 Gz + 421 ),
BaB — qo(1+ q3)B + gogsa,

80”8 — qaa3 g5 0220 B + 4503 (031022 — ga122 + q21)e
—qo(1 + g3)aB + qo(1 + g3)Ba + qg3(1 + g21 — g21g22) 3
—qoas(1+ g3)(1 + o1 — qorgoz)a ' + @3 (1 + g3),

0 205 45 00 B Ba + q5a3a31 g2 Ba B+ qo(1 + g3) B3
—(14 a2 + ¢31' 435" ) BB — qo—1(1 + 45 Va5 a7 B®

02 05 + 41 622 + 421 )B” + qo(1 + g3)aB’

—q3as(1+ q21 + @21422) 8% — 03453 (@31 022 + G21G22 + q21)v 23
—qa(14¢3)2B + qias(1 + g3) (1 + go1 + qa1go2)a ™' 3,

0 205 45 00 BB+ 40 a3 a5 g2 B Ba Tt + qo(1 + g3) B
—(1+ g5 + 051 655) 80 B — qo—1(1 + g5 )45, 450 @* 3
(42’05 + 41 G2 + 421 )0” B+ qo(1 + g3) %

2

—q5a3(1 + q21 + q21422)8° — 4005 (431 G22 + q21q22 + q21) B

—qa(1+q3)*B+ qig3(1 4+ g3)(1 + g21 + g21g22) Bt

they are regarded as a polynomial in .

We show the elements lie in I by resolving some of the ambiguities cre-

ated by the reduction system Q¢ = {ro,ra,73,7y}. The illegal words are
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{aBy, o, 33,72}, We resolve afvy? :

af(v?) — Bz +1)r—a5") ~ qolas ' +1) — g5 "B,

(@By)y — qo-

and so qo(qg1 +1)— qglozﬁ —qoy = —qor1 € I. Monicising, we see that r; € I.
Note that this was basically the same calculation as was done in the type D,
case, and this time the leading word is 7 because the ordering has changed.
Now let Q; = Qo U {r1}, the illegal words are {af8y, a*, 32,72, ~v}. We resolve

the inclusion ambiguity a57.

aBy = qo,

af(y) — af(—q ez B+ (1+q3")).

So by monicising, we have that r; = afaf — qo(1+ ¢3)aB+ q3qs € I. We could
add this element to the reduction system and resolve the ambiguities afBa3>
and o BaB (quite a complicated process). However, we can use the fact that
a and f are invertible to reach the same result. That is, since r737! € I, so is
afa — qo(1+ gz)a + ¢5a36" = 4543q3,42272, by using (3.3). Thus ry € I by
monicising. Similarly, a~1r; € I, and hence so is Ba3—qo(1+q3)B3+q2qza™t =
3.

We set 2o = Q1 U {re,r3}. We can take out ro,rg,r, from s because
they are redundant and we are only interested in finding a spanning set, so it
doesn’t matter if {2y is no longer a full reduction system (in fact afBy, 33,~2

are reduction unique with respect to 9, so €y is full). This leaves us with

Q3 = {ra,r1,72,73} With illegal words {a*, v, 3%, Ba}. We now resolve Ba32.

(BaB)B +—  qo(l+q3)B* — qiasa™ B,
=gy (L4 3 Do g aBa+ (1 +q3) (1 + a5 an’aas o
—qo(1+ ¢3)(a21" + 021 @2 + 431°052")

+ao(1+g3)(1 + a51" + 451°a55))8 — qgasa ' B,
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Ba(p?) = fo(—a3%a axlem aBa+ ¢ (1 + 5 )z taz o
1+ a5 + 6o 008 — (43705 + 030z + )
=45 %05 05705y B Ba+ qo(1+ g5 ) a1 40 Ba”
+qo(1+g3)(1 + a1 + 421422 )8 — 6303 (1 + 431" + a4z )™
(02’02 + 421" 422 + a1’ )Ba.
Equating the two reductions gives a new element of I, which we monicise (the

leading term being Ba?Ba, as its coefficient is nonzero). That is, we obtain

rg € I, where

rs = Ba’Ba—qiq3q592207 B+ 45a3(a51922 — 21922 + g21)a
—qo(1 4 g3)aBa + qo(1 + g3)Bc” + g5 qs(1 + go1 — g21g22) B
—qog3(1 4+ g3)(1 + g21 — g21q22) + @3 (1 + g3)av.
Adjoining rg to Q3 creates an ambiguity Ba?Ba”. To resolve it, it is equivalent
to multiply 7g by a~! and we obtain 74 € I. Setting Q4 = Q3 U {ry} we

have illegal words {a*, v, 32, Baf3, Ba?3}. This leads to ambiguities 3a?3? and
B%a?3. We resolve B3a?[32,

(Ba®B)B = qyaiaaiazea Bat B — 4y (@522 + 421022 + g21)a?B
+qo(1+ g3)af? + qo(1 + g3) BB — q3as(1 + g1 + g21422) 5
+a5g3(1+ g3) (1 + g21 + ga1ge2) 5 — g5 (1 + ¢3)° 3,
Ba*(5%) = =gy a5 x4 B’ Ba+ gy (1 + a5 aa a0 Bo®
1+ g + 051 92')B0”B — (42" 03' + 431 02 + 4’ )Bo.
Equating the two single step reductions shows r5 € I. Similarly we can resolve

8223, which is the same calculation as for Ba23?, except for reversing the

words. This shows rg € I. O
Lemma 3.5.2. S¢ is finite dimensional for k = 3,4,5.

Proof. Let 2 be the reduction system {rq,71,7r2,73,74}. The corresponding set

of illegal words is {a*, v, 82, Ba3, Ba?B3}. With k = 3, the irreducible words are
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exactly all the subwords of a?Ba? (a finite set), and by Lemma A.2.3 this is a
finite spanning set for S°.

The cases k = 4,5 require us to refine the ordering so that we use r5 and
re. Let r; be the complete reduction of rs with respect to €2, and let < be
the ordering <, 5 (a,8:m) (see Section A.6), with m = 3. We claim that the
leading word of 74 is BaBa. First, observe that its coefficient in 75 is nonzero.
It therefore suffices to prove that Sa3Ba > u for all other words u appearing
in r{. Clearly the only term which concerns us is a~'Sa~!3 as the remaining
terms involving two occurrences of 3 have been reduced. We expand a~!3a~!f

using the expression for a~!

as a polynomial in a, so we need to show that
ifr,s < k-1 <4 then ga":‘b(ﬂaisﬂa) > gay(a”Ba®B). This is true because
ggfb(ﬂa3ﬂa) = 3m +m? and gup(a”Ba’B) =1+ sm (and clearly 3m + m? >
r+smfor m=3,r s <4).

This gives enough information to settle the case &k = 4. Let 5 be the
reduction system {r,,r1,72,73,74,75}. By the above claim, the corresponding
set of illegal words is {a*,~, 3%, Baf, fa B3, BaBa}. Clearly the irreducible
words are exactly all the subwords of a38a33 (a finite set), and by Lemma
A.2.3 this is a finite spanning set for S°¢.

Now assume that k = 5, and let r§ be the reduction of r¢ with respect to
Q. We claim that the leading word of r§ is Ba*Ba*. TIts coefficient in rg is
t2q3q3q3,q22 (where t? is the coefficient of a* in a~1). It therefore suffices to
prove that Sa*Ba* > u for all other words u appearing in 5. We can forget
about words other than afa?3 and Ba~'Ba~!. We expand the latter term
as a linear combination of words Sa”"Ba®, r,s < 4. We wish to calculate for
which word g;", takes its maximal value. gfl’fb(ﬁa’”ﬁas) = rm + sm?, which is
maximised when r and s are maximised, i.e. when r = s = 4. This is clearly
greater than 1+ 3m = g;’}b(aﬁag’ﬁ).

We are now ready to prove the result for £ = 5. Let {2 be the reduction
system {r,,r1,72,73,74,75',76’}. By the above claim, the corresponding set of
illegal words is {a®,~, 8%, Baf, fa B3, fa’Ba, BatBat}. Clearly the irreducible

words are exactly all the subwords of a*Ba*3a33 (a finite set), and by Lemma

5%)



A.2.3 this is a finite spanning set for S°. O

Now k = 3,4,5 corresponds to @) being type FEg, Er7, Eg respectively, so we

obtain the following corollary.
Corollary 3.5.3. If Q has type Eg, E7, Es then A1(Q) is finite dimensional.

Now we combine Corollaries 3.2.2, 3.4.2, 3.5.3 to complete the proof of The-

orem 3.1.1.

3.6 Open problems

Now that is has been shown that A?(Q) is finite dimensional for ) Dynkin, the
next obvious problem is to determine its dimension. This will almost certainly
depend on ¢, and in particular the positive roots for which ¢* = 1. In fact, we

immediately have the following result.
Corollary 3.6.1. If ¢® # 1 for all positive roots for Q, then A1(Q) is zero.

Proof. By combining Lemma 2.4.3 and Theorem 2.4.4, we have that the di-
mension vector « of a finite dimensional simple representation of A? must be
a positive root and must satisfy ¢® = 1. Hence, by the hypothesis, A? has no
finite dimensional simple representations. The only finite dimensional algebra

without any finite dimensional simple representations is zero. O

It should be possible to obtain further results by using the methods of [10,
Section 7], though it is unclear whether this would lead to a proof of the following

conjecture.

Conjecture 3.6.2. Let ¢ € (K*)?° and A\ € K90, If we can partition the set of
roots for Q into a pair of subsets Ry, Ro so that ¢® =1 and \.a =0 for a« € Ry
and ¢* # 1 and .o # 0 for a € Ry, then dim A%(Q) = dim ITN(Q).

In the undeformed case, this conjecture can be concisely stated.

Conjecture 3.6.3. dim A*(Q) = dim I1(Q).
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Whereas the first conjecture is made with little evidence, the second one is
made with more confidence. It is obviously true in type A,, and it is also true
in type D4 (see Lemma 5.1.3). Additionally one can calculate the dimension
of egAleq by using the reduction algorithm (the calculation is analogous to the
previous sections), and this has been found to be the same as egIleg. We could
(in theory) do the same with A', but this is rather impractical. It seems ‘unnat-
ural’ that the dimensions of A' and II could be different, whilst the dimensions
of egAteg and eglleg be the same, since the algebras have the same presentation
except for taking a different relation at 0. This suggests that the conjecture is
true, but we have been unable to work out a specific reason why ‘unnatural’

should imply ‘impossible’.

We end this section by considering how the undeformed multiplicative pre-
projective algebra relates to the ‘deformed preprojective algebra of generalised
Dynkin type’, P/(Q), introduced by Biatkowski, Erdmann and Skowronski, [5].
Note that these algebras are not the same as the deformed preprojective algebra
of Crawley-Boevey and Holland. Let @ be a star-shaped quiver of type D,,, Eg,
E; or Eg with central vertex 0 (other situations are considered in [5], but they

are not relevant to this discussion). Let R be the algebra

Rq = K(z,y)/(z"*,y", (x + y)""),

where the w; are the integers given in Section 3.3. It can be easily checked that
Rg = eglleq. Let f(z,y) € rad® Rg and define P/(Q) = KQ/I, where I is the

ideal generated by the elements (p{j Jue@, and p where

f * * * * *
Py = anayy +azay +asiaz + flaias, asiaz),
pl = E e(a)aa™, if v #0,

(1661
h(a)=v
~ * *
p = (az1a3 +asiaz)"".

In the following, we write A for aqy1af;, B for as1a3,;, C for azia%; and e
) 11> 21> 31

for eg and A for A1(Q). It can be shown that A is equal to K@/i, where I is
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the ideal generated by the relations (p/)veq,, with f = —zy in type D,, and
f = —zy — y® + xy? otherwise. Since pf = pl for all v # 0, it suffices to
show that u} € I and pg € I,,. The first is true since we can cancel the terms
involving B"2 and C"3 in pg(e + B)(e + C) to obtain u. The second is true
because in type D,, we can do a similar process on uj(e — C)(e — B) to obtain
pl, and in type E, we do the same with u$(e — C)(e — B + B2).

This shows that P/(Q) is the quotient of A'(Q) by the relation 5 = (B +
C)*r. It is natural to ask whether p € I,,, in which case this is a trivial quotient,
and so AY(Q) = P/(Q) (this is one example of the last question posed at the
end of Chapter 5). The question is connected to an assertion made in the proof

of Lemma 3.2 of [5], where it is stated that for any f and any Dynkin quiver @,
ePf(Q)e = Rg. (3.5)

If @Q has type D,, it can be shown that this claim is correct. Since we
have already stated in the discussion after Conjecture 3.6.3 that dimeAe =
dimelle = dim Rg, it must be the case that Pf(Q) = A, and in particular
(B+C)"r € I,,. We verify this - Since I,, contains (B + C — CB)"*, it contains
L= (B+C—-CB)“((e4B)(e+C))= (assuming w; is even, if w; is odd then
multiplying by ((e + B)(e + C)) 7
manipulate L (and remain in I,,) using the following rules: (B+C—CB)(1+B)
can be replaced by (B+C), (B+C)(1+ C) can be replaced by (1+ B)(B+C),

and (B + C)2(1 + B) can be replaced by (1 + B)(B + C)? as each pair of

(e + B) will work the same way). We can

expressions are the same if one cancels terms involving B? or C2. It is easy to
see that the expression eventually obtained is (B + C)*1.

However, if Q has type Eg, then (3.5) is not true for all f, and in particular for
f=—zy—y?+azy® [It can also be shown that j & I,,, and so A1(Q) 2 P/(Q).]
There is a surjective map 0 from Rq to eP’(Q)e which takes z to C' and y to

B. Clearly (z +y+ f(x,y))? is sent to zero, so if § were an isomorphism, then
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(z +y+ f(z,y))® must equal zero in Rg. Consider the following matrices

[
[
—

Ju
Ju

[elelelelolelololelelelo)]
=

K
cocoococooocoooco
cocoococooocooor
cocoococooocoooco
cocoococooocoooco
cocoococococooo~o
cocoocooo | cooco
cocoocooo | cooco
cocoocooo | mooco
cooo | roooocoo
cocoo | mroocoooco
ol rocococococooco
cococococooococooo
cocococococoococoor
cococococooococooco
cococococooococo~o
cococococoooco~oo
cococococooococooco
coococococo~oco0o
cococococo—ooooo
cocococococoococooo
coocorocoooo0o
cooroooococooo
orocooocooocooo

It is easily checked that these matrices satisfy 2 = 0, ¥ = 0, (z + )3 = 0,
and therefore define a representation of Rqg (in fact the regular representation).

However, we have

Ju
Ju

—

(x+y+ fla,y)® =

coocococoococoocoo
coocococoocooco
coocococoocoooco
coocococoocoooco
coocococooccoooco
[elolololelelelelele)oNo)
OCOO0OOOOoOOoOOOoOO OO
COOOOOOOOoOO OO
coococcoococoooco
cococococoocoooo |
cococococoocoooo |
cococococoococoo | v
o

and thus (z +y + f(2,y))> # 0 in Rg. Thus (3.5), and consequently the
statement that dim P7(Q) = dimTI(Q) (which is the final part of [5, Lemma
3.2]) are incorrect. Possibly (depending on the other results of [5]) one should
define Pf(Q) without the extra relation p, as then dim Pf(Q) = dimII(Q)

would very likely be true (Conjecture 3.6.3 is a special case of this).
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Chapter 4

The extended Dynkin case

In this chapter we are concerned with the properties of AY(Q) where @ is an
extended Dynkin diagram. The main result is a nice description of the ring
e1A(Q)e; (the analogue of Theorem 1.3.5), where 1 is an extending vertex.
As in the previous chapter, the proof is a long case by case analysis, which
comprises the majority of the chapter. In the final section, we consider the
implications of this theorem with regard to the properties of A, and list some

further open questions.

4.1 The main theorem

Theorem 4.1.1. If Q) is extended Dynkin and 1 is an extending vertex, then

e1A(Q)er is a commutative algebra. More precisely,
61A(Q)€1 = K[Xv Yv Z]/‘]v
where J is the ideal generated by

2" L XY + XY Z if Q type A,

7% —p(X)XZ 4+ pr1 (X)X?Y — XY? - XYZ if Q type Dy,
2+ X*Z+Y3 - XYZ  ifQ type Eg,

Z24+Y3 4+ XY - XYZ if Q type Er,

72 Y3 - X5+ XYZ if Q type Es,
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where k = n—4, and the py, are polynomials defined inductively by p_1(X) = —1,
po(X) =0 and piy1(X) = X(pi(X) + pi—1(X)) fori > 1.

It would be interesting to determine the significance of these polynomials,
given their similarity to the polynomials of the Kleinian singularities. It can be
verified that they are irreducible, and have a unique singular point at zero. One
can ask if each ring is isomorphic to the coordinate ring at the corresponding
Kleinian singularity, (i.e. is e; A(Q)ey is isomorphic e111(Q)e1?) as well as some

other questions.

The proof of the theorem is done by a case by case analysis, starting with
the star shaped quivers D4, E@, E7, Eg, then A, (omitting Ay - this will be
discussed in the final section) and finally D,, with n > 4. The proof in each case
splits into four parts.

1. We can assume that A = KQ/I,, (using Lemma 3.3.2 in the star shaped
cases, and being careful to those the correct ordering in the A, case). The
object of this part is to obtain some ‘useful’ elements of I,, to be used in later
stages (in the A, case we can move directly to stage 2). Assuming the quiver is
star shaped (the D,, with n > 4 are more complicated) and that 0 is the central
vertex, then we can use the presentation S = K(Aq, As, ..., Ag)/Ir of egAeg
given in Lemma 3.3.7, and then find elements of Iz (which can be considered to
be members of I,,) in a similar fashion to the previous chapter. We consider the
rings Ay and Sy defined to be the analogues of A and S obtained by ignoring the
complicated relation at the central vertex. There is a natural map KQ — Ag
(which induces a natural map K (A1, As, ..., Ax) — Sp) which is denoted by an
underline. This enables us to easily make the ‘obvious’ reductions by the simpler
arm relations. Clearly, if z = y, then # —y € [,. Observe that during this part
we are operating in the path algebra or the free algebra K(A;, As, ..., Ag) (or
in the rings Ag and Sp in the case where elements are underlined).

2. The object of this part is to show that each element of e;Ae; can be

written as a linear combinations of products of X, Y and Z (where X, Y and
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Z are certain well chosen paths). For the star shaped cases, there is an easy
lemma which is helpful. We denote the shortest path of @ from 0 to 1 by [, and
the shortest path from 1 to 0 by ] (this might look rather ugly, but it seems the

most efficient notation).

Lemma 4.1.2. If H is a spanning set for egAeg, then [H] = {[h]: h € H} is a

spanning set for e;Ae;.

Proof. By Lemma 3.3.4, e;Ae; is spanned by the set of all normalised paths
which start and end at 1. Let p be such a path. If p doesn’t visit 0, the we
use the reduction system {a;‘jaij — a,i’j+1a,;:j+1 1<i<k1<j<w —-2}U
{a} 4, —1@iw;—1 1 1 <@ < k} to prove that p = 0. We can therefore assume that
p does visit 0, which means p has the form [p’] for some path p’ which starts

and ends at 0. Clearly p’ € KH, so p € K[H]. O

The method used is a ‘reduction algorithm’ which uses the elements obtained
in part 1. For the D, cases, the standard method described in the appendix
works nicely, but the remaining cases are slightly complicated, because the stan-
dard method will only get only part of the way towards the desired result. At
that point we employ a modified reduction algorithm, which makes substitutions
based on the position of a particular subword in a word. Of course care must
be taken with this approach, but in each case it should be clear this is a valid
argument. Some final comments about this stage - In the type E, cases, we
define a sequence notation to better describe words. Although these sequences
are just an alternative way of describing elements of the path algebra, we always
use the convention that these sequences are elements of A (so that a sequence
really represents the image under the map KQ — A).

3. The next stage is to show that there is a surjective map 0 : L — ejAe;
(where L is the appropriate K[X,Y, Z]/J). In part 2 we have shown there is a
map K(X,Y,Z) — ejAey, so this is simply a set of calculations which show XY
and Z commute, and that J is sent to zero. In these calculations, we explain
each step by stating which substitution is being used. At all times during this

stage the convention is that we are working in A, so when a word or sequence is
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written down, it is understood this means the image under the map KQ — A
(or Ag — A).

4. Once we have the surjective map 6, the final stage is to prove that it is an
isomorphism. We write down a family {M*¢ : (s,t) € V} of A modules, where V/
is a 2 dimensional affine variety in K2. The M** are given as representations in
Q satisfying the appropriate relations, where the matrices are rational functions
in s and ¢ defined on V, and are therefore algebraic. In each case e; M* is a
one dimensional module for e;Aey, and is therefore simple.

There is a morphism of varieties q~5 : V' — SpecejAe; which takes (s,t) to
Ann(e; M*%). Since ejAe; is a quotient of L via 0, we can identify SpecejAe;
with a closed subset of K3, and this gives rise to a morphism of varieties ¢ :
V — K3 with takes (s,t) to (2, yst, 2st), Where g is the entry of the 1 by
1 matrix obtained by substituting the matrices in M$* for the arrows in 6(X)

(and similarly ys; and z; are defined using 6(Y") and 6(Z) respectively).
Lemma 4.1.3. If ¢ is injective, then 0:L — ejAey is an isomorphism.

Proof. First note that in each case the ideal J is a prime ideal of height 1 since it
is generated by a single irreducible polynomial, and so K[X,Y, Z]/J is a domain
of Krull dimension 2. To prove 6 is an isomorphism, it suffices to prove that
e1Aeq has Krull dimension 2 since in this case there exists a chain Py C P, C P,
of prime ideals of e; Aey, and hence a corresponding chain P C P C Py of prime
ideals of K[X,Y, Z]/.J containing Ker §. If Ker@ # 0, this can be extended to a
chain {0} C P} C P} C PJ, contradicting K[X,Y, Z]/J being a domain of Krull
dimension 2. Since ¢ is injective, dim Spece;Ae; > dimm > dimV =2, and

so the Krull dimension of e; Ae; is 2 (since it cannot be greater than 2). (]

Note that V is always chosen so that the xg, yst, 25t are non zero, which is

essential when proving that ¢ is injective.

It is worth describing the method used to find the M*t. We consider the one

parameter family F of regular simple representations of ) of dimension vector
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0 (these can be obtained in [13] for example). They can be extended to repre-
sentations of ) by using arbitrary matrices of the correct size to the represent
the M, for each M € F. We calculate which of these are representations of

A. Namely, we determine which M,- satisfy the equations

H (1M;L(a) + MaMa* )e(a) = 1M,L(a) for all v € QO-

ae@
h(a)=v

In each case, this leads to set of m equations in m unknowns (regarding the
original parameter ¢ as a constant). They are nonlinear, but by regarding some
of the variables to be constants, can be assumed to be linear in the remaining
variables. Solving for these variables and substituting, we obtain another set
of equations with fewer variables, and can repeat the equations are all solved.
This can be done easily on a computer. The solution set is always one dimen-
sional (depending on s say) and we therefore obtain a family depending on two

parameters, s and t.

A final comment, which is worth noting when comparing this theorem with
Theorem 1.3.5. It is possible to repeat this entire calculation with II(Q) (where
it is much easier). The paths we obtained in part 2 for A(Q) will also generate
e1II(Q)eq, and the relation obtained in part 3 is exactly the relation given in the
statement of Theorem 1.3.5 (which is the reason for the slightly strange looking

polynomials). These relations only differ by XY Z in most cases.
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4.2 Type Dy

We can assume that A(Q) = KQ/I,,, where @ is the quiver

%
AN

and I, is the ideal generated by the elements a*a, b*b, c*c,d*d and po = (eg +
aa*)(eg+bb*)(eg+cc*)(eg+dd*) —eg. Let A = aa*, B =bb*, C = cc*, D = dd*.
Note that egAeq = S = K(A, B,C, D)/Ir where R = {A%, B2, C? D2, s0} (with
so=(1+A4)(1+B)(1+C)(1+D)-1).

Lemma 4.2.1. The following elements lie in Ir (and hence in I,,).

s$s = D+A+B+C+AB+ AC + BC + ABC,

sy = CB+AB+ AC+ BA+ BC+CA+ ABC + ABA + ACA
+BCA+ ABCA,

s3 = CAB - BAC — ABC — ABA — ACA— BCA — ABCA.

Proof. Since sg € Ig, sois so(1+D)"' = (14+A)(1+B)(1+C)—(1— D) = 1.
Now we ‘resolve’ D?: Since D? € R, sois s4 = (1 — (1 + A)(1 + B)(1 + C))2.
Multiplying s4 by (1+C)"'(1+ B)~' = (1 - C)(1 — B) we get

so=1+A)1+B)(1+C)(1+A) —2(1+A)+(1—-C)(1—B) €I,

and then sy’ = so, 50 52 € Ig. Multiplying s4 by (1+ B)~'(1+ A)~! on the left
and (14 C)~! on the right we get

ss=(1+C)(1+A)(1+B)—2+(1—-B)(1—-A)(1-C) € Ig,
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and then s3 = s5 — s2 € IR. O
Lemma 4.2.2. e;Ae; is generated by X = [B], Y = [C], Z = [BC].

Proof. Let Q be the reduction system {42 B2 C2, s;,s,}, with respect to the
ordering <p ¢ B,(B,c;3)- The leading words of s; and sz are D and CB re-
spectively. By Lemma A.2.3, eyAeg is spanned by the set H of irreducible
words, namely, all words which do not involve D, no letter occurs two or more
times consecutively, and C never occurs immediately to the left of B, and so
by Lemma 4.1.2, [H] is a spanning set for e;Ae;. Now let G be the subset of
H containing the empty word and all words which start or end with A. Since
a*A, Aa,a*a € I, if zg € G, [20] is zero in A, and therefore H' = [(H \ G)] is a
spanning set for e;Ae;.

Elements of H' have the form [z1Ax2A... Axy] where z; € {B,C, BC}.
Since A = a*a =|[, we can bracket this as [z;][z2]...[rr] which completes the

proof. O

Lemma 4.2.3. There is a surjective map 0 : K[X,Y, Z]/(Z% — X?Y — XY? —
XYZ) — €1A€1.

Proof. By the previous lemma, there is a surjective map 0 : K(X,Y,Z) —
e1Aey, which maps X to a*Ba, Y to a*Ca and Z to a*BCa. Observe that

0YX —XY) = a"BACa—a*CABa=a"s3a =0,
0(ZX —XZ) = a"BCABa—a"BABCa = a"Bsga =0,
0YZ—-2Y) = a*CABCa—a"BCACa = a"s3Ca =0,

which shows X, Y, Z commute, and

0(Z* - XY - XY? - XYZ) = a*BCABCa—a*BABACa —a*BACACa
—a*BABCACa
= a*Bs3Ca =0,
which shows that 8 induces 6. O
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Lemma 4.2.4. 0 is an isomorphism.

Proof. For all (s,t) € K? such that t?s —ts+1# 0, s # 0, t # 0,1, we consider

_ (0 #5EY), (0 0
a_(o o) A= ts(t—1) 0

ts —ts
_ [ s—tst1 s—tst+1 5 = —ts s
Y= ts —ts ’ - —t25 ts ]

t2s—ts+1  t2s—ts+1

the matrices

One can check that o? = 32 =42 = §2 =0, and (a+1)(B+1)(y+1)(6+1) = 1.
This implies (see the proof of Lemma 3.3.7) that one gets a representation M**
(see the diagram below) of A in which M§! = K2, M;' = Ima, M5t = Im §3,
M5t =TIm~y, M5t =Imé, M5 is the inclusion of Im v in K2, and M2t is o (and

similarly for b, ¢, d).

( ts —ts )
t2s—ts+1 tZs—tst1

(tst—1)0)

K

If we calculate xs, yst, 25t as described before Lemma 4.1.3, we find

(t —1)ts? (t—1)ts? (t—1)%%s3
Topg — — - 7 Gopg —— —————
T s st 1 O (25 —ts+1)27 ~ 7 (25 —ts+ 1)
If we assume that (g, yYst,2st) = (Tsrr,Ysrer, 2s¢r), then in particular ¢ =

25 s yse(Yst + 2st) = Zsrer [TorpYsrer (Ysrer + zsrp) = ¢ which shows ¢ = ¢/ and
then ts(t — 1) = zg/yst = 2t /ysier = t's’(t' — 1) which shows s = s’. Thus 6 is

an isomorphism by Lemma 4.1.3. o
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4.3 Type Eg.

We can assume that A(Q) = KQ/I,,, where @ is the quiver

a2

2
{m
be b1 a1 C2
3 1 0 5 6

and I, is the ideal generated by the elements ajaz, b3b2, c5ca, azas —ajar, babs —
bib1, cach—cicr and po = (egtarai)(eg+b1b7)(eo+c1ci)—eo. Let A = ajaj, B =
bib%, C = cic}. Note that egAeg = K(A, B,C)/Ir where R = {A3, B3,C?, 59}
with so = (1+A)(1+B)(1+C) — 1.

Lemma 4.3.1. The following elements lie in Ir (and hence in I,,).

s1 = C+A+B—-BA—-A?>—-B? 4+ BA?+ B>A - B%A?,

sy = BA?+ A’B+ AB?>+ B?A+ BAB+ ABA+ ABAB — B*A?,
s3 = BA?>4+ A’B+ AB? + B2A+ BAB + ABA+ BABA — A’B?,
sy = B?A’4+ BABA — A’B? — ABAB.

Proof. Since sg € Ig,sois (1+B) 1 (1+A4) tsg = (1+C)—(1+B) "1 (1+4)~1 =
s1. Now we ‘resolve’ C3: Since C® € Iy, so is s5 = ((1+ B)~}(1 + A)~! —1)3.
Multiplying s5 on the right by (1 + A)(1+ B)(1 + A)(1 + B) we get

(1+B) ' (1+A4) ' =34+3(1+A)(1+B) - (1+A)(1+B)1+A)(1+B) = s, € Ig,

and then sy’ = s3, s0 s € Ig. Multiplying s5 on the left by (1+B)(1+A)(1+B)
and the right by (1 + A) we get

(1+A)'1+B)'=3+4+3(1+B)(1+A)—(1+B)(1+A)(1+B)(1+A) = s; € Ig,

and then s3’ = s3, so s3 € Ig. Finally s4 = s3 — 52 € Ig. O
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Lemma 4.3.2. ejAe; is generated by X = [B], Y = [B?|, Z = [BAB?].

Proof. As in the Dy case, we find a suitable spanning set for egAeg. Using
the reduction system {A3, B3, s1} with respect to the ordering <c shows that
the set H of all words which do not involve C, B3, A3 is a spanning set for
eolep, and by Lemma 4.1.2, [H] is a spanning set for e;jAe;. Let H' be the
set of all elements of H which start and end with B. Since [A4, A], [] € I,
[H'] is a spanning set for e;Ae;. Attempts to reduce H' further by using sz in
some reduction system do not give the required answer, so we have to use other
methods.

We can denote an element of [H'] of the form [B* AB"2A... AB"] as a
sequence of integers, [i1,ia,...,ix], where each i; = 1,2. Since A? = a}ajaza;
can replaced by ][, for all h € H' we can write [h] as a product of sequences,
e.g. [B2ABABA%’B?A%B? = [2,1,1][2][1].

We claim that all sequences [i1,142,...,4;] can be written (as elements of
A) as a linear combination of elements which are products of the sequences
[1],[2],[1,2], and this completes the proof since these sequences are equal to
XY .Z respectively.

Proof of claim: By induction on the length k& of the sequence. We first
check the small cases. If k = 1 then there is nothing to prove. Suppose k = 2.
Then [1,2] is trivial, [1,1] = [s2] = 0. The claim follows for the sequences

[2,1] and [2,2] because [Bss] = [1][1] + [2,1] + [1,2] — [1][2] = 0 and [B?s3] =

[2][1] 4+ [2,2] — [2][2] = 0. Now suppose that k£ > 3 and assume that the claim is
true for all sequences of length less than k.

(1) Since [s2A = [B?A? + [BABA, we have that

[1,1,ds, ..., ix] = —[2][is, . .. , ix)-

Using the induction hypothesis, the claim is verified for sequences of the form

1,1,...].
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(2) Since

[BAsy = [BABA®+ [BA%B? +[BAB?A + [BABAB + [BA’BA

[BA?BAB — [BAB?A?,

we have that

[1,2,03,...,i5] = —[1,1[is,...,0) — [Wlis +2,...,08) — [1,1,i3+1,...,ix]

=11, 43, yik] — [1)[1,i3 + 1, ... ik] + [1,2][is, . - ., i)

By the induction hypothesis, and the result for sequences of the form [1,1,...],
the claim is true for sequences of the form [1,2,...] (note that sequences involv-
ing integers greater than 2 can be ignored because this corresponds to having a
subword B2, which is zero).

(3) Since [s2 = [BA? + [B2A + [BAB — [B2 A2, we have that

[2,i2,...,ik) = —[1][i2, ..., ik] — [L,d2 + 1, ... ik] + [2][i2, . - ., k],
and the claim is true for sequences of the form [2,...], and therefore for all
sequences. O
Lemma 4.3.3. There is a surjective map 0 : K[X,Y, Z]/(Z? — X?Y — XY? —

XYZ) — €1A€1.

Proof. By the previous lemma, there is a surjective map 6 : K(X,Y,Z) —
e1Aeq, which maps X to [B], Y to [B?] and Z to [BAB?]. Observe that

9(XY) = |[(BA?)B? = —[BABAB]— [B*AB?|,
9(YX) = [B*A’B)|=—[BABAB] - [B’AB?.

This is true by using ss3 in line 1 and s in line 2 to substitute the bracketed

term.

0(XZ) = [BA(ABAB)B]

[BAB*A*B] + [(BAB)ABAB]

[BAB?A%B] — [B%|BAB|

0(ZX)).
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Lines 2,3 are true by using s4 and sy respectively to substitute the bracketed

words, and line 4 since [BAB] is zero.

0(YZ) = |[(B*A)ABAB? = —|[BABABAB?,
6(ZY) = |[(BAB(BA?)B? = —-|BABABAB?|.

‘We have used s to substitute the bracketed term on each line. This shows that

X,Y, Z commute. Finally,

0(Z*) = [BAB*(A’B)AB?|

= —[BA(B?A)B*AB?| — [BAB>ABA?B?| + [BAB*>A?B* AB?

= [BAB][B*AB? + [B]|[BAB*AB? — [BAB?AB|[B?]

= O(X)[BAB?AB?* — [BAB*AB?)0(Y)

= 0(X)0(Z)0(Y)—-0(X)0(X)0(Z) —0(Y)O(Y)I(Y)

= OXYZ-X?Z-Y3).
In line 2 and 3, we used s3 and so respectively to substitute the bracketed word,
and line 4 we cancelled the term involving [BAB]. The next line uses the facts
that [1,2,1] = —[1,1,2] = [2][2] and [1,2,2] = —[1][1, 2] + [1, 2][2], which can be

easily verified by following the proof of the previous lemma. O
Lemma 4.3.4. 0 is an isomorphism.

Proof. For all (s,t) € K2 such that t?s —ts+1# 0, s # 0, t # 0,1, we consider

the matrices

ts(t—1)
(UN s | —ts(t—1)
a=10 0  —ts(t—1)
0 0 0
0 0 0
B=1|st-1) 0 0
- t
tzs—ti‘+1 tzs—is+1 0
0 —ts(t—1) ts(t—1)
t2s—ts+1 2s—ts+1
= | —s(t—1) st(t—1)° ts(—3t2s+3ts—s+t>s+t—1)
V= 5( t2s—ts+1 t2s—ts+1
s —ts(ts—s+1) —s2t(t—1)2
t2s—ts+1 t2s—ts+1
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One can check that o® = 33 = 4% = 0, and (o + 1)(3 + 1)(y + 1) = 1. This

implies (see the proof of Lemma 3.3.7) that one gets a representation M* of A,

Im 2

Im~

Ime? " Ima == K3 = ImB = Imp?

where the linear maps are M, jf* = Qi qi-1 and M, jt is the inclusion of Im o in
Im a~! (and similarly for the b; and ¢;). This is easily seen to have dimension
vector 0. Calculating xs:, yst, zst as described before Lemma 4.1.3, we find
(t—1)%%s3 —(t —1)33s4 (t—1)5¢4s°
T s —ts+ )2 T s —ts+ )20 U (s —ts+ 1)3
If we assume that (zs¢, Yst, 2st) = (Tsre, Ysrer, 2o+ ), then in particular (t—1)/t =
=22 /y3, = —2%, /vy, = (t — 1)/t which shows ¢t = t and then ts(t — 1) =
Yst/Tst = Ysrvr [Tsrpr = t's' (' — 1) which shows s = s’. Thus 0 is an isomorphism

by Lemma 4.1.3. O

4.4 Type E;.

We can assume that A(Q) = KQ/I,,, where @Q is the quiver

4
c
as as ay b1 by b3
1 2 3 0 5 6 7

and I, is the ideal generated by the elements a3as, b3bs, c*c, azas — ajaz, b3bs —
b3ba, azal — ajay, babs — biby and po = (eo + ara)(eo + b1b7)(eo + cc*) —eg. We
set A = ajaf, B = bib}, C = cc*. Note that egAeg = K(A, B,C)/Ir where R
is the set of elements {A*, B4 C2, 5o} with so = (1+ A)(1 + B)(1+C) — 1.
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Lemma 4.4.1. The following elements lie in Ir (and hence in I,,).

s1 = BHA+C—A%2— AC + A% + A%C — A3C,

S9 CA3 + A3C + CA2C — CA3C + ACA? + A%CA

+ACAC + CACA + ACACA.

Proof. Since s € Ig,sois (1+A) so(1+C)~t = (1+B)—(1+A4)"1(1+C)~t =
s1. Now we ‘resolve’ B*: Since B* € I, sois s3 = ((1+ A)71(1+C)"1 - 1)
Let s4 = (1+A)1+C)1+ A)(1+ C)(1+ A)ss. One finds that s4 = s9, s0
s9 € Ip. O

Lemma 4.4.2. ejAe; is generated by X = [C], Y = [CAC], Z = [CACA2C).

Proof. Once again, we show that each element of e;Ae; can be written as
linear combinations of products of XY and Z. Using the reduction system
{A*,C?, 51} with respect to the ordering <p, we see that egAeq is spanned by
the set H of all words not containing B, C?, A* as a subword, and hence e;Ae;
is spanned by [H]. Since [A, 4], [| € I,,, we can replace [H] by [H'], where H'
is the subset of H containing all words which start and end with C. We can
express an element [CA"CA2C...CA"C] of [H'] as a sequence i1, 42, ...,k
(note that we can assume that each 4, = 1,2,3 and we use [.] to denote [C]).
We claim that each sequence can be written as a linear combination of products
of the sequences [.],[1],[1,2], which completes the proof of the lemma.

Proof of claim - By a ‘reduction algorithm’ on sequences. Consider the
ordering <321, On the set of all sequences, where the lexographic ordering
has 2 > 1. We write down a list of substitutions which writes a sequence as a
linear combination of products of lesser sequences. Note that this is what was
effectively being done for Eg, only there the ordering was just <jen.

(1) Since [#1, .-+ 8j—1, 35841y« - -5 8k) = [i1,- - - 55—1][Ej41, - - -, 9k], We can as-
sume that each 4; = 1, 2.

(2) Since Cs2C = CACA%C + CA2CAC + CACACAC, we have that

i1, o ijo1y 2 Ly ijaay e yin) = —[i1yeyij1,1,2,0500, .. k]

i1y rij1, 1,1, 1,00, k).
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By applying this substitution repeatedly, we can write any sequence as a linear
combination of sequences of the form [1,1,...,1,2,2,...,2], and thus it suffices
to prove the claim only for sequences of this form.

(3) Since [s2C = [CA3C + [CACAC, we have that

[1,1,43,...,i5) = —[8[iz- - ., ix] = —[][1[iss - - - » i),

and it follows that it suffices to prove the claim for sequences of the form

[1,2,2,...,2].

) ) )

(4) Since CA2sy] = CA2CA2C) — CA2CA3C) + CAPCAC], we have that

[i1, -y in-2.2,2] = [ity- sik—2,2,3] = [i1,. . ik—2,3,1]

[i1, - yin—2, 2] = [it, - .., ie—2][1].

and it follows that we can write any sequence as a linear combination of products

of the sequences [.], [1],[2], [1,2]. Since [s2] = [CA2C] — [CA3C], then [2] = [3] =

[.][-], which completes proof of the claim. O

Lemma 4.4.3. There is a surjective map 0 : K[X,Y,Z]/(Z* + X3Y + Y3 —
XYZ) — €1A€1.

Proof. By the previous lemma, there is a surjective map 0 : K(X,Y,Z) —
e1Aeq, which maps X to [C], Y to [CAC] and Z to [CACA%C]. Observe that
by expanding using s3 we have

0(XY) = [(CAPC)AC] = [CA?CAC] + [CACA*C],

0(YX) = [(CA(CA3C)] =[CACA*C]+ [CA*CAC).

which shows X and Y commute. In the following calculations, we make substi-

tutions of the bracketed part using ss, convert into the sequence notation and
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follow the method described in the above proof.

0(ZX) = [CA(CA%C)A3C) = [CACA3CA3C] — [CA%(CACA)A%C)
1,3,3] +[2,2,2] — [2,3,2] + [3,1,2] + [3,1, 3]

1L+ 12,20 0] = [210] = LI + LI 21+ L[

L+ LG = LI = LI = DIEIEI L) 4 L, 2] + L)L
1[1,2]

= 0(XZ2)

[
[
- I
[
[

0(YZ) = [CACA3(CACA)AC)

= —[CAC(A3C)A2CAC) + [CACA3CA3CAC)
1,2,3,1] +[1,1,1,2,1] + [1,1,1,3,1] + [1, 3, 3, 1]
1,2

1] —-[1,1,1,1,2] = [1,1,1,1,1,1] 4 [1, 1, 1][1] + [1][][1]

1=,
I+ [0 120+ LI, 1 1, 2] = L[] + [ [
=T
=T

l\’)

L 2] = [ILE2] = LIEI, ]

1,
1,
= [,
[
[ JAEE + FILEIE

1,21
= 0(ZY).

0(Z?) = [CACA*(CA3)CACA*C)

1,3,2,1,2] - [1,2,1,1,1,2] — [1,3,1,1,1, 2]
12,1,2] - [1,2,1,1,1,2] — [1][1,1, 1, 2]
1,2,2]+[1,1,2,1,1,2] + [1,1,1,1,1,1,2]
[1,1,1,2,1,2]

(1,1,1,1,2,2] +[1,1,1,1,1,1,2]
(112, 2] = [ 2]

2)[] = [ [A] = LA

= XYZ-Y?-X3).

-1,
!
]
]
]
11,2,2
]

I
- = = = —=

[1,2,2]
[1,2,2] -
1,2,2] +
[1,2,2] +
(1,

1

(6]



Lemma 4.4.4. 0 is an isomorphism.

Proof. For all (s,t) € K% such that s # 0, —1, t # 0,1, we consider the matrices

s(t—1 s(t—1
0 =D (1) ﬁ
o= 0 0 -5 t((iﬂg
0 0 0 i)
0 0 0 0
0 0 0 0
5 s 0 00
= —s(t—1) s(t—1)
t(s+1) s+1 00
—s st—1) s 0
0 —s(t—1) s(t—1) —s(t—1)
s+1 s+1 s+1
—s s2(t—1) s(t+s) —s(t—1)
_ t t(s+1 t(s+1 t(s+1
T= | sy —s(—t—21§s+sz—tzs+t2) —8(2(15—)1) —g(t—i)
t t(s+1) t(s+1) t(s+1)
s —s(t—1) —s 0

One can check that o = 8* = 4% = 0, and (o + 1)(3 + 1)(y + 1) = 1. This

implies (see the proof of Lemma 3.3.7) that one gets a representation M* of A,

Im~

I

Ima® " Imao?7 " Ima == K* = ImpB*—, ImpB*— Ims®

where the linear maps are M, ;f* = Qlimai-1 and M, jf is the inclusion of Im o in
Ima’~! (and similarly for the b; and ¢;). This is easily seen to have dimension

vector 6. Now

—(t—1)%st (t—1)3s5 —(t —1)%s°
Ty = ———5— = Zg = ——.
st t(8+ 1)2 ) Yst t2(5+ 1)37 st t3(8+ 1)4
If we assume that (g, Yst,2st) = (Tsrrr,Ysrer, 2s¢r), then in particular ¢ =
_xgt/y?;t = _xg/t//yg/t’ = t'and s/(s + 1) = TstYst/2st = TorpYsit [ 2sr0r =

s'/(s' + 1) which shows s = s’. Thus 6 is an isomorphism by Lemma 4.1.3. O
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4.5 Type Es.

We can assume that A(Q) = KQ/I,,, where @ is the quiver

as a4 as a ax b1 bo

— @
N @
we
=
ol e
o0
co e
o e

and I,, is the ideal generated by the elements aas, b3ba, c*c, asai — ajas, asal —
ajas, asal — ajag, azal — ajaq, beby — biby and po = (eg + arai)(eo + b1b7)(eo +
cc*) —eyg. We set A = araj, B = bibj, C = cc*. Note that egAey =
K(A,B,C)/Ir where R = {A% B3 C? so} with sg = (1+A)(1+B)(1+C)—1.

Lemma 4.5.1. The following elements lie in Ir (and hence in I,,).

B+ A+C— A2~ AC + A3 + A2C — A% — A3C + AP + AYC — A°C,

S1

S

CACAC + CA%C + ACAC + CACA + ACA
+CAC + A%2C 4+ CA% + A° — A* + A3,

The following elements of KQ lie in 1,.

t1, = CACAC + CAC — CA'C + CA3C,
ty = CACACAC + CACA*C + CA’CAC — CA°C + CA*C,
ts = CACACA’C +CACA3C 4+ CA2CAC + CA°C,
ty = CACACA3C + CACA*C +CA%CA3C,
ts = CACACA*C +CACA°C + CA*CA*C,
te = [CACAC]+ [CA%C]+ [CAC),
t; = [CACAC +[CA%C,
ts = CACAC]+ CA*C),
ty = [CACACA*C +[CA2CA*C 4 [CACA>C + [CACA*C,
tiy = [CACACA®C +[CA’CA3C + [CACA*C + [CACA®C + [CA°C,

i



Proof. Since sg € Ig,so0is (1+A4) 1so(1+0)" ! = (1+B)—(1+A)" 1 (1+C)"t =
s1. Now we ‘resolve’ B3: Since B* € R, sois s3 = (1 + A)"}(1+C)~t —1)3.
Let s4 = (14+C)(1+ A)(1+ C)(1 + A)(1 + C)s3. Observe that s4 = s, so
s € Ig. The t; € I, since t; = CsC, ty = CsAC, t3 = CsA’C, t4 = CsA3C,
ts = CsA'C, ts = [s], tr = [sC, ts = C|, tg = [sA?C, t19 = [sA3C. O

Lemma 4.5.2. ejAe; is generated by the elements X = [C], Y = [CACAC],
Z = |[CACACA2CAC).

Proof. Using the reduction system {A%, C?, s;} with respect to the ordering <p,
we see that egAeg is spanned by the set H of all words not containing B, C2, A%
as a subword, and hence e;Ae; is spanned by [H|. Since [A, 4], || € I, we
can replace [H| by [H'], where H' is the subset of H containing all words which
start and end with C. We can express an element [CA"CA=C ... CA™C] of
[H'] as a sequence [i1,1i9,...,1], (note that each 4; = 1,2,3,4,5 and we use
[] to denote [C]). We claim that each sequence can be written as a linear
combination of products of the sequences [.],[1,1],[1,1,2,1], which completes the
proof of the lemma.

Proof of claim - By a ‘reduction algorithm’ on sequences. In order to simplify
things, we drop the commas from sequences (since we only deal with single digit
numbers this shouldn’t cause confusion). The following set of equations show

that it suffices to prove the claim for all sequences consisting of 1’s and 2’s.

[.3.] = —[.12.]—[.21..] = [.11..] = [.111..], (4.1)
[.5..] = [.1101.]+ [.1111..]4[..121..] — [..22..], (4.2)
[4.] = [L1111.])+[.120.] = [.22.] — [.12..] — [.21..]. (4.3)

(4.1) is obtained by adding ¢ to ta, (4.2) is obtained by combining (4.1) with
ts, and (4.3) is obtained by combining (4.2) with t3. We now show that the
following property (x) holds.

(*) Any sequence consisting of 1’s and 2’s of length k can be written as a
linear combination of products of [.],[11] and sequences of the form [112...] of

length at most k + 1.
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We have the following equations

2.] = —[11..], (4.4)
] = o, (4.5)
[15.] = o0, (4.6)
14.] = o, (4.7)
13.] = —[L... (4.8)

(4.4) is obtained from t7, and then (4.5) can be obtained by combining this with
ts. Since we can replace 5 with ][, this gives us (4.6). Combining (4.4), (4.6)
and tg gives us (4.7), and combining (4.4), (4.7) with t10 gives us (4.8). We

write down some further equations (to be verified later).

1] = [J[]=[5.], (4.9)
121..] = —[][1..]—[112..], (4.10)
[122..] = [J[1..]+[]A1...] +[1121..], (4.11)
2 = (], (4.12)
[112] = o. (4.13)

It should be easy to see that equations (4.4), (4.5) and (4.9)-(4.13) are sufficient
to prove (x). We now verify (4.9)-(4.13).

[111..]

—[15..] + [14...] — [13...]
= [l

Line 1 follows by using t; to substitute the underlined segment, and line 2 by

using (4.6), (4.7) and (4.8).

[121...] = —[1111..]— [112..]+ [15...] — [14..]

= —[][1...] —[112..].
Line 1 follows by using t2, and line 2 by using (4.9), (4.7) and (4.6).

[122..]

[1111..] + [11111...] + [1121..] — [15..]

=[]+ L] + 1121,
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Line 1 follows from using (4.2), and line 2 by using by using (4.9) and (4.6).
The final two equations follow easily from ts, (4.9) and (4.5).

We are now ready to prove the claim. By (x), it suffices to show that all
sequences of the form [112...] can be written as a linear combination of products
of [.],[11],[1121] and shorter sequences of the form [112...]. We have the following

equations (verified below).

[1122..] = [J[11.]— [11][...], (4.14)
11211..] = —[J[12..] =[], (4.15)
[11212...] = [11)[1..] = [][112..]. (4.16)

This completes the proof, since by (x), the arbitrary sequences appearing in
these equations can be replaced by sequences of the form starting [112...] in-
creasing the length by at most one. The only sequence not considered is [1121],

which is of course trivial. The verification of equations (4.14)-(4.16) follows.
[1122.] = [11111..]+ [111111..] + [11121...] — [115..]
= 1. - L.
Line 1 follows from using (4.2) to substitute the underlined segment, and line 2
follows by simplifying using (4.4) and (4.9).
[1211.] = [1124.]— [1125..] — [1123..]
= [11114..] — [1115..] — [112][...] + [1114...] + [11113..]
= —[04e] = L] + L] + [[13..]
= [( = (01 = [p121.] + 122, - [22..] - [12..]
C[21..] - [111..] — [1111...])
= (2] = [

Line 1 follows from using ¢ to substitute the underlined segment, line 2 follows

by using ¢4 and ¢5 in the same way, line 3 uses (4.9) and (4.13), line 4 uses (4.3)
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and (4.2), and finally line 5 uses (4.4) and (4.9)-(4.11) to simplify.

[11212..] = —[112111..]— [11221..]+ [1125...] — [1124..]
= [J[20.] 4[] = A1) A+ (L[] + [112]].]
+[11114..] 4 [1115..]
= [J12.] + L[] + [)14.]
= —[J12.] 4 [A1)[L...] + [JA1111..] 4 [][1121...] — [][122..]
—[J[112..] = [J[121..]
= [1[1..] = [J112..].
Line 1 follows from using ¢, to substitute the underlined segment, line 2 follows
from using £5 in the same way, and also using (4.15) and (4.14). Line 3 follows

by simplifying using (4.9), (4.10), line 4 follows by using (4.3), and line 5 by
simplifying using (4.9)-(4.11). This completes the proof of the lemma. O

Lemma 4.5.3. There is a surjective map 0 : K[X,Y,Z]/(Z> — X®> - Y3 +
XYZ) — €1A€1.
Proof. By the previous lemma, there is a surjective map 6 : K(X,Y,Z) —
e1Aeq, which maps X to [C], Y to [CACAC] and Z to [CACACA?CAC]. We
perform the usual calculations to show the commutativity relations (note that in
the following (4.9)" denotes the reversed form of (4.9), namely [...111] = [...][.] =
[...5]. We have
[11111] = [511] = [][11] = 6(XY),
= [115] = [11][] = (Y X),
by using (4.9) and (4.9)’.
0(ZX) = [1121]]] = [11215]
= [1121111]
= —[J[21n] = L[]
= [][1121]

= (XZ).
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Line 2 follows from (4.9)’, line 3 from (4.15), and line 4 from (4.10).

0(zy) = [1121)[11] = [1121511]

= [U12111111] + [1121111111] 4 [112112111] — [11212211]
= [112][)[] + [1121111][] + [12112][] — [11212211]
= —[11212211]
= —[11][1211] 4 [][112211]
= [L1[J[1] + [11[121] + [J[J[1111] — [J[1][11]
= [11][1121]
= 0(v2).

Line 2 follows by substituting using (4.2), line 3 by using (4.9)’, and line 4 by

using tg and (4.13) to cancel. Line 5 uses (4.16), line 6 uses (4.10) and (4.14),
and line 7 uses (4.9), (4.5) and the fact that X and Y commute to cancel.

0(z%) = [1121][1121] = [112151121]
= [11211111121] 4 [112111111121] + [11211211121] — [1121221121]
—[J[12111121] — [J[][111121] — [][121111121] — [][12211121]
—[11][121121] + [][11221121]
= [J[a11121] + [J[11211121] — [J[)[)[121] + [)[)[1111121]
+[][112111121) — [][)111121] — [J[][1111121] — [][112111121]
+[11][][1121] + [11][112121] + [][.][111121] — [][11][1121]
= [J11211121] + [11][112121]
—[J0][12121] — [J[][)[121] + [11][11][11] — [11][.]J[1121]
= [)[)J11221] + [11][11][11] — [11][.][1121]
= [JULLE + (1)1 — [11][][1121]
= 0X°-XYZ+Y?).
Line 2 follows by using (4.2), and line 3 by using (4.15),(4.16) and then using
(4.4) to cancel two terms. Line 4 uses (4.9), (4.10), (4.11) and (4.14), and then
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we cancel many terms to obtain line 5. Line 6 follows by using (4.15) and (4.16),
and then we apply (4.10) to obtain line 7. Finally we use (4.14), (4.9) and (4.5)
to obtain line 8, and thus 6 induces 6. O

Lemma 4.5.4. 0 is an isomorphism.

Proof. For all (s,t) € K? such that st # 1, s # 0, t # 0,1, we consider the

matrices
—ts(t—1) 2 ts(t3s—2t%s+t—1+4ts) ts(t—1)
0 T t’s —ts = ts—1 0 =
0 0 _ts —#5(=1) ts 0
ts—1
ts(t—1) (t—1)s
o = 0 0 0 ts—1 0 ts—1
0 0 0 0 tg L)
0 0 0 0 0 s
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
g |®-Ds —seh 0 00
—s 0 0 0 0 0
(t—1)s —ts(t—1) ts(t—1)
ts—1 ts—1 0 ts—1 0 0
ts ts(t—1) —ts —ts(t—1) 0 O
ts(t—1) ts(t—1)  —ts(t—1) —ts(t—1)
0 ts—1 615571 tésfl 0 tésfl
0 0 ts 0 —ts
—tsf(s,t) ts?(t—1 tsf(s,t —s(t—1
_ | st To—1 t§—1 : ts(—l) 0 t§—1 :
v= s t2(t=1) (=) —tsP(t=l) o =s(t=1) |0
fafst)  t20o1)  taf(en) s
—18s S, S — S S, —S8(l—
—ts +s ts—1 ts—1 ts—1 0 ts—1
—ts —t2s +ts ts t?s —ts 0 0

where f(s,t) = —2ts+ 1+ s +t?s —t. One can check that a® = 3% =42 =0,
and (a+1)(8+1)(y+1) = 1. This implies (see the proof of Lemma 3.3.7) that

one gets a representation M5t of A.

Im~y

|

Ima® " Imo*T " Imo® " Imo? " Ima .~ K% *—, Imp >, Im/j?
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where the linear maps are M, ;f* = Qlim ai-1 and M, jf is the inclusion of Im o in
Im a~! (and similarly for the b; and ¢;). This is easily seen to have dimension

vector 6. Now

—t5s0(t — 1)3 t3s10(t — 1)° 12515t —1)8
xT = = — z - —
st (tS — 1)3 ’ Yst (tS — 1)5 ’ st (tS — 1)7
If we assume that (g, yst,2st) = (Tsrer,Ysrt, 2ert), then in particular ¢t =
—a5,/yd, = =25, /yS, =t and ts(t — 1) = zgza/yst = Tevzev[tsy =

t's'(t' — 1) which shows s = s’. Thus 6 is an isomorphism by Lemma 4.1.3. [

4.6 Type fln, n >0

We can assume that A(Q) = KQ/I,,, where @ is the quiver

aiq QA

ao

and I, is the ideal generated by the elements agag + ajai + ajagaiai, agas +
anay, +anaiaoag and a;a; —aj,ja;q fori=1,...,n—1. [To see this, it suffices
to prove that each ep(,) + aa™ is invertible by Lemma 2.2.3. The relations
(eo + anal)(eo + apay) — e and (e1 + aap)(e1 + ajai) — ex make ey + apag
and e; + aag invertible (using the key fact of Section 2.2), the latter having
inverse (e; 4+ aja1). Since (ej41 + a;a;) = (ei11 + aj ai41) for 1 <1 <n—1,
it follows from the key fact that each ej(,) + aa® is invertible.] Note that

1

anal = (eg + apal) ™t —eg = —apler + ajao) ~tay = —apal — apajaraf, and it

can be easily checked that ajana) = ajaia.

Lemma 4.6.1. ejAe; is generated by X = ajay, ...a2a1, ¥ = ajal...a) a0,

7 = a{al.

Proof. We show that if p is a path of @ which starts and ends at 1 then p € A
can be written as a linear combination of products of X, Y, Z. We can assume

that p doesn’t visit vertex 1 other than at the start and end, since all paths
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which start and end at 1 can be written as the product of paths of this form.
We split into three cases.
Case 1 - p does not involve ag.

We use the reduction system {a;j, a1 —a;a;

:1=1,...,n—1}. We claim that
any complete reduction p’ of p is a product involving Z and Y.

Namely, we assume that all reduced paths of length less than p’ are such
a product, and use induction to show that this is the case for p’. First, note
that p’ = aip1, since a is the only arrow other than af which ends at 1. Now
if p1 = a1p} then p’ = Zp), and by the induction hypothesis, p’ is a product
involving Z and Y. On the other hand, if p; = ajps, then p’ must have the
form aja} ... a}agp), since it cannot have a subpath aa; where ¢ > 2. Therefore
p' = Yp} and the result follows.

Case 2 - p does not involve ag.
A similar argument shows that p can be written as product involving Z and X.

Case 3 - p involves ag and ag.
By the comment given at the start of the proof, we can assume that p = agpoao,
where pg moves between vertices 2,...,n,0. We consider the reduction system
{a;aj —aj ja;41 i =1,...,n — 1} (changing the ordering so that a;a] is the
leading word). Suppose that p’ is a complete reduction of p. It is clear that p’
has the form af(aya})tag. Now, since anal, — apaly — apajaray € I, we can add
it to the reduction system (it can be assumed that the leading word is a,a),
and compute the complete reduction of p’. It is clear this is a linear combination
of products involving Z and W = ajag. To complete the proof, we show that

W can be expressed as a product involving X, Y and Z. First, note that

Zn—i—l )n-‘,—l

*
(ajar
* % * *
= ajas...a)(apa))anan_1...a2a1
* % * * * *
= aja;y...a;(—apad — ana,aoag)andn_1 - ..a201

* * ok * *
= —YX —ajaajas...a6,0,X

= -YX-ZYX.
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Now (e1 + Z)(e1 —Z+ 2% — -+ (=1)"Z" + (—=1)"Y X) = e; + (—1)"Z" ! +
(-1)"(YX 4+ ZY X) = e1. Therefore W = (e1 + Z) t—e1 = —Z+ 22 —--- +
(—=1)"(Z™ 4+ Y X), which completes the proof. O

Lemma 4.6.2. There is a surjective map 0 : K[X,Y,Z]/(Z"T' + XY + XY Z)
— e1Aey.
Proof. By the previous lemma, there is a surjective map 0 : K(X,Y,Z) —
e1Aeq, which maps X to afa, ...aza1, Y to ajas...a}ap and Z to aja;. Ob-
serve that
0(XZ) = ajan...aa1a]a1

= ajana,ay, ...a2a01

=  —ajapa;aiajay, . . .a201 — a5a0aAxAy - . . A2a1

= ajaiaday . ..az2a1

= 0(ZX).

0(ZY)

ajaiaiay...anap
= ajai...aana;ap
= —aja;...aapajay — ajas. ..a,apalaasag
= aja;...anapaia;

= Y 2).

0(XY) agan, . .. aza1aiay . ..ay

ao
= ajlanal)ag
= (afa1)"aga0
= (aja1)""(e1 + agao)
= (2" 1+ W)
= YX+YX2)(1+2)!
= 4(YX).
which shows X,Y, Z commute, and §(Z""! + XY + XY Z) = 0 was shown in

the proof of the previous lemma, and so 6 induces . O
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Lemma 4.6.3. 0 is an isomorphism.

Proof. For s,t € V, where V = {(s,t) € K?: 5 # 0,—1,t # 0,1}, consider the
following representation M** of @, which is easily seen to be a representation

of A.

s s s s
K K .o K K
1 1 1 1
—S
\ fs+1) /
t
Now
78n+1
Tst =1, Yst = t(STl)’ Zst = S,
If we assume that (s, Yst, 2st) = (Tsrer, Ysrer, 2s¢), then clearly s = s’ and
t =t'. Thus @ is an isomorphism by Lemma 4.1.3. O

4.7 Type Dn, n >4

Let k = n — 4. We can assume that A(Q) = KQ/I,,, where Q is the quiver

1 3

C
a
0 2 n_l n
J1 fr
d
b
2 4

and I, is the ideal generated by the elements a*a, b*b, c*c,d*d, so, s1 and m; for
1 <i < k—1where sg = (eo+aa*)(eg+bb*)(eo+ f1f{) —eo, s1 = (en+ fii fr) —
(en + cc*)(en + dd*), and each m; = f fi — fiy1fi 1. Let A = aa®, B = bb*,
C=cc,D=dd*, F = fif{,G=fife M = fifo...fu, N = fi ... f5f1, so
so = (eg + A)(eo + B)(eg + F) — eg, and 81 = (ep, + G) — (en, + C)(en, + D).
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We follow a similar path to the one we took when dealing with Dy, except that
more calculations are necessary. We split them into several lemmas so that it
is easier to compare with the D4 case. First we list some elements of I, which

are relatively easy to obtain.

Lemma 4.7.1. The following elements all lie in I,,.

sa = A+ B+ F+ BF,
sg = B+F+FA+A,
sp = F+4+ A+ B— BA,
sp = D+C—G+0OG,
w = FF-NM,
ug = G¥—MN,
u3 = GM — MF,
us = NG—FM.

Proof. Since (eg+ A)'sg € I,,, so is s4, Similarly, the fact that sg, sp, sp are
in I, follows from considering the expressions (eg + B) ™ (eg + A) ~Lsg(eg + A),
(eo+ B)"tsa and sp = — (e, + C) 715y respectively. The u; are easily obtained

by using the m;. O

Observe that from us and us we have (1+G)M — M(1+ F),N(1+G) —
(1+ F)N € I, and consequently so are (14+G)™*M — M (1+ F)~! and N(1 +
G)™! — (1 + F)"'N. Compare the following lemma with Lemma 4.2.1, and
observe that if k is assumed to be zero (and thus N and M can be ignored), the

formulas will coincide.
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Lemma 4.7.2. The following elements lie in I,.

S2 = ND — N+ (60 +A)(€Q +B)N(6n +C),
sy = DM+ M — (e, —C)M(eg — B)(eg — A),
s3 = NCMB+ ABNM + ANCM + BNCM + ABNCM + BNMA

+NCMA+ABNMA+ANCMA+ BNCMA+ ABNCMA
+ANMA+ ANM + BNM — NMB — NMA,
sa = NCMAB—-BANCM — ABNCM — ABNMA - ANCMA

—BNCMA — ABNCMA + BAF*'BA.

Proof. We have —N (e, + G) " !s1(e, + D)™t = —N(e,+G) " H(en +G) — (en +
C)(en+D))(e,+D)~! € I, and therefore sois ts = ND—N+N (e, +G) ! (e, +
C), and by the comments above, so is ss = ND — N + (e + F)"'N(e, + O).
Similarly, — (e, +C)"ts1M = —(en+C) " ((en+G) — (en+C)(en,+ D))M € 1,,,
and therefore so is (e, — C)(en, + G)M + (e, + D)M, and also t) = —(e, —
CYM(ep + F) + M + DM. Finally, by substituting the F' in t}, using sp, we
have s5 € I,,.

Now assuming ND, DM to be the leading words of sy and sj, we resolve

NDM:

N(DM) — —NM+ N(e, —C)M(eqg— B)(eg — A),

(NDYM +— NM — (eqg+ A)(ep + B)N(e, + C)M.

Thus s5 = N(ep,—C)M(eo—B)(eg—A)+(eg+A)(eo+B)N(en+C)M —2NM €
I,,. Then since s5(eq+A) € I,,, 50 1is s3 = N(e, —C)M(eg — B) + (eo + A)(eo +
B)N(en +C)M(eg + A) —2NM(eg + A).

Since (eg—B)(eg—A)ss(eo+A)(eo+B) € I,,,801s s = (eg—B)(eg—A)N (e —
C)M 4+ N(en +C)M(eg+ A)(eg+ B) —2(eg — B)(eog — A)N M (eg + A)(eo + B).
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Multiply this out, we have

s¢ = BNCM+ANCM — BANCM + NCMA+ NCMB+ NCMAB
+BNM +ANM — NMA—-NMB—-BANM +2BNMA
+2BNMB +2ANMA+2ANMB — NMAB —-2BANMA
—2BANMB +2BNMAB +2ANMAB —2BANMAB.

Substituting the term NCM B using s3, we obtain s7 € I,,, where

s = NCMAB—- BANCM — ABNCM — ABNMA - ANCMA
—BNCMA - ABNCMA+ (—-BANM — NMAB+ BNMA
+2BNMB+ ANMA+2ANMB — ABNM —2BANMA
—2BANMB +2BNMAB +2ANMAB —2BANMAB).

Observe that this is equal to s4, except that the terms in the bracket are replaced
by BAF*1BA. To prove this substitution can be made, we must perform
another tricky calculation to show that the term inside the bracket can be
reduced to BAF*~'BA by adding elements of 1,,. First, replace each NM by
F*_ and then use sp can be used to substitute F' by —A — B — BA, so that each

term starts and ends with A or B. Set sg equal to this element. We have

ss = —BAFF'BA+ BAF* 'B+ BAFF1'A—- BAF*'AB + BFF'AB
+AF*'AB+ BF*A+2BF*B + AF*A+ 2AF*B — ABF*"'BA
+ABF*'B+ ABF*'A—-2BAF*A — 2BAF*B + 2BF*AB

+2AF*AB — 2BAF* AB.

We consider the terms starting and ending with B. This is equal to

BAF*'B — BAF*'AB + BFF"'AB + 2BF*B

—2BAF*B +2BF*AB — 2BAF*AB.

The final three terms cancel, since BAF*B = —BAF*"'BAB— BAF* 'AB =
BF*AB — BAF*AB by using sp. The first four terms also cancel, since BF* B
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is equal to both —BAF*~! and BF*"'BAB — BF*"'AB (using sr). Now

consider the terms starting and ending with A:
AF*A — ABF*'BA + ABF* 1 A.

The can easily be reduced to zero, since AFFA = —ABF*A — ABFF14 =
ABF*'BA — ABF~'A, using s4 and then sp. Continue with terms starting
with A and ending with B:

AFFYAB + 2AF*B + ABF*'B + 2AF* AB.

Subtracting 2AF*~1sg B, we obtain ABF*~'B — AF*~1'AB. We can assume
that k > 1, (otherwise it is trivially zero) and substitute an F' in both terms,
leaving us with AB(F¥=2B — AFk=2)AB. Now substitute the A and B inside
the bracket to obtain zero. Finally we do the same with the terms starting with
B and ending with A (and sg must be equal to this, since the remaining terms

have cancelled):
~BAF* 'BA+ BAF*'A+ BF*A - 2BAF*A.

Using sp, the middle two terms cancel, and BAF*A = —BAF*"1BA, and so
the whole expression is equal to BAF*"1BA, as required. O

Before we find the generators of ey Aej, we need one further calculation. At
the same time, we will give a couple of formulas which will help us show that

the generators commute.

Lemma 4.7.3. The following are all elements of I,,.

s NCG — (AB+ BA)N — (AB+ A+ B)NC,
ti = a*NCG'CMa+ a*F'ANCMa, for all i,

r; = a*BNCG'CMa+ a*BF'BNCMa, for all i.

Proof. Going back to the start of the proof of the previous lemma, we have two

different substitutions for D in terms of C and G, namely D = (e,, — C)(e,, +
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G) —e, and D = e, — (e, + G) (e, + C). Hence e, — C + G — CG + (en +
G) (en + C) € I,. Multiply by —N on the left, to obtain NCG — NG +
NC — N — (e + F)"'N(e, + C) € I,. Now observe that we can substitute
(eo+F)~! by eg+ A+ B+ AB, and therefore by eg — F + AB + BA, obtaining
NCG—-NG+NC—-N-—-(N+NC—-FN—-FNC+ ABN + ABNC + BAN +
BANC) = NCG — (AB+ BA)N — (AB+ BA — F)NC € I,. Finally use the
substitution sg to obtain s € I,,.

We prove t;,7; € I, by induction. For i = 0, both are trivial. So we assume

that ¢;,r; € I, for all § < j, and consider ¢j41. As elements of A, we have

a*NCG'T'CMa = a*((AB+ BA)N + (AB+ A+ B)NC)G'CMa

= a*BANG/CMa+ a*BNCG’CMa

= a*BAF'NCMa — a*BF’BNCMa

= a*BAF'"'BANCMa — a*BAF'"'BNCMa
—a*BAF'"YANCMa — a*BF'BNCMa

= —a*BAFIANCMa+ a*BF'BNCMa
+a*BFVANCMa — a* BF'BNCMa

= —a*FIT'ANCMa.

Line 1 follows by using s, and then we make easy cancellations to obtain line
2. Line 3 follows by substituting using r; (possible by the induction hypothesis),
and line 4 by substituting using sp. Line 5 follows by using s4 and sp to
substitute the underlined letters, and finally line 6 follows using sz to substitute

BA and the remaining terms cancel. This shows ¢;1 € I,,.
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We now do the same to prove rj;1 € I,.
a*BNCG'™'CMa = a*B((AB+ BA)N + (AB + A+ B)NC)G'CMa

= a*BABNG'CMa+ a*BABNCG'CMa
+a*BANCG'CMa

= a*BABFINCMa —a*BABF'BNCMa
—a*BAF?ANCMa

= a*BA(BF'"'BA-BF'"'B-BF'"'A—- BF/'B
~BAFI"'A+4+ BFI"'A)NCMa

= a*BA(-BF’"'B - BF'B)NCMa

= a*BA(-BF'"'B+ BAF'"'B)NCMa

= a*BAF'BNCMa

= —a*'BF'*'BNCMa.

Line 1 follows by substituting using s, and then we make easy cancellations
to obtain line 2. By the induction hypothesis, we can use r; and ¢; to obtain
line 3. Applying sg gives us line 4. Line 5 follows from the easily verified fact
that BAF'='A = BFi~'BA for all j. We then use sp to obtain line 6, and

again to obtain line 7. Finally, line 8 follows by using s4, and this completes

the proof. O

Lemma 4.7.4. ejAe; is generated by the paths X = a*Ba, Y = a*NCMa,
Z =a*BNCMa.

Proof. We have that e; Ae; is spanned by the set of all paths which start and end
at 1. Using sp and sp in a reduction system, we see that e; Ae; is spanned by
the set H of paths which start and end at 1 and do not visit 2 or 4. We show that
any path p which doesn’t visit 2 and 4 can be written as a linear combination
of products of XY, Z. We can assume that p doesn’t visit 1 except at its start
and end. We split into two cases.

(1) If p does not visit 3 (i.e. does not involve C'), then we use the reduction

system {m; : i = 1,...,k — 1} where the ordering is chosen so that each m;
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has leading word f;;1f7, . This shows that p can be assumed to have the form
a*F'a, and then by using sp we can express p as a polynomial in X.

(2) If p does visit 3 then we use the reduction system {m; : i =1,...,k —
1} U {s} where the ordering is chosen so that each m; has leading word f;f;
and s has leading word NCG. Then it follows that p can be written as a
linear combination of elements of the form a* NG*CMa, which in turn can be
written as a linear combination of elements of the form a*F*NCMa. Use sp
to eliminate each F' and the resulting expression is a linear combination of
elements of the form a*(BA) NCMa and a*(BA) BNCMa, which are X7Y,
X7 Z respectively. O

Note that a*Fia = pi(X) for all i > 0. For ¢ = 0 it is clear and for i = 1,
a*Fa=—a*Ba=—-X =pi(X). Fori >1,a*F'a=a*BAF"la—a*BF'~la =
a*BAF* ta+a*BAF‘2a = X (p;_1(X)+pi_2(X)) = p;(X). To make the final
calculations easier to follow, we define Ag to be the algebra K Q/I, where I is the
ideal generated by the relations a*a, b*b, ¢*c, d*d, and denote the map KQ — Ag

by an underline. The calculation is similar to Lemma 4.2.3.

Lemma 4.7.5. There is a surjective map 0 : K[X,Y,Z]/(Z% — pp(X)X Z +
Pe1(X)X2Y — XY2 — XY Z) — e1Ae.

Proof. By the previous lemma, there is a surjective map 0 : K(X,Y,Z) —
e1Aer, which maps X to a*Ba, Y to a*NCMa and Z to a*BNCMa. Observe
that

(XY -YX) = a*BANCMa—a"NCMABa = a*s4a =0,
0(ZX —XZ) = a*BNCMABa—a*BABNCMa = a*Bssa = 0,
G(YZ—ZY) = a*NCMABNCMa—a*BNCMANCMa

a*NCMABNCMa — a*BNCMANCMa — Xty
a*NCMABNCMa —a*BNCMANCMa

—aBANCMNCMa + aBAF*'BANCMa

= a*s4NCMa=0,
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which shows X,Y,Z commute. Let T = 0(—Xpp(X)Z + X?pr_1(X)Y). We

have

—a*BAFF*YABNCMa + a* BABAF*"'ANCMa

= —a*BABAF*'ABNCMa+ a*BABF*'ABNCMa
—a*BABF*ANCMa

= a*BABF¥BNCMa — a*BABFFANCMa

= —a*BABNCG*CMa — a*BABFFANCMa

= —a"BABNCMNCMa—a*BABNMANCMa

Line 2 follows by using s4 and sp to substitute the underlined letters, line 3
by using s4, and the fact that BAF*A = BF*BA. Line 4 follows by using 7.
Now it is clear that (22 — Xpgp(X)Z + X?pp_1(X)Y — XY?2 — X ZY) is equal

to

a*BNCMABNCMa — a*BANCMANCMa —a*BABNCMANCMa
—a*BABNCMNCMa — a*BABNMANCMa,

which is a* BsyNCMa = 0. Thus € induces . O
Lemma 4.7.6. 0 is an isomorphism.

Proof. For s,t € V, where V = {(s,t) € K?: t?s —ts+1#0,s#0,t # 0,1},

we consider matrices

0
o =
(6

s(t—1)
t2s—ts+1
0

b= <ts(t0— 1) 8)

ts
_ [ t2s—ts+1
Y= ( ts

—tis
t2s—ts+1 )
—ts

t2s—ts+1

—ts
0= <t25

0
—ts(t —1)
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t2s—ts+1

S
ts

—s(t—1)
t2s—ts+1
ts? (t—1)2

t2s—ts+1




One can check that a? = 32 = 42 = §2 = 0, and that (1 + a)(1 + B)(1 +
¢)=T1and (1+¢) = (1+~v)(1+49), and thus one gets a representation M**
of A of dimension vector § where MS' = K2 for v # 1,2,3,4, M{* = Ima,
M5t = Im B, M5' = Im~, M§' = Imé, and the linear maps are M5! = q,
M is the inclusion of Ima in K? (and similarly for b, ¢ and d), M$%. = ¢
for all ¢ and each M]%f is the identity map. For each k, let Vi, = {(s,t) € V :
Each component of c¢f* is non zero}. Since Vj is the complement in K? of the
set of zeroes of a finite list of polynomials, it is a 2 dimensional variety. Now

ts?(t —1)2

= L ze = ts(t — 1)ya,
25 —ts+ 1 s( st

Tst

and ys; is a complicated expression which is guaranteed to be nonzero by the
assumption on V. Additionally note that zg+yst = yse(ts(t—1)+1) = yur (35—
ts+1) is also non zero. If we assume that (zst, Yst, 2st) = (Tsrvr, Ysrer, 2s7¢7 ), then
in particular, t = 22, /(@styst(Yst + 2st) = 224 /(@50 Ysre (Ysrer + 2s1) = 1/, and

then it follows that s = s’. Thus 6 is an isomorphism by Lemma 4.1.3. O

4.8 Open problems
The main theorem gives rise to the following corollary.

Corollary 4.8.1. If Q is extended Dynkin, and 1 is an extending vertex, then

e1A (Q)ey is a commutative Noetherian domain of Krull dimension 2.

Of course, it would be desirable to obtain the properties for general ¢, and
in particular a multiplicative analogue of [10, Theorem 0.4]. It may be the case
here that simply substituting ‘A\.a = 0’ with ‘¢®* = 1’ throughout is not correct,
and one should instead use ‘q® is a root of 1’. The best way to attack this
problem is probably to look at the simplest extended Dynkin quiver, which has
one vertex and one loop. If ¢ = 1, this is isomorphic to a localised polynomial
ring K[z,y, (1 + xy)~!] (which is isomorphic to the algebra K[X,Y,Z]/(Z +
XY + XY Z) via the isomorphism which sends z to X, y to Y and (1 + zy)~*
to 1+ Z, thus verifying Theorem 4.1.1 in the Ay case). If ¢ # 1, then AY(Q) =
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K(a,a*,(1+aa*)"1)/((14+aa*) = q(1+a*a)), which is isomorphic to a localised
first quantised Weyl algebra, which is discussed in [20].

The proof of many results for II* in the extended Dynkin case rely on the
following construction, given in [10]. Any extended Dynkin quiver @) corre-
sponds to a subgroup I' € SLo(K), (shown in [25]). Using the natural action of
I on K(z,y), one can form the skew group ring K (x,y) *I'. Given X € Z(KT),
let TT* be the ring (K (z,y) * T')/(zy — y= — A). One can identify A\ with an
element of K90, and then it can be shown that IT*(Q) is Morita equivalent to
IMNQ), and e;11M(Q)e; = eII*(Q)e, where e is the average of the group ele-
ments. Our attempts to find a multiplicative analogue of this construction have
been unsuccessful.

We would also like to obtain properties of A?. We make the following con-

jecture (based on [10, Corollary 3.6]).

Conjecture 4.8.2. If Q is extended Dynkin, then A1(Q) is a prime Noetherian

ring of GK dimension 2.

Whereas it is difficult to know where to start on a proof for general ¢, it
ought to be possible to use Corollary 4.8.1 to make progress in the case ¢ = 1.
It may be possible to derive these (and other) results from results on ‘generalized
double affine Hecke algebras’, which are defined in [16]. This paper includes an
appendix which shows that these algebras are isomorphic to egA?(Q)ep, where

@ is a star shaped extended Dynkin quiver, and 0 is the central vertex.
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Chapter 5

Further Investigations

In this chapter we examine some miscellaneous questions regarding multiplica-
tive preprojective algebras. In Section 5.1.1, we conjecture that A1(Q) is a
‘preprojective algebra’ in the sense of satisfying the preprojective property, and
give some examples where this is true. In Section 5.2 we consider whether A1(Q)
could be isomorphic to II(Q) as an algebra, and in Section 5.3 we list some other

questions.

5.1 Are A and II isomorphic as K()-modules?

In this section we assume that ¢ = 1, and write A(Q) (or simply A) for A1(Q).
We propose the following conjecture (clearly equivalent to the question in the

title of this section having the answer yes).

Conjecture 5.1.1. For any quiver Q, A(Q) satisfies the preprojective property
for KQ.

If true, this conjecture would have some interesting implications. One imme-
diate consequence would be the truth of Conjecture 3.6.3. It would also perhaps
lead to some easier proofs of the results in the previous two chapters. Unfor-
tunately, the proof in the general case is likely to be very difficult. Instead,
we can show the result is true in some special cases (note that we only show
the preprojective property holds for left modules, but each proof can be easily

adapted to show it for right modules). First the ‘trivial’ case.
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Lemma 5.1.2. If Q has type A, then Conjecture 5.1.1 is true.

Proof. This is not quite as trivial as might first appear [It is not always the case
that two isomorphic algebras with a common subalgebra A are isomorphic as
A-modules, one also requires that the isomorphism between them is the identity
map when restricted to A, which is what is shown here]. Let Q' be the quiver
given in Lemma 3.2.1. The conjecture is clearly true in this case, because
the algebras A(Q') and II(Q’') are the same, as they are given by the same
presentation. Clearly @ can be obtained from Q' by reversing some arrows.
That is, partition the integers 1,...,n —1 into two disjoint sets R and .S so that
Q1 ={b; i € R} U{c¢; : i € S} where t(b;) =i+ 1, h(b;) = i and t(¢;) = 4,
h(c;) = i+ 1. By Lemma 2.1.3 there is an isomorphism 6 : A(Q) — A(Q’)
which satisfies 0(b;) = a; and 6(c;) = af. Now (see Lemma 1.3.7) there is an
isomorphism ¢ : II(Q') — II(Q) which in particular maps a; to b; if i € R,
and a} to ¢; if ¢ € S. The composition ¥ = @0 is an algebra isomorphism
A(Q) — II(Q) which acts as the identity map on the subalgebras K Q. Therefore
ifz e KQandy € A(Q), ¥(xy) = Y(x)(y) = z(y), so ¢ is also a KQ-module

isomorphism. O

We can also verify it in the smallest non trivial case, where @ is the following

quiver of type Dy.

Lemma 5.1.3. If Q is the quiver given above, the conjecture is true.

Proof. We show the set {eg, e1, ea, €3,a,a*,b,b*, ¢, c*, b*a, c*a, aa*, a*b, c*b, bb*,
a*e,b*c,bb*a, b*aa*, c*aa*, aa*b, a*bb*, aa*c, a*bb*a, bb*aa*, b*aa*b, c*aa*c} is a
basis of both II(Q) and A(Q), by using the reduction algorithm. Let Q; =
{a*a,b*b, c*c,aa* + bb* + cc*}. This is clearly a full reduction system for II =

K@/Ip (we are working with the < pjen,les Ordering, where the lexographic
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ordering is chosen so that bb*aa™ < aa*bb*). Resolving the ambiguities cc*c
and c*cc® shows that wy = bb*c + aa*c and wy = c*bb* + c*aa* are in I,.
Let Q2 = Q1 U {w1,w2}. Resolving the ambiguity cc*bb* shows that ws =
aa*bb* + bb*aa* is in I,. Let Q3 = Qs U {w3}. Resolving the ambiguities
a*aa*bb*, b*bb*c, c*bb*b, aa*bb*b shows that a*bb*aa™,b*aa*c,c*aa*b,bb*aa*b €
I,. Let Q be the union of these elements and 3. Omne can check that all
ambiguities are reduction unique, and thus the set of irreducible words above is
a basis of II.

We do a similar process for A = K@/IM, this time starting with Qy =
{a*a,b*b,c*c,wp} where wg = aa* + bb* + cc* + aa*bb* + aa*cc* + bb*ec* +
aa*bb*cc*. We first verify that I, = Iq,, where )y is the same as {2y, except
that we replace wy by w( = aa® + bb* + cc* + aa™bb*. This is clear, since
wo = wh(eo + cc*) — ec*ec* shows the C inclusion, and then w( = wo(ey —
cc*) + (eg + aa* + bb* + aa*bb*)cc*cc* shows the other inclusion. Resolving the
ambiguity cc*c in €y shows that aa*c + (eo + aa*)bb*c € I,, and thus so is
(eo — aa*)aa*c + bb*c. It follows that w; (as given above) is in I,. Similarly
wo € I, by resolving c*cc*. By following the rest of the calculation that was
done for IT in a virtually identical fashion, we find that € (as given above except
that aa* 4 bb* 4 cc* replaced by wy) is a full reduction system for A in which all
ambiguities are reduction unique. The set of illegal words are the same as for
II, and therefore A has the same basis as II.

We have K @-module decompositions

= EB Ie,,

vEQo

A= B Ae,

vEQo

where each Ile,, Ae, is spanned by the paths starting at v. We want to show that
ITe, = Ae, for all v. Let us consider v = 0, which is the only non trivial case.

Using the information above we calculate the representation of () corresponding
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to Ileg.

(eo, aa*, bb*, bb*aa*) (b*,b*aa™)

Note that (z1,z2,...,2,) denotes the vector space with basis {1, 22,...,2n}
and the matrices define the linear maps with respect to this basis. This repre-

sentation clearly decomposes as
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Similarly for Aey, we obtain

(eo, aa*,bb*, bb*aa*) (b*,b*aa™)

which decomposes as

It clear from this that Ileg = Aey. For the remaining vertices, it is obvious
that Ile, = Ae,, since their representations (before decomposing) are identical.

Thus the conjecture is true in this case. o

This example illustrates the difficulty in proving the conjecture. Since the
ordinary preprojective algebra is graded, there is an automatic decomposition

m= P e,

vEQo
k>0

where II; denotes the span of the paths of degree k (using the oriented grad-

ing). This decomposition is in fact the decomposition into indecomposable
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K @Q-modules. The multiplicative preprojective algebra does not inherit the ori-
ented grading from K@, and one has to consider the inhomogeneous element
¢* —c*aa”* in order to obtain the decomposition. It is not at all obvious why this
particular element is needed. One possible strategy of proving the conjecture
(in the Dynkin case) that we investigated was to use a descending filtration on
A, and show that the associated graded ring is isomorphic to II. This would be
true if Conjecture 3.6.3 was true, but even if gr A = II as algebras, it does not
seem to follow easily that A = II as modules.

The best evidence we have for the truth of the conjecture is the following re-
sult in the simplest infinite type case. It would seem unlikely that the conjecture

could be true in this case by accident.

Theorem 5.1.4. Let () be the quiver

.:b:o
1 a 2

A(Q) is isomorphic to the direct sum of a set of representatives of the indecom-

posable preprojective K modules.

The (lengthy) proof of this theorem comprises the rest of this section. Firstly,
we use the reduction algorithm to obtain a basis P of A (Corollary 5.1.7). We
then find (Lemma 5.1.13) an alternative basis L which is suitable for decom-
posing of A into a direct sum of indecomposable modules. The long part of the
proof is taken up by proving that L is a basis. It would be desirable to obtain
a simpler proof, by determining the significance of the elements of L. This may

also lead to a proof of the conjecture in general.
We can assume that A = KQ/I, where I is the ideal generated by r; =

aa*bb* +aa* +bb* and ro = b*ba*a+a*a+b*b. We define some elements of KQ.

Set ¢; = b*aa™ — a*ab*, co = ba*a — aa™b, c3 = bb*a — ab*b, ¢4 = b*ba™ — a*bb*.
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Given an integer ¢ > 0, let

fi = aa*(ba*)'bb* + a(a*b)’a* + b(a*b)'b*,

a*a(b*a)'b*b + a*(ab*)'a + b* (ab*)"D.

gi
Lemma 5.1.5. The elements ¢y, ...,cq4, and each f;, g; lie in I.

Proof. Consider the reduction system Q¢ = {r1, ro} with respect to the ordering

<ien,lex With a < b, a* < b*. Resolve aa*bb*ba*a:

(aa*bb*)ba*a +— —aa*ba*a — b(b*ba*a) — —aa*ba*a + bb*b + ba*a,
aa*b(b*ba*a) +— —aa*ba*a — (aa*bb*)b — —aa*ba*a + bb*b + aa”d.
Thus ¢y € I. Resolve b*ba*aa*bb*:
b*ba* (aa®bb*) +— —(b*ba*a)a™ — b*ba*bb* — a*aa® 4+ b*ba* — b*ba*bb*,
(b*ba*a)a*bb* +— —a*(aa*bb*) — b*ba*bb* — a*aa® + a*bb* — b*ba*bb*.
Thus ¢5 € I. Let Q1 = Qo U {ca,c3}. Resolve b*ba*a:
b*ba*a +— —b*b—a’a,
b*(ba*a) +— b*aa™b,
(b*ba*)a +— a*bb*a.

This shows that both s; = b*aa*b + b*b + a*a and s9 = a*bb*a + b*b + a*a lie
in I. Let Q5 = Q3 U {s1, s2}. Resolve b*aa*bb*:

b*(aa™bb*) — —b*aa® — b*bb*,
(b*aa™b)b* — —b"bb* —a*ab”.
This shows that ¢; € I. Resolve aa*bb*a:

(aa*bb*)a +— —aa*a — bb*a,

a(a*bb*a) +— —aa*a — ab*b.

This shows that ¢4 € I. Now let Q3 = {ri,r2,c1,c2,c3,¢c4} (51,52 are now

redundant). Note that the combination of ¢y, ..., cs imply that given a path p
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we can always reduce it to the unique path which contains the same number of
occurrences of each arrow as p, and which starts/ends in at the same vertices
as p, and a (respectively a*) never occurs to the right of b (respectively b*). For
example, if p = bb*aa*ab*bb*ab*, then we can reduce it to aa*ab*ab*bb*bb*.

We now show by induction that each f;,g; € I. First, fo = r1 € I and
rg — go S0 go € I. Now assume that f;,g; € I for all j < i. Since they
are monic, we can therefore include them in a reduction system. We resolve
aa*(ba*)'bb*ba*:

(aa*(ba*)'bb*)ba* +— —a(a*b)'a*ba* — b(a*b)'a*bb*,
—  —a(a*b)a* — b(a*b)T ",
aa*(ba*)'b(b*ba*) +— aa*(ba*)'ba*bb*,

— aa*(ba*) Tlbb*.
This shows f;41 € I.

(a*a(b*a)'b*b)b*a +— —a*(ab*)'ab*a — b*(ab*) ab*b,
N —a*(ab*)i+1a _ b*(ab*)i+lb,
a*a(b*a)b*(bb*a) — a*a(b*a)'b*ab*b,

— a*a(b*a)"T'b*D.
This shows g;4+1 € I, which completes the proof. O

Lemma 5.1.6. The set Q = {c1,co,c3,c4} U{fi : i >0} U{g; :i >0} is a full
reduction system for A in which all minimally ambiguous words are reduction

unique.

Proof. The elements of {2 are monic, and we have shown that I C I, so Q
is a reduction system. To show it is full, we only need show that 1,7y € Iq,
since then I = I. This is clear, since 71 = fy, and ro = b*ba*a + b*b + a*a =
go + b*co + c1b € Ig. We must now show that all minimally ambiguous words
are reduction unique. There are no inclusion ambiguities, so we must look for

overlaps. The only overlaps between the c¢; are bb*aa™, b*ba*a, which are very
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easy to check. There are no overlaps which involve only the f; and g;, which

leaves us with the overlap of a ¢ and an f; or g;. First we check the overlaps

with fp, namely, aa*bb*aa*, aa*bb*ba*, ba*aa*bb*, bb*aa*bb* (there is no need

to check aa*bb*a, b*aa*bb* since if for example aa*bb*a is not reduction unique
) p que,

then neither is aa*bb*aa*).

each of them has a reduction to a common value.

aa*b(b*aa™)
aa*(bb*a)a™ +—

(aa*bb*)aa™

aa*b(b*ba™)

(aa™bb*)ba*

(ba*a)a*bb*

ba*(aa™bb*)

(bb*a)a™bb*
b(b*aa™)bb*

bb* (aa*bb™) +—

We compute all single step reductions, and show

— aa®(ba*a)b” — aa*(aa*bb*) — —aa*aa™ — aa™bb*,
a(a*ab*b)a* — —aa*aa”® — a(b*ba™) — —aa*aa* — aa™bb*,

—aa*aa™ — bb*aa® — —aa*aa® — aa*bb*.

— aa"ba*bb* — —aa*ba™ — ba*bb*,

—aa*ba” — b(b*ba*) — —aa*ba™ — ba*bb*.

—  aa*ba*bb* — —aa*ba* — ba*bb*,

(ba*a)a™ — ba*bb* — —aa*ba™ — ba*bb*.

—  a(bb*a®)bb* — (aa™bb*)bb* — —aa*bb* — bb*bb*,
—  b(a*ab*D)b* — —(ba*a)b* — bb*bb* — —aa*bb* — bb*bb*,

—bb*aa™ — bb*bb* — —aa*bb* — bb*bb*.

The overlaps with g are also easily seen to be reduction unique (the calcu-

lations are the same, apply * to each arrow). We now show that for each k, the

overlaps involving fi and g are reduction unique. It is only necessary to check

fx, since the calculations for g are the same except for the stars. First the two

shorter overlaps.

aa* (ba*)*(bb*a)

(aa* (ba*)*bb*)a

aa* (ba*)*ab*b — aa*(aa*

—~

—aa*a(a*b)F — a(a*b)"b*

=

a
—a(a*b)*a*a — b(a*b)*b*a
a

—aa*a(a*b)k — a(a*b)*b*b.
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(b*aa*)(ba*)*bb*

b*(aa* (ba™)"bb*)

—  a*ab® (ba*)*bb* — a*(aa* (ba*)*~1bb*)bb*,

a*a(a*b)*ta*bb* — (a*b)*b*bb*,

—  —b*a(a*b)*a* — b*b(a*b)*b*,

—  —a*a(a*b)* ta*bb* — (a*b)*b*bb*.

Now we check the four longer overlaps.

aa* (ba*)*b(b*aa*)
aa* (ba*)* (bb*a)a*

(aa* (ba*)*bb*)aa*

aa* (ba*)*b(b*ba*)

(aa*(ba*)*bb*)ba*

(ba*a)a* (ba*)*bb*

ba* (aa* (ba*)kbb*)

(bb*a)a* (ba™)*bb*

b(b*aa*)(ba*)"bb*

bb* (aa* (ba*)*bb*)

— aa*(ba*)*ba*ab* — aa*(aa*(ba*)*bb*),
—  —aa*a(a*b)*a* — a(a*b)*T1b*,

— aa*(ba*)*ab*ba* — aa*aa*(ba*)*bb*,
—  —a(a*b)*a*aa* — b(a*b)*b*aa*,

—  —aa*a(a*b)¥a* — a(a*b)F 1"

aa*(ba*)kba*bb* — _a(a*b)k-i-la* _ b(a*b)k+1b*,
—a(a*b)*a*ba* — b(a*b)*b*ba*,

—a(a*b)*a* — b(ab) 10"

aa*ba*(ba*)*bb* — —a(a*b)* 1a* — b(a*b)F1b*,
—ba*a(a*b)ka* — ba*b(a*b)kb*,

—a(a*b)*a* — b(ab) 1"

— abb*a*(ba*)*bb* — (aa*(ba*)*bb*)bb*,
= —a(a*b)* 1" — b(a*b)Fb*bb*,
—  ba*ab*(ba*)*bb* — (aa*(ba™*)*bb*)bb*,
—  —bb*a(a*b)*a* — bb*b(a*b)*b*,

—  —a(a*b)"'b* — b(a*b)*b*bb*.

Putting this together with Lemma A.4.3 gives the following corollary.
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Corollary 5.1.7. A basis for A is given by the set of P paths of Q in which
(i) a never occurs to the right of b,
(i1) a* never occurs to the right of b*,

(iii) At least one arrow does not occur (e.g. b does not occur in aa*ab*ab*).

Proof. Such paths are irreducible, as they cannot contain an element of 2 as a
subpath. Conversely, if a path is reducible by some ¢;, it cannot satisfy both (i)

and (ii), and if it is reducible by some f; or g;, it cannot satisfy (iii). O

We can calculate the representation of @) corresponding to A with respect to
this basis, but unfortunately it is not convenient for obtaining the decomposition
of A into indecomposable modules. Instead we have to calculate a new basis
so that A is easily seen to decompose. We define some notation to easily write
down elements P. Suppose u, v are vertices of the quiver and 7, j > 0 be integers
(exclude the cases 1(a, 0,0)2, 1(b,0,0)2, 2(a*,0,0)1, 2(b*,0,0); which don’t make
sense).

1. Let 4(a,4,j), be the unique path from v to w in P which contains 4
occurrences of a*, j occurrences of b*, and does not involve b.

2. Let (b,7,5), be the unique path from v to w in P which contains 4
occurrences of a*, j occurrences of b*, and does not involve a.

3. Let ,(a*,4,j), be the unique path from v to w in P which contains ¢
occurrences of a, j occurrences of b, and does not involve b*.

4. Let ,(b*,4,7), be the unique path from v to w in P which contains 4
occurrences of a, j occurrences of b, and does not involve a*.

For example, 1(a*,1,3); is equal to the basis element a*aa*ba*ba*b. It can-
not be equal to any other basis element, as once we know the number of occur-
rences of a and b, the order in which they appear is determined by (i). We know
each remaining arrow is that appears is a* so the path is determined by the start-
ing/ending vertices. Conversely, every basis element can be represented in this
way, as by (iii) it must be included at at least one of the categories. Note that
some basis elements are not uniquely represented, specifically those in which at

least two arrows do not occur, e.g. a*ba*ba* is equal to both 1(a*,0,2)2 and
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1(b,3,0)2. Clearly the set P,, of all elements of the form ,(c, 1, 7)., where ¢ can
be any arrow in @, is a basis of e, Ae, (provided the appropriate identifications
are made).

Let A= —(ex+aa*), A* = —(e1 +a*a), B= —(ea+bb*), B* = —(e1 +b*D).
As elements of A, bb* = aa*B = Baa™, aa™ = Abb* = bb*B, b*b = a*aB* =
B*a*a, a*a = A*b*b = b*bB*, Ab = bA*, Ba = aB*, Aa = aA*, Bb = bB*.
Definition 5.1.8. We define a set of elements {:cf leN1<i<lI} eeA
Let x1 = e, and for all j > 1, let z3; = (a*b)’~'a*, x3;,, = (a*b), acgg =

A* (b*a)i—1b*, x%ﬁ = A*(b*a)?. The remaining z} are defined by induction,

i+1

Ty, = a*ax!, (it should be easy to see that this gives a valid definition for all

i,1 in the given range).
Lemma 5.1.9. Foralli=1,...,1—1, az} = bz|"".

Proof. We split into the cases of [ even or odd. Suppose [ = 2j. We proceed by

induction on j. We have
axy = aa® = Abb* = bA*D* = ba3,

so the formula is true for j = 1. Assume that j > 1, and that the formula holds

for all values less than j. For the cases i = 1,25 — 1, we have
azry; = a(a'b)7a" = ba*a(a’b)’"*a" = ba*axy;_y = baj;,
a:vgg_l = aa*aw§§i§ = aa*a A (0" a) 720" = aa* AV (ab*) !
= b AN (@b = DAY (bR a) " = bal.
For the cases i # 1,25 — 1, we can use the induction hypothesis,

T * i—1 * 7 _ * 7 _ 1+1
azhy; = aa’ary;—, = aa bry; o =baavy; 5 = bry;,

which completes the proof for even [. Now suppose [ = 2j+1, and again proceed
by induction on j. We have
ary = aa*b=ba*a = ba*ar] = br,

a/];% = aa*a = Abb*a = bA*b*a = bxg,
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so the formula is true for j = 1. Assume that j > 1, and that the formula holds

for all values less than j. For the cases i = 1,25, we have

améjﬂ = a(a*b)! = aa*b(a*b)’~" = ba*a(a*b)’ ! = ba*aacé];l = b:E%jH,
amggﬂ = aa azgi i = aa a(A”‘)j*l(b"‘a)j*1 =aa* A ab*)Y a

= bb A7 (a*b) !

= b(A*) (b*a)? = ba2i 1.

2j+1

For the cases i # 1,25, we can use the induction hypothesis,

~1
a:EQJH = aa” a:EQJ 1 =aa b:c2] 1 = ba* a:EQJ 1=

which completes the proof.

Definition 5.1.10. We can now define a set of elements {y;

I} € esA by setting y) = e, and otherwise let yi = az! and ylz

1+1
=bxy; iy,

O

1eN0<<

-1 The

i
= bzj.

previous lemma shows that this is well defined.

Definition 5.1.11. Let k& be an integer.

Set xéj[kz] = xéjBk, xgjﬂ[k:] =

m%jJrlB*k’ y%j [k] = yngk, yéj+1[k] = yéjﬂB*k-

Lemma 5.1.12. The elements of P can be written in the form x}[k] or yi[k]

for some i,1, k. Specifically, for all valid r, s,

r+2s [S]

(a’ r,S)2 = x2r+2s

)
1(b,7,8)2 = 25705, [8],
1(a*,r,s)2 = xg;i%”[O]

)

1(b%, 7, 8)2 = a5 [+ s + 1],
1(a,ry8)y = ah 250 8],

1
(ba r,s)1 = x;j—‘,—Qa—i—l[ ]

1(a*, 7 8)1 = x2r+25+1[0]

)

)

) r+1
(b7, 7, )

2r+s+1
1= Ty 1544 [7 + 8.

r+2s [S]

(a’ r,Ss)2 = y2r+2s

y2r+25[ ]

(a’ y Ty 8)2 = y2r+25[0]’

)
2(b; 7, 8)2 =
)
2(0%, 7, 5)

2 = Yo, {a:[r + 5]-

1 "ygjf51i1b]

y§r+2sfl [0]7

H
|

= Yarizealr +5 = 1].



Proof. First, we verify the top four equations on the left. If s > 0, then
) = (@%a)aEls) = (a%a) AT b)Y B
_ (a*a)rA*sB*S(b*a)s—lb* _ (a*a)r(b*a)sflb*v

since A*B* = ey, and the resulting expression is is equal to 1(a,r, s)2. If s =0,

then the equation is true since for r > 0
w5,[0] = (a”a) " a3(0] = (a*a)" " a" = 1(a,7,0)2,
and 1(a,0,0)s is not defined. If » > 0, then
2ol = (aa)"ah,[5) = (a%a)* ()" ~'a" B® = (a"b) 0" (00°)",
which is 1(b, 7, s)2 and if » = 0, then the equation is true since for s > 0,
w3Hs] = (a*a)*lal[s] = (a%a) T AT B® = A*(a*a)* " (BY)*b*
= A*B*(b*b)*"'b* = (b*b)*"'b* = 1(b,0, 5)2,
and 1(b,0,0)2 is not defined. The third equation is true since
25y al0] = (a%0) 3,4y = (a%a) (@B 0" = 1(a", 7, 5)s,
and the fourth is true since
Ty ioatelr +5+1] = (a%a)’ a3 3[r + 5+ 1] = (aa)*(A*) ™+ (b"a) b BT
= (a*a)®(B*)*(b*a)"b* = (b"b)*(b*a)"b"
= 1(b*, 1, 9)a.

The top four equations on the right are now easy to verify. Note first that

(¢,0,0) = ez = y§[0] for all arrows c. For the rest we use the equations just

verified.
2(a,7,8)2 = a(i(a,m, 8)2) = azy 75 [s] = yo, 25,18,
2(b,7,5) = b(1(b, 7, 5)2) = bag, o, [s] = U3, yals].
If s > 0, then

Q(G*a 0, 5)2 = b(l(a*a 0,s— 1)2) = bx%s[o] = ygs[o]'
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If r > 0, then
2(a”,r,8)2 = a(1(a”,r —1,8)2) = awy,5,[0] = Y5, 42,[0].
If s > 0, then
2(b%,0,8)2 = b(1(b%,0,5 — 1)2) = b5 [s] = y3,[s].
If r > 0, then
2r-+s

20,1, 8)2 = a(1(b*,7 = 1, 8)2) = az {5, [r + ] = yar {3.[r + ).

For the equations at the bottom, we do the same thing. Note first that (¢, 0,0) =

e1 = x1[0] for all arrows c. If s > 0, then
wp Faenls] = (a%a) w3 i [s] = (a"a) A (ba)*(B*)* = (a"a)" (b"a)*,
which is equal to 1(a,r, s);. If s =0, then the equation is true since
25, 41[0] = (a"a)"21[0] = (a”a)" = 1(a, 7, 0)1.
If r > 0, then
5 aera[8] = (@%a) w344 [s] = (a70)*(a™0)"(B*)* = (a"b)" (b°b)* = 1(b, 7, 9)1,

and if r = 0, then the equation is true since

30[s] = (a"a)*zi[s] = (a*a)*(B*)* = (b"0)* = 1(b,0,5):.
The next two equations are satisfied since

xgﬁzsﬂ[o] = (a*a)rxéerl = (a"a)"(a*b)® = 1(a”, 7, 5)1.

ey senlr+s] = (a"a) 2yl +s] = (a%a)*(A%) (b"a)" (B")"*

(a*a)’(B*)*(b*a)" = (b*b)*(b*a)" = 1(b*, 1, s)1.
Finally, we verify the four equations on the bottom right

2(a,m,s)1 = a(i(a,r, 8)1) = axy 2300 [s] = w350 [s]:
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Q(ba T, 5)1 = b(l(b7 T, 8)1) = bz;a—!_iQSJrl[S] = y§7'+2s[8]'
If s > 0, then
2(0’*7 0; 5)1 = b(l(a*v 0) S = 1)1) = bx%s—l[o] = ygs—l[o]'
If » > 0, then

2(0’*; T, 5)1 = a(l(a*ﬂ r— 1) 5)1) = amgr+2sfl[0] = ygr+2sfl[0]'

If s > 0, then
Q(b*,O,S)l = b(l(b*ﬂoas - 1)1) - bxgsfl[s - 1] = y;;jl[s - 1]

If r > 0, then

20" 7o 5) = a(a (8,7 — 1, 8)1) = a5ty r + s — 1] = y3rdas I+ s — 11

If r,s are both zero, then there is nothing to check, because 1(a*,0,0)2 and

1(6*,0,0)2 are not defined. O
We can now state the crucial lemma.

Lemma 5.1.13. Set k; = [ L] (i.e. the integer part of L). The set L = ULy,

s a basis for A, where

Lip = {ablkay):j € N,1<i <25},
Loy = {yp;lke;]:j €N, 1<i <25},
Lin = {abjylk]:j €N,0<i<2j+1},
Ly = {y%j+1[k2j+1] (JeN0<i <2541}

The proof of this lemma is quite long. The basic idea is to write the original
basis elements in terms of the @ [k;], yi[ki], in such a way that it guarantees they
also form a basis of A. We split the proof into four separate parts, each part
showing that L, is a basis of e,Ae,. We define chains of sets (Pyu,(m))men,
(Lup(m))men with the properties Py, (m) C Py, UpPuy(m) = Py, and the

same with L replacing P. Note that although we use the (c,r,s) notation to
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write down the elements of P,,(m), they are identified if they correspond with

the same path. We show that for each m the following properties hold,

(1) KPu(m) C KLy, (m).

It then follows that L, is a basis of e, Ae,. Namely,

(i) It spans e, Ae,. Given an element « of e, Ae,, we can write « as a linear
combination of elements of P, (since P,, is a basis of e, Ae,). We can choose
m so that each of these elements is in P,,(m). Then by (), @ € K Ly,(m), and
hence certainly in K L,,,.

(ii) It is independent. If this is not the case, then some linear combination
of elements of L,, is zero. Choose m so that each of these elements lies in
Lyy(m). Thus Ly,(m) is not independent. However (1) tells us that Ly, (m)
spans K Py, (m), and (T) tells us that it has the same number of elements as a
basis of K P,,(m), and is therefore a basis. This is a contradiction.

The awkward part is proving (). Using Lemma 5.1.12, we write each element

of P,, as some zi[k] or yf[k], and then use the following fact.

Lemma 5.1.14. Given any zi[k], we can write it as a linear combination of

elements of L, specifically

zj[k] = Z At ko),
=0

where the \¢ are scalars, and

L—2k—-1] iff—-k>1,
w=<q-[{-2k] ifi-k<o,

0 otherwise.

The same formula also holds with x replaced by y.

Proof. First, note the following formula, which holds for all valid 4, (.

zj[k] + x5 k] + j[k — 1] = 0. (5.1)
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+1 _
+2

right by B¥ or (B*)* (depending on whether [ is even or odd) gives the equation.

This holds since ] aa*z!, and so :c;ié + z} = —A*z!. Multiplying on the
Note that the formula also holds with = replaced by y - For i = 1, ..., [, multiply
the formula for  (with the same i) on the left by a, and for ¢ = 0, multiply the
formula with ¢ = 1 by b.

Let z(zj[k]) be the z-value of z}[k], defined to be L — k. This measures how
close k is to k;. Clearly, zi[k] € L if and only if 0 < z(z![k]) < 1. Note that

ail]) = Lok
M) = -k
ik —1]) = %_k.

By choosing an appropriate term, we can use (5.1) as a substitution to write
zi[k] as a linear combination of elements with greater/lesser z-value, and repeat
until each z-value lies in the range [0,1), and thus each term is in L. That is,

we rewrite (5.1) in two different ways:
ik = —aiT3[k]) — 2tk — 1 5.2
i [k] l+2[ ] il J- (52)

aj[k] = —ai[k + 1] — 2] {5 [k + 1. (5.3)
Then, for example, suppose we wish to express 23,[0] in terms of the new basis

elements. Since z(z3,[0]) = 3 we use (5.3).

230l0) = —afo[l] —aia[l],
= a$o[2) + 207, (2) + 2, [2],
= 2o[2] — 2075[3] — 327,(3] — 2%4[3],
= a99[2] — 2215[3] — 3x7,[3] + af6[4] — 215 [4].
Observe that we only use (5.3) on the terms whose z-value is at least 1 and we

leave the rest alone. If instead we wish to do the same with z3,[4], then since

z(z3y[4]) = —2 we must use (5.2) (in this case only substituting the terms with
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z-value less than zero).

fﬂi’o[‘i] = *934112 [4] — fﬂi’o[3]a
= a8, [4) + 221,[3] + 23, [2],

= —af6[4] — a3, [3] + 221,[3] + =3, [2].

It is obvious that we can use this method to express any given z}[k] in the form
given in the statement of the lemma. One needs only check that the given w
is correct, which is the the maximum number of iterations of (5.3) needed. If
the z-value ﬁ — k is at least one, then after n iterations, the maximum z-value
which occurs in the expression is % — k — 5. We require this to be less than
one, i.e. we can take w to be the minimum integer n for which % k-3 <1,
which is |£ —2k —1]. If the z-value £ — k is less than 0, then after n iterations
of (5.2) the minimum z-value is ﬁ —k + 5. We require this to be at least 0, i.e.
we can take w to be the minimum integer n for which ﬁ —k — 5 >0, which is

_L% —2k|. If 0 < 2(zi[k]) < 1, then we can take w = 0.

Clearly, the same argument is valid with y replacing = throughout. O

Part 1: u=1, v =2.
Since during this part we are dealing exclusively with paths of type 1(c, 7, $)2
we can just write (¢,r, s) (also recall that if ¢ = a,b then r, s cannot both be

zero). Given an integer m > 0, let
Pia(m) ={(¢,r,s) € P1a:r,s <mifc=a,b,r+s<mifc=a"b"},
Liz2(m) = {acéj[kzgj] 27 <2m,j—m<i<j+m}.

We verify (1). We count the number of distinct elements of Pi2(n)\ Pi2(n—1)
(assuming Pi2(0) to be the empty set). We claim that this is equal to 6n — 2.
If n = 1, the four distinct basis elements are (a,1,0) = (b,1,0) = (a*,0,0),
(a,0,1) = (b,0,1) = (b*,0,0), (a,1,1), (b,1,1). There are no more, since
(a,0,0), (b,0,0) don’t make sense. For n > 1, there are 2(2n+ 1) +2(n —2) =

6n — 2 distinct elements, namely

(a,n,0),(a,n,1),...,(a,n,n —1),(a,n,n),(a,n—1,n),...,(a,1,n),(a,0,n),
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(b,n,0),(b,n,1),...,(by,n,n—1),(b,n,n),(byn—1,n),...,(b,1,n),(b,0,n),
(a*,1,n—2),(a*,2,n—3),...,(a",n—2,1),
b*,1,n—2),(b*,2,n—3),...,(b",n—2,1).

There are no more, since (a*,0,n — 1) = (b,n,0), (b*,0,n — 1) = (b,0,n),

(a*7n - 170) = (a,n,O), (b*7n - 170) = (a,O,n). So

| Pia(m)| :2677,—2:GZn—Qm:Sm(erl)—2m:3m2+m.

n=1 n=1

We compute the number of elements of Lia(m).

|L12(m)|

[{@h;[koj] : 5 < 2m,j—m <i<j+m}
= {(i,2))eN?:j<2m,j—m<i<j+m,1<i<2j}|
= [{(i,29) eN?: j <m,1<i<2j}

+{(5,2j) eEN* :m < j<2m,j—m<i<j+m}
= ) 2j+2m?
j=1
= m(m+1)+2m?
= 3m?+m.
Thus (}) is satisfied. We now show (}) is satisfied. First the case m = 1.
(a,1,1) = 23[1], (b,1,1) = 23[1],

(a*,0,0) = z3[0], (b*,0,0) = #3[1] = —3[1] - 23[0],

each of which is in K L12(1). Assuming the claim has been proved for m — 1,
every element of Pio(m —1) has been shown to be in K Li2(m—1), and therefore
in K Ly2(m). We must therefore write down each element of Pjo(m)\ Pia(m—1)
as a linear combination of elements of Lia(m), using Lemmas 5.1.12 and 5.1.14.
This splits into six cases (some of which overlap).

(1) For all r with 0 < r < m,
m—r
+2 +2m
(a T, m) - mngrgnm Z )‘txgr+2m+2t k2r+2m+2t]
=0
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Each term is in Lq2(m), since setting i, = r 4+ 2m + ¢ and j; = r +m + ¢, we
have j; =r4+m+t <r+m+m—r < 2m, and iy = j: +m, so lies in the range
Jt —m < it < jy +m (we omit this verification in all subsequent cases, as it is
trivial to check).

(2) For all s with 0 < s < m,

m—s—1
(a,m,s) = 25 [s] = Z Neaiit 25t [kamv2st2t].
(3) For all r with 0 < r < m,
m—r
(b,r,m) = mgiiém Z >\t932,«+2m+2t (k2rt2m-t2t]-
t=0
(4) For all s with 0 < s < m,
m—s—1
(bym, s) = 235 0,15] Z M s ot Romo2s 2]

(5) For all r with 0 <r <m — 1,
m—1
(" rym —r = 1) = a5 0] = Y Mgt ot [kamaad].
t=0
(6) For all r with 0 <r <m — 1,
(b*,r,m—r—1) =23 m Z)\t 3 T a2t

Thus (I) is satisfied.

Part 2: u=2, v=2.
We write (¢, r, s) for o(c, r, $)2. Given an integer m > 0, let
Pyy(m) ={(¢,r,s) € Pr2a:r,s <mifc=a,b,r+s<mifc=a"b"},
Loy = {m;lkos] : j < 2m,j—m <i<j+m}.

We verify (1). For convenience, set P3(0) = {ez}. For n > 1, we claim that

the number of distinct elements of Pag(n) \ Paz(n — 1) is 6n. If n =1, they are

118



(a7 0’ 1) = (b*’ 170)’ (b’()? 1) = (b*’()? 1)’ (a7 1’0) = (a*’ 170)’ (b’ 170) = (a*70’ 1)7
(a,1,1), (b,1,1). For n > 1, there are 2(2n+1)+2(n—1) = 6n distinct elements,

namely
(a,n,0),(a,n,1),...,(a,n,n —1),(a,n,n),(a,n - 1,n),...,(a,1,n),(a,0,n),

(b,m,0), (b,n,1),...,(b,n,n—1),(b,n,n),(by,n—1,n),...,(b,1,n),(b,0,n),
(a*,1,n—1),(a*,2,n—2),...,(a",n—1,1),
b 1,n—1),(%2,n—2),...,(b",n—1,1).
There are no more, since (a*,0,n) = (b,n,0), (b*,0,n) = (b,0,n), (a*,n,0) =

(a,n,O), (b*,n,O) = (avoan)' So

|Poa(m)| =1+ 6n=1+6Y n=1+3m(m+1)=3m"+3m+1.

n=1 n=1

We compute the number of elements of Log(m).
[Laa(m)| = [ysylke;] 1 j < 2m,j—m <i<j+ml|
= 14+H{(0,2) eN*:1<j<2m,j—m<i<j+m,0<i<2j}
= 1+[{(i,25) eN?:1<j<m,0<i<25}
+{(0,2)) eN’ tm < j < 2m,j—m < i < j+m}

m
= 1+) 2+ 1+m2m+1)

j=1
= l+mm+1)+m+2m?+m

= 3m?+3m+1.

Thus (1) is satisfied. We now show (1) is satisfied. First, the case m = 1.

Clearly es = yJ[0] € Laa(1), and so are
(b*,1,0) = y3[1] = —yi[1] = 53[0], (v",0,1) = ya[1] = —y[1] — (0],

(a*,l,O):y%[O], (a*,O,l):yg[O], (a,l,l):yi’[l], (b,l,l):yi[l].

Assuming the claim has been proved for m — 1, we must show that each

element of Paa(m) \ Paz(m — 1) lies in K Loo(m). Again, this splits into six
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cases.

m—r
Forr <m, (a,r,m)= y;“jf;”m[m] = Z Atygjf?m+2t[k2r+2m+2t]
t=0
m—s—1
For s <m, (a,m,s)=y5 2 [s] = Aeyot st komt2s 42t
t=0
m—r
For r <m, (b,7,m)=ys 0,[m] = Z Ao ot ko ameat],
t=0
m—s—1
For s < m, (b7 m, 5) = y;m+25[s] = )‘ty2m+25+2t [k2m+23+2t]7
t=0
m—1
Forr <m, (a*,r,m—r) =1y [0]= AeYboh 2e[K2m26],
t=0
Forr<m, (b*,r,m—7r)=yst"m Z Nyt 3y Kam--2:]-

Thus (1) is satisfied.

Part 3: u=1,v=1.

We write (¢, r, s) for 1(c,r,s)1.

Given an integer m > 1, let

Pii(m)=A{(¢,r,8) € Pra:r,s<mifc=a,b,r+s<mif c=a"b"},

Ly = {ab[ko;] 1 j <2m,j—m+1<i<j+m+1}.

We verify (f). The calculation of the number of elements of Pjj(m) is vir-

tually identical to the one for Py3(m), and has the same answer, |Pi1(m)| =

3m2 +3m+ 1.
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We compute the number of elements of Lq1(m).

|L11(m)|

{ysilkja] 14 <2m,j—m+1<i<j+m+1}

= 1+ |{(i,2j+1) e N?:1<j<2m,
j—m+4+1<i<j+m+1,1<i<2j+1}

= 1+ {({,2/+1)eN?:1<j<m,1<i<2j+1}

+{(0,2j+ 1) eN* :m<j<2m,j—m+1<i<j+m+1}

= 1+) 2j+1+m2m+1)
j=1
= 1+mm+1)+m+2m?>+m

= 3m?>+3m+1.

Thus (T) is satisfied. We now show (1) is satisfied. First, the case m = 1.

Clearly e; = 2}[0] € L11(1), and so are
(b*v LO) = Ig[l] = —xé[l] - Ig[O], (b*voa 1) = yi[l] = —yg[l] - yg[O],

(a*alao):yg[o]a (a*aoal):y?l,[o]a (aalal):yg[l]ﬂ (balal):yg[l]
Assuming the claim has been proved for m — 1, we can show it holds for m

by a similar process to the previous parts by splitting into six cases, and using

Lemmas 5.1.12 and 5.1.14.

r+2m-+1

Forr <m, (a,r,m)= x5 5 "/ [m] r2mtitl

v i [karomaats ],

Il
1
[=)

>~

m+2s+1 _ m+2s+t+41
For s < m, (aa m, S) x2m+2s+1 [S] )\tx2m+2s+2t+1 [k2m+25+2t+1]’

Forr <m, (b,r,m)= :Eg}niémﬂ[m] )\txg;«itgm+2t+1[k2r+2m+2t+1]7

I
igh

m—s—1
_ s+l _ 2s+t4+1
For s <m, (b,m,s) =5, s.41[s] = Mot ost ot [Kem2s+2e41];
t=0
m—1
* r+1 r+t+1
Forr <m, (a*,r,m—r)=uzy"" [0 E AT e 1 k2ma2tt1],
t=0
m
) E : +rtttl
Forr <m, (b*,r,m—r)=uah 7 [m]= ATy opn [K2my2e41)-
t=0
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Thus () is satisfied.

Part 4: u=2,v=1.
We write (¢, 7, s) for o(c,r, s)1. Recall that if ¢ = a*,b* then r, s cannot both be
zero. Given an integer m > 1, let

Poy1(m) ={(¢,r,8) € Pa:r,s<mifc=a,b,r+s<m-+1ifc=a" 0"},

Loy = {ab[ko;] 1 j <2m,j—m <i<j+m+1}

We verify (1). For convenience, set P1(0) = {a,b}. For n > 1, we claim that
the number of distinct elements of Pa1(n)\ Pa1(n—1)is 6n+2. If n = 1, they are
(a,0,1) = (b*,2,0), (b,0,1) = (b*,0,2), (a,1,0) = (a*,2,0), (b,1,0) = (a*,0,2),
(a,1,1), (b,1,1), (a*,1,1), (b*,1,1). For n > 1 there are 2(2n+1)+2n = 6n+2

distinct elements, namely

(a,n,0),(a,n,1),...,(a,n,n = 1),(a,n,n), (a,n - 1,n),...,(a,1,n),(a,0,n),

(b,m,0), (b,n,1),...,(byn,n—1),(b,n,n),(byn—1,n),...,(b,1,n),(b,0,n),
(a*,1,n),(a*,2,n—1),...,(a",n,1),
®*,1,n),(d*,2,n—1),...,(b",n,1).

There are no more, since (a*,0,n + 1) = (b,n,0), (b*,0,n + 1) = (b,0,n),

(a*,n+1,0) = (a,n,0), (b*,n+1,0) = (a,0,n). So

m m
|Pr(m)| =2+ 6n+2=1+6 > n+2m = 2+3m(m-+1)+2m = 3m>+5m+2.

n=1 n=1
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We compute the number of elements of Laq(m).
|Lor(m)| = [ys;lkojsa] 15 <2m,j—m<i<j+m+1}
= 24+ [{(i,2j+1) eN?: 1< j < 2m,
j-m<i<j+m+1,0<i<2j+1}
= 2+ 3,2/ +1)eN?: 1< <m,0<i<2j+1}
+{(,2j+1)eN*:m<j<2m,j—m<i<j+m+1}
m
= 24 2j+2+m(2m+2)
j=1
= 2+ m(m+1)+2m+2m? +2m

= 3m®+5m+2.
Thus (}) is satisfied. We now show (}) is satisfied. First, the case m = 1.
(a,0,0) = a=wyi[0], (5,0,0)=0b=y][0],
(a,0,1) = y3[1] = —y5[1] = y5[0],  (0,0,1) = y5[1] = —y3[1] — y3[0],
(a,1,0) = g3[0],  (b,1,0) =y5[0], (a,1,1) =w301], (b,1,1) = y3[1],

each of which lie in Lo;(1). Assuming the claim has been proved for m — 1, we

can show it holds for m by a similar process to the previous parts by splitting
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into six cases, and using Lemmas 5.1.12 and 5.1.14.

r4+2m-41

Forr<m, (a,r,m)=y5 73, 1[m] pr2met

)‘ty27 Fomyotkorromyat],

I
I

m—+2s+t
MYt o5+t (Komt2st2t],

For s <m, (a,m,s)= ygﬁféi&lb]

|
(]

For r <m, (b,r,m) = y277;+2m+1[m] )‘tygnrigm-i-% (k2r+2m+2t],

t=0
m—s—1
; 25+t
For s <m, (b,m,s) = y§m+2s+1[3] = Aty2fn+25+2t [k2m+2s+2t],
t=0
m—1
Forr<m+1, (a*,r,m—r+1)=y3,,,[0] Z Ayt oikamaat),
t=0
m
Forr<m+1, (b%r,m—r+1)=y[m Z a3 koot
=0

Thus (}) is satisfied. Putting the four parts together completes the proof of
Lemma 5.1.13.

We are now finally in a position to complete the proof of Theorem 5.1.4. We
have the following description of the preprojective modules for @), first obtained

by Kronecker.

Lemma 5.1.15. If M in an indecomposable preprojective module for K@), then
M has dimension vector (n,n+1) for some integer n > 0 and M is isomorphic

to the module corresponding to the representation

Kn

00 --- 0 10 --- 0

10 --- 0 01 --- 0

01 -0 ce .

- 00 - i

00 1 00 0
Kn+1
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Thus, if M is an indecomposable preprojective module, there are bases
{f1,--., fn} for esM and {go,...,gn} for eaM so that af; = bfiy1 = g; for

alli=0,...,n — 1. The following diagram illustrates this,

Tp—1 X

Yn—1 Yn—2 Yy

where the vertical arrows represent multiplication by a, and the diagonal arrows

Tn 1
Yn 1 Yo
represent multiplication by b.

Write A as a representation of () with respect to the basis given in Lemma

5.1.13. Since azi[k;] = bx|"'[k;] = yi[ki], it decomposes as

z1[0] 5[0] 5[0]
® ® \ ®
Yo[0] yi[0] y7[0] y3[0] y3[0]  99[0]
wilk) a7 [kl a; [ki]
® .. \ ®
yi k1] y k) oy yi [k y; (k1]

Clearly this is isomorphic to the direct sum of all the indecomposable prepro-

jectives, with one taken from each isomorphism class.
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5.2 Are A and II isomorphic as algebras?

Since we conjecture that A and II are isomorphic as K @-modules (and so have
the same dimension in the Dynkin case), a reasonable question to ask is whether
they could be isomorphic as algebras, especially since they obviously are in the

case of @) being type A,,. We consider the smallest non trivial case.

Lemma 5.2.1. If K has characteristic 2, then II(Q) % A(Q), where Q is the

quiver giwen in Lemma 5.1.3.

Proof. Suppose that there is an isomorphism 6 : A — II. In steps (1)-(4), we
show that we can modify 6 to an isomorphism satisfying increasingly stronger
properties, and so we only need show that there are no isomorphisms of the
type given in (4). Let S = Keo+ Kej + Kea + Kes.

(1) We can assume that 6(5) = S.
Let S’ = 6(S). Clearly S is a semisimple subalgebra of II, and as vector spaces
IT = S@radIl. Similarly, A =S @rad A and therefore §(A) = 6(S) @ O(rad A),
ie. II = 5" @radll. By the Wedderburn-Malcev theorem, [15, Theorem 6.2.1],
there is an invertible element z € II such that S = 2715z, Let ¢ : Il — II be
the automorphism defined by ¢(y) = 2~ 1yz. By composing  with ¢ we obtain
an isomorphism 6’ : A — II which does satisfy 0'(S) = S.

(2) We can assume that 6(e;) = e,(;) for some permutation o.
Assuming (1), we have that 0(e;) = > t;;e; for some scalars ¢;;. Now it is clear
that given 4, at least one ¢;; is nonzero, since otherwise f(e;) = 0. Additionally,

given j, at most one t;; is nonzero since if both ¢;; and t; are nonzero, then

0= e(eiek) = 9(61)9(616) = <Z tirer> (Z tkses> = Ztiltklel 7& 0;
r s l

since t;5t,; # 0. These two conditions show that there are exactly four nonzero
tij, and thus given 4, exactly one ¢;; is nonzero, (say j = o(i)), and given j,
exactly one t;; is nonzero, (say ¢ = p(j)). Clearly o and p are inverses of each
other, and so they are permutations, and 6(e;) = t; 5(;y€q(;)- Since for all i we
have 0(e;) = 0(e;)?, we have t; 5(i)eo(iy = (ti (i) €np)s hence ti o) = (tio(i))?,

and therefore t; ,;y = 1. This completes the proof of (2).
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(3) We can assume 60(ep) = eo.

Suppose otherwise, i.e. 8(eg) = e;, where i = 1,2,3. Then 0(egAeg) = e;Ile;.
However this is impossible, as dim egAeg = 10 and dim e;ITe; = 6 for ¢ # 0 (see
Lemma 5.1.3).

(4) We can assume that 6(e;) = e; for all 4.

Given any permutation p of {0, 1,2, 3} which sends 0 to 0, there is an automor-
phism of IT which sends e; to e,;). Apply this with p = oL

It therefore suffices to prove there is no isomorphism which satisfies (4), so
assume 6 to be such an isomorphism. We have 6(a) = 6(eg)8(a)0(e1) = epb(a)es,
that is, 6(a) is a linear combination of paths from 1 to 0. By Lemma 5.1.3, we
see that ejlleg is a 2 dimensional space with basis {a,bb*a}, and so 6(a) =
At + pobb*a for some scalars Ay, po. Similarly, 8(a*) = Ag=a* + pg+a™bb*,
0(b) = Aob + ppaa™d, O(b*) = Ap:b* + pp-b*aa”, 0(c) = Acc + peaa*c, O(c*) =
Ao € + pexc*aa™. Note that the A scalars are all non zero, since otherwise 6 is
not surjective.

Now 0 = f(a*a) = 0(a*)0(a) = Ag=Ae@*a + fig= Ag@*bb*a + Ag= pga*bb*a +
Lo fa@*bb*bb*a = (lax Ag + Aax o )a™bb*a (since the other terms are equal to
0 in II). So plaxAq + Aaxpte = 0 (since a*bb*a is not zero in II). Similarly
o Ay + Ap=pip = 0 and prex Ae + Aex e = 0.

Finally, 0 = 6(aa* + bb* + cc* + aa*bb*) = AgAg=aa™ + Agpig-aa*bb* +
LhaAaxbb*aa™ 4+ ApApx O™ 4 Ap pip= bb* aa™ + pip Ao aa™bb™ + A Aexcc™ + Ao pier cc*aa™ +
feder aa*ec® + AgAax ApApraa*bb* = (Aghar — AcAer )aa™ + (ApApr — AeAer )0D* +
(2(Maftar — Xppins + Acther ) + AaAa= ApAp+ Jaa*bb* (using the formulas obtained in
the previous paragraph, and the reduction formulas obtained in Lemma 5.1.3).
Since aa*, bb*, aa*bb* are independent in II, the coefficients must be zero. In par-

ticular, since K has characteristic 2, AgAg« ApAp« = 0, which is impossible. [

Of course, if K does not have characteristic 2, then one can use this proof
to construct an isomorphism, e.g. define § : KQ — KQ to be the map which
sends a to a + $bb*a, a* to a* — 2a*bb* and each remaining arrow (and each

trivial path) to itself. Then one can check that 6(u') = p° and thus 6 induces a
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map A — II. It is easy to construct an inverse, e.g. the map which sends a to
a— %bb*a and a* to a* + %a*bb*, and each remaining arrow to itself. However,
this example doesn’t really suggest how this question can be answered in general,
because it is not practical to attempt this analysis for the larger Dynkin quivers.

The question is quite interesting to ask for the quivers of type A,,. If we orient
the quiver cyclically, then it is easy to see that II is a subalgebra of A. Namely,
construct A as described in Section 2.1, and observe that p = }_ 7 €(a)aa”
is zero. Therefore the natural map K@Q — A induces an inclusion 6 : II — A
because p is sent to zero. This is not an isomorphism, because the representation
X of Q with X, = K forall v, X, = 1, X4+ = —1 forall a € Q; is a
representation of II, but not of A because each 1+ X, X+ is zero and is therefore
not invertible. Thus the image of 6 cannot contain [,. Strictly, this does not
show that IT is not isomorphic to A as algebras, since we have not shown that

no isomorphism exists, only that 6 is not an isomorphism.

5.3 Other questions

We list some other questions, whose answers may turn out to be of interest.
1. When is AY(Q) AY (Q)? We do have the following theorem, which may
suggest an answer to this question. It could have been placed in Chapter 2, as

it follows immediately from Theorem 2.3.1.
Theorem 5.3.1. AY(Q) is Morita equivalent to A7 for all ¢ € Wq.

2. Is there any significance to the numbers dim(A(Q)<;/A'(Q)<i—1)? Note
that AY(Q)<; = >, AY(Q); where A'(Q); is the span of the paths of degree i
using the oriented grading on K Q. The reason why these numbers may be of
interest is that the corresponding numbers for II are equal to the dimension of
the module 77¢(K Q). The numbers for A will be different (provided @ does
not have type A,), e.g. if @ is the quiver of type D4 given in 5.1.3, then
dim(egA<ie0/eoA<pep) is equal to 3 (because aa*, bb* cc* are independent),

but dim(epIl<iep/eoll<pep) is 2.
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3. One can define a class of algebras KQ/I ., where p® = > e, €la)aa™ +x
and x is a linear combination of paths formed by composing paths two or more
paths of the form aa*. One can ask whether such algebras are isomorphic to II,
or to A (A being one special case). This has been explored in the Dynkin case
in [5].

4. It may be interesting to consider the intersection between the ideals I,
and I,,. We were surprised during our calculations how often the elements of I,
were homogeneous, and that these homogeneous elements were also elements of

I, (e.g. the ¢; in obtained in Lemma 5.1.5).
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Chapter 6

Preprojective algebras for
quivers with relations

The purpose of this chapter is to determine whether the construction of the
preprojective algebra (that is, an algebra satisfying the preprojective property)
can be generalised to algebras given by quivers with relations. The algebras
investigated are those arising from ‘pairings’. Such algebras can have both
finite and infinite representation type, but our results only apply in the finite
type case. We use the convention that all modules are preprojective (e.g. we
can use the definition of a preprojective module given by Auslander and Smalg,
[2]), so that a ‘preprojective algebra’ P(A) of an algebra A should have A as
a subalgebra, and should decompose as the direct sum of all indecomposable
modules for A, one from each isomorphism class. It would be desirable to obtain
some results for algebras of infinite representation type, but this appears to be
difficult.

In Section 6.1, we introduce the notion of a ‘pairing’ for a quiver, and show
that a quiver Q) equipped with a pairing ¥ gives rise to a new quiver Q> with
relations (and hence an algebra A). We then can use the preprojective algebra
for @ to construct an algebra II(Q, X). In Section 6.2, we conjecture that if ¥ is a
certain type of pairing (an ‘end pairing’), then IT(Q, X) satisfies the preprojective
property for A (provided A has finite type). After giving a counterexample to

show that this is not true for all pairings, we prove that the conjecture holds
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in a special case (Sections 6.3 and 6.4). Finally, in Section 6.5, we show that
this result is sufficient to show that for any Nakayama algebra A, there exists

an algebra satisfying the preprojective property for A.

6.1 Pairings

Definition 6.1.1. A pairing ¥ of a quiver @ is a triple (Q’, Q”, o) where Q’, Q"

are full subquivers of @, and ¢ : Q" — Q' is an isomorphism.

We write v1 ~ vy if v1 = o(v2) and extend ~ to an equivalence relation on
Qo (i.e. u ~ v if and only if there is a sequence u = v1,vs,..., vy = w with
either v; = o(v;41) for all ¢ or v; = o(v;—1) for all i). We define an equivalence
relation on @)1 in the same way. Clearly if a; ~ ag, then h(a1) ~ h(az) and

t(aq) ~ t(ag). This fact enables us to make the following definition.

Definition 6.1.2. We define the glued quiver Q¥ to be the quiver with vertex

set Qo/ ~ and arrows @1/ ~, with h(a) = h(a), and ¢(a) = t(a).

Example 6.1.3. Let Q be the quiver

1 2 5 3
— o — e
a b
d C
6 4

=
[N}
I
T
w

Given a quiver @ and a pairing ¥, there is an induced pairing ¥ = (Q’, Q”, )

on @, where 7 is the extension of o obtained by defining 7(a*) to be (o(a))*.
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It is clear that the quiver @E may be identified with @ If we denote the set
of paths of Q by P, and the set of paths of @ by P>, then there is a map
n:P— P% which takes a path a,, ...a1 t0 @y .. .41 and a trivial path e, to eg.

For p € P* we define

0w = > a

qen—t(p)
and extend to a vector space homomorphism K @ — K@ (note that if 4 ¢ Im 7,

then the sum is taken to be zero).
Lemma 6.1.4. 0 is an algebra homomorphism.

Proof. We need to check that 0(puipo) = 0(p1)0(uz) for all py, po € P¥. This
follows from the fact that if ju1, uo € P* with h(u2) = t(u1), then

0 (pape) ={a1g2 € P g € 7 (1), g2 € 7 (p2) )

If h(p2) # t(pa), then h(qz) # t(q1) for all ¢ € = (1) and g2 € n~1(p2), and
50 0(111)0(p12) = 0 = O(pu1p2). Finally it is clear that 5(1](@) = g(zﬂeQE e5) =
2veqo @ = kg O

Clearly one can restrict f to an algebra homomorphism 0 : KQ* — KQ.
Let I¥ = Ker#. It is the ideal of KQ generated by the paths of @* not in

Im7 (so in the example I” is generated by ba). The algebra KQ/I* can be
embedded in KQ, namely, there is a map ¢ : KQ*/I* — K@ induced from 6.

Definition 6.1.5. Given a quiver () with a pairing ¥, we denote the algebra
Im 70 as T1(Q,¥) (recall that 7 denotes the natural surjection KQ — II(Q)).

Clearly II(Q, X) inherits an oriented grading from the oriented grading on
II(Q). It is clear that

70 Z e(a)aa* | == Z e(a)aa™ | =0,

aeﬁl 0661
so II(Q, X) is a quotient of II(Q%).

Lemma 6.1.6. KQ¥/I* is a subalgebra of TI(Q,X).
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Proof. The composition ¢ : KQ* 9, KQ — KQ — TI(Q) maps into I1(Q, X).
Clearly Ker 6 C Ker ¢, and if € Ker¢, then §(z) € KermN K@, so 8(xz) = 0. So
Keré = Kerf = I*, and there is an induced injective algebra homomorphism

KQ*/I* - 11(Q,Y). O

Thus II(Q, X) has a natural KQ*/I*-module structure.

6.2 The main theorem

Given vertices u,v of a quiver, if there is a path from « to v, then v is said to

be a predecessor of v, and v a successor of wu.

Definition 6.2.1. A pairing of a quiver @) is an end pairing if and only if

(1) There are non source vertices uj,ua,...,u; € Qo such that Q' is the
full subquiver of @ with vertex set consisting of all successors of the u;, and if
a:u — v is an arrow of () which is incident with a vertex of @', then either
a € Q) or v = u; for some 1.

(2) There are non sink vertices wy,ws, ..., w, € Qp such that Q" is the full
subquiver of ) with vertex set consisting of all predecessors of the w;, and if
a:u — v is an arrow of () which is incident with a vertex of @, then either

a € QY or u = w; for some 1.

In particular, we see that a vertex with no successors in @’ (i.e. a sink in
Q') cannot have any successors in @ (so is a sink in @), whereas a source in Q’
cannot be a source in ) because the only sources in Q" are the u;. The same is

true for )", but the other way round.

Example 6.2.2. (1) Let @ be the quiver
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One possible end pairing is determined by setting u; = 5, us = 9, w; = 8§,

wy = 10 and then Q) = {5,6,9} and Qf = {7,8,10}. The corresponding glued

quiver is
3 o1l
a 7
- 7 - t =W Z
i 5 5=7 6=28 9=10
. s z _
4 o 12

(2) Let @ be the quiver

T Y z

Since @’ cannot contain the source vertex 1, and is closed under successors, we
must have either Qy = {4} or {3,4} or {2,3,4}. The corresponding Q) are {1}
or {1,2} or {1,2,3}. Note that Q' and Q" may intersect, so the third case is

allowed. The corresponding glued quivers are

5 Y 3 T=9=2
T=2Z
T z i e
NG~ 1=3 ] 2=14 e
i=1 1=2=3=4

(3) We can see by inspection that the pairing given in Example 6.1.3 is not
an end pairing, since there is a source 6 in )’ which is also a source in @, which

is impossible.

Conjecture 6.2.3. Let QQ be a quiver with an end pairing X, and denote
KQ¥/I* by A. If A has finite representation type then I1(Q,X) has the prepro-

jective property for A.

It is almost certainly the case that the conjecture can be extended in some

way to the case of A being infinite representation type. Clearly one would have
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to instead use the category of ‘preprojective’ A-modules, but then the problem
arises that there are several different definitions of what a preprojective module
for a non-hereditary algebra should be, and it is unclear which we should be
using. The definition given by Auslander and Smalg works well enough in the
finite type case (in the sense that all modules are preprojective), but if this were
the correct definition to use, one might expect that (II(Q,X)); would be the
direct sum of the modules in the i-th component of the preprojective partition,
but there are many examples to show this is not the case (e.g., one can take
a quiver of type Dy with the empty pairing, and then II(Q,X) is the ordinary
preprojective algebra, which fails to satisfy this condition).

We are able to prove the conjecture in the following special case.

Theorem 6.2.4. Let Q be a quiver with an end pairing %, such that the con-
nected components Q} of Q' have Dynkin type An,, oriented to have exactly
one source and one sink. If A = KQ¥/I* has finite representation type then

I(Q,X) has the preprojective property for A.

We give an outline of the proof of the theorem, which relies on proving two

lemmas.

Label the vertices of each connected component Q) of Q' as ul,... ,uiw and
arrows bi,...,b;, _; so that t(b) = u} and h(b}) = u’, ;. We define a function
d: Qo — N by

d(v) = {l ifv= u} for some 14
0 otherwise
We label the vertices of @ in the same way as Q)', but use ‘w’ and ‘¢’ instead of
‘o’ and ‘b’. Note that some vertices/arrows of ) may have two labels, although
the situations in which this may occur are quite restricted. That is, we claim
that if v = w!, = ul, then v must be contained in a component Q of Q of
type Ay, for some k, and m > n. To see this, first note that @ clearly contains
the predecessors of v in @ (which are the predecessors of v in Q”, the wf for

I < m) and the successors of v in @ (which are the successors of v in @Q’, the

ug for I > n). Therefore Q contains the following subquiver, and there can be
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no arrow with head at wf with [ < m or with tail at ug with { > n other than

those included in the diagram.

J

X2

wm
e——— >0 o @ ® @ s O&—— >0
J J J
Un, Up+1 unjfl unj

In fact @ is must be equal to this subquiver. Any arrow of @ with tail at w] with
I < m would, using the last part of property (2) of end pairings, have to be in Q"
(i.e. must be the arrow already in the diagram, c}). Similarly there can be no
arrows with head at u{ for [ > n. One must have bflJrk = cin+k, uZLJrk = win+k
for all k& € Z which make sense, and if n < m, then @’ contains ufn_,H_l = wt,
which is a source in ), a contradiction. Note that in this situation, there is

exactly one arrow of @ (namely ¢, _, ) with head at u}, and conversely if more

than one arrow of Q ends at u!, then Q) is disjoint from Q".

Lemma 6.2.5. (Main Lemma 1.) Let k >0, v € QY. As A-modules,

M(Q,S)ker = €D THQ)xen,
vev

d(v)<k

where the module structure on the right hand side is restriction via ¢ of the

natural KQ-module structure.

The proof of this lemma is done in Section 6.3.

Now we relate the category of A-modules with the category of K Q-modules,
using the process described in [27]. Via the embedding ¢ : A — KQ, any KQ-
module becomes an A-module by restriction. We can describe this in terms of
a functor F : Rep @ — Rep A. Given a representation X of @, let F/(X) be the
representation Y of Q*, where Y; = ®uc5 X, and if @ : 0 — 0 € le then for

r € X,, where u € 9, define

Ya(z) = Xy(z) if b€ a with h(b) = u.
0 otherwise.

Note that this is well defined as if b exists, it is unique.
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Lemma 6.2.6. (Main Lemma 2.) F induces a bijection from the indecompos-
able representations X of Q with X,, # 0 for some v & Q) to the indecomposable

representations of A.

The proof of this lemma is done in Section 6.4. Assuming that Theorem 6.2.4
is proved, this lemma gives rise to the formula dim(II(Q, X)) = dim(II(Q)) —
dim(II(Q")) (by applying Theorem 1.3.4).

Assuming the two Main Lemmas are proved, we prove Theorem 6.2.4 as
follows (this only proves the left modules part of the preprojective property, but
it should be easy to see that the every part of the proof can be done in the same
way with right modules). Using Main Lemma 1, and the fact that II(Q, X) is

graded, we have that as A-modules

Q%) = @ MQ,De, = @ TQe..

DEQE vEQo
k>0 k>d(v)

In view of Theorem 1.3.4, this is equivalent to

nQe.2= @ FM),

MezZ\Z’

where Z is a set of representatives for the category of representations of @), and
Z' is the subset of Z consisting of those representations of () which correspond
to II(Q)xey, with k < d(v). We claim that M € Z’ if and only if M,, = 0 for all
u & Qf, and then Theorem 6.2.4 follows from Main Lemma 2.

Clearly, if M € Z', then M corresponds to some II(Q)ie, with k < d(v).
If u ¢ Qf, then any path from v to u most contain at least d(v) arrows in
Q%, and thus e, I1(Q)re, = 0, and so M,, = 0. Conversely, if M € Z\ Z,
then M corresponds to some nonzero II(Q)xe, with & > d(v). That is, there is
some nonzero path p of degree k starting at some uil( v) for which 7(p) # 0. By
‘normalising’, we can assume that p can be written as p = q(b%)*b%r, where r
is the shortest path from ufi(v) to ut, (see Lemma 6.3.5 for the details, but this

type of calculation should be familiar from previous chapters). Using property
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(1) of end pairings and the preprojective relation of u}, we have

w(0)b)) = Y w(aa®).
a€Qr
h(a)=uj

Since 7(p) # 0, there is some arrow a € Q1 with h(a) = u} such that w(aa*r) #
0. Setting u = t(a), (which not in Q') then €,II(Q)e, # 0, and thus M, # 0.

If @ and X satisfy Theorem 6.2.4, then it is reasonable to call II(Q,X) a
preprojective algebra for A = KQ*/I*. Of course, we would like to say that
II(Q,X) is the preprojective algebra for A, but it is possible that A may be
obtained from more than one quiver and pairing, and would consequently have
more than one preprojective algebra. However we make the following conjecture,

which (if true) would eliminate this problem.

Conjecture 6.2.7. If Q and Q are quivers with end pairings ¥ and 3 respec-
tively, such that KQZ/IE o~ KC?E/Ii, then the pairings are isomorphic (i.e.
Q = Q) via an isomorphism which respects &, F), and so H(Q, E) o~ H(Q, E)

Unfortunately, we are unable to prove this conjecture (even in the case where
Theorem 6.2.4 applies).

To end this section, we show that the conjectures cannot be extended to
apply to all pairings. Let Q and ¥ be the quiver and pairing given in Example
6.1.3, and let A & KQZ/IZ. Let @ be the quiver

1 2 5 3
o —>0 *——>0
a b
C
4

and ¥ be the pairing determined by setting Q) = {2}, Q¢ = {5} (which is not
an end pairing because 5 is a source in @” which is not a source in Q). Then
A= KQE/IE, which shows that Conjecture 6.2.7 does not hold if ‘end pairing’

is replaced by ‘pairing’.
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One can calculate using the Auslander-Reiten quiver the indecomposable
modules for A, and adding their dimensions we find that II(Q, ) would have
to be 16 dimensional in order for it to satisfy the preprojective property. Since
I1(Q) is 14 dimensional, TI(Q, ¥) can be at most 14 dimensional (in fact it is 13
dimensional), and thus II(Q, ¥) does not satisfy the preprojective property.

For the other pairing it is less obvious. We can calculate that {e1, a,a*, c*a,
a*c,aa*,es, b, b*, be, c*b*,b* eq, e5, 4, €6, ¢, d, c*,d*} is a basis for H(Q), and that
H(Q, E) is the subspace spanned by the first twelve elements and the elements

es + e5,e4 + eg,¢c+ d,c* + d*. Thus the dimension is correct, and one has to

investigate further. One can decompose H(Q, E) as

0(Q,%) = @ Q. 2)ke,.

V€Q§
k>0

In particular, H(Q,E)lei = Kc*a =2 Sy and H(Q,E)Qeg = Kc*b* =2 S4. Thus
I1(Q, ¥) has two isomorphic indecomposable summands, and so II(Q, %) does
not satisfy the preprojective property.

Note that one can relate the category of A-modules and the category of
KQ-modules as in Main Lemma 2 (see [27]), and in fact in can be checked that

H(Q, E) does satisfy the preprojective property for right A-modules.

6.3 Proof of Main Lemma 1

We prove Main Lemma 1 by constructing an A-module isomorphism. Before we

can do this, it is necessary to prove several preliminary lemmas.
Lemma 6.3.1. If v € Qf, then d(c(v)) > d(v).

Proof. We have that v = w, for some j,m, and o(v) = ul,. If v € Qf, then
d(o(v)) = m > 0 = d(v), so the result is true in this case. So suppose that
v = u!, € Q). By the discussion after the statement of the theorem, we have

m > n, ie d(o(v)) > d(v). O

Thus if v1 = 0™(vz2), then n is uniquely determined, since if o™ (v) = c™(v)
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for some n > m, then v = o™~ "™ (v) which is impossible as d(c™ ™ (v)) > d(v).

Given a path p of Q” let w(p) be the corresponding path of Q' induced by 7.

Lemma 6.3.2. n(p) =n(q) < p =w"(q) for some n € Z which is uniquely

determined.

Proof. The < implication is obvious. Assume that n(p) = n(q). Clearly t(p) =
o™ (t(q)) for some uniquely determined n. We prove that p = w™(gq) by induction
on the length of the path. If p and ¢ are trivial paths then we are done. Suppose
p = aias...ar and ¢ = biby...by. We must show a; = o™ (b;) for all i. Since
n(p) = n(q), ar ~ by, and so a, = o™ (by). Clearly m = n since t(p) = t(ax) =
o™ (t(bg)) = o™(t(q)), and thus h(ax) = o™(h(bg)). If k = 1, then we are
done, and if k > 1 then let p’ = ajas...ar_1 and ¢’ = bi1by...by_1, and one
clearly has n(p’) = n(q¢’). Since t(ag—1) = o™ (t(br—1)), we can use the induction
hypothesis to show that p’ = w™(¢’), and then a; = o™ (b;) fori =1,...,k — 1.

We already have this for i = k, and so p = w™(q). O

Thus if 4 € Imn, there is a total ordering on n~(u), for p,q € n=(p)
define p < ¢ <= ¢ = w"(p) for some n > 0 (equivalently p < ¢ <=
d(t(p)) < d(t(q))). Henceforth we write d(p) instead of d(t(p)). We define P
to be the set {p € P : d(p) < deg(p)}, and P™¥ to be the set {p € P :
If w(p) exists, then w(p) & P}.

Lemma 6.3.3. If i € Imy), there is p € P with n(p) = p.

Proof. We need to show that =1 (x) contains some element p € P. We can then
take p to be the maximal such element. Suppose p is the minimal member of
n~(p), and assume for a contradiction that p & ]3, i.e. that m > deg(p), where
m = d(p).

Clearly p must involve an arrow not in @’ since otherwise w™!(p) < p is
a member of 7!(y). We write p = gr where r involves arrows in Q' and is
chosen to be as long as possible. Since ¢ must be non trivial, we can write
q = ¢'a where a is an arrow. We have t(p) = u!, for some i. We must have

t(q) = u? since this is the only vertex which is connected to u!, and is incident
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with arrows not in Q. Now deg(r) > m — 1, since r must use each of the
arrows (b})* for 1 <1 < m — 1, and deg(q) > 1 because a € Q7 as the only
arrow of @ starting at u¢ is b}, and a = b} would contradict the choice of 7. So

deg(p) = deg(q) + deg(r) > m, a contradiction. O

Lemma 6.3.4. Given q € Pmaz gnd p € P such that p only involves arrows in

Q and t(p) = h(q), then pq € pmaz,

Proof. Clearly in this case d(pq) = d(q) < deg(q) = deg(pq), so pg € P.If
pq & P then w(pq) € P, and hence w(q) € P, which is impossible because
q e pmor, O

We now derive some properties of pmaz relating to preprojective algebras.
We can extend the operation w to an algebra homomorphism w™ : KQ — KQ,
which sends p to w(p) if p only visits vertices in Q" and zero otherwise, and
similarly w™ : KQ — KQ using w™!. We can define w" for all n € Z by applying
w™ (respectively w™) n times if n is positive (respectively negative). Of course,
it is necessary to take care because wT and w™ are not mutual inverses. It is

clear that On(z) = 3, ., (w"(2)).

Lemma 6.3.5. If p € P, then 7w (p)) = 0. Thus if p € ]5\]5’”‘“5, then
7(p) =0 (since p=w(p) for some p' € P).

Proof. We can assume that p is a path of Q' since otherwise w™(p) = 0 anyway.
Thus t(p) = u’, for some i, where m = d(p), and thus t(w=1(p)) = w!,. We
construct a sequence of paths (p;)o<j<n of Q" starting at wt,, such that py =
w™(p), m(pj41 — pj) = 0 and 7(p,) = 0, which proves the result.

To construct pj41 from p;, write p; = g;7;, where r; does not involve an
arrow in Q" and is chosen to be as long as possible. Let d; = degr;. Since r; can
only involve the arrows (c!)* for 1 <1 < m—1 (each at most once), d; < m—1,
so deg(g;) = deg(p;) —deg(r;) > 1, and hence g; is not trivial. Write ¢; = s;t;,
where t; uses only arrows in Q" and is chosen to be as long as possible. Let

l; = length(t;), and set f; = m —141; —d;. Since deg(s;) = deg(g;) > 1, s; is
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not trivial, and can be written s; = s/ (cjcj)*, and similarly ¢; = c;}j thoIf f #1,
let pjy1 = sg(c’}j_l)*c}j_ltgrj. If f; =1, then let n = j and stop.

The sequence has the desired property as m(pjy1 —p;) = sé((c’}rl)*c}rl —
(c},) e}y )thir; = 0, and py, has the form s(c})*cit for some paths s, ¢, and so
m(pn) = 0. Observe that stage n occurs when d; has its maximum value m — 1,
and [/; has its minimum value 1. It must eventually be reached as the sequence
of ordered pairs (dj,1;) goes (do,lo), (do,lo — 1),...,(do, 1), (do + 1,1;,), (do +
1,1, —1),...,(do+1,1),(do + 2,1j,),...,...,(m—1,15,),...,(m—1,1). O

Let ' : KQ' — II(Q') and 7" : KQ" — TI(Q") denote the natural maps.
Clearly Kerm N KQ' C Ker 7’ and Kerm N KQ" C Kerr”.

Lemma 6.3.6. If 7(z) = 0 and wt(z) € K(P\ P), then n(w™(x)) = 0.

Proof. Let x € Kerm. We can assume that z € KQ" since otherwise w*(z) =0
anyway. Hence x € Kern”, and so y = w'(x) € Kern’ since w™ (Kerr”) =
Ker /. We want to show that y € Kerw. We can write
y= Z Yko

k>0

vEQ]
where y,, is a linear combination of paths of degree k starting at v. Now since
y € K(P\ P), ypo = 0 if d(v) < k, so it suffices to prove yx, € Kerr for all
k,v with d(v) > k. Since y € Kern' <= yi, € Kern’ for all k,v, we have

Yro € Ker 7', ie.

for some paths r;,s; with (in particular) deg(s;) < deg(yry) —1 =k — 1 and
t(s;) = v. Now

* * _ . * ok .
E T E aa” —a’a sj—g j E aa” —a’a | s;
J

a€Q] J a€Q

since if a € Q; \ Qy, h(a) # t(s;) because d(h(s;)) > d(t(s;)) — deg(s;) >
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d(v) —k+1>1and d(h(a)) < 1. Thus

* *
ykv:E rj E aa* —a*a | s; € Kerm
J

ac@Q1

as required. O
Lemma 6.3.7. If z € KP™% then n(z) =0 <= 7fn(z) = 0.

Proof. Clearly 70n(x) = 0 <= n(w"(z)) = 0 for all n, so the < implication

is obvious. For =, assume that 7(z) = 0. Then by the previous lemma,
m(w™(x)) = 0 for all n > 0. By Lemma 6.3.5, m(w™(z)) = 0 for all n < 0, and
thus m0n(z) = Y, cp m(w"(z)) = 0. O

We now construct a map

& @ Qe — T(Q, D),
a(y<r

which will be shown to be an A-module isomorphism. Given p € Pm‘“c, with

t(p) =v € v, deg(p) =k, let

We set Py, = {p € P,t(p) = v,deg(p) = k}, and similarly with P and P,?g‘“c

Lemma 6.3.8.
D WQue, =« (KP,;:;M) .
vEV IS4
d(v)<k

Proof. Clearly, one has

@ H(Q)kev: Z W(kav)'

vEV VeV
d(v)<k d(v)<k

By definition of P, this is equivalent to

P 1Ques=> 7 (KPuw).

veEVY ver
d(v)<k

The result follows by Lemma 6.3.5. O
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In view of this lemma and Lemma 6.3.7, £ extends to a well defined injective

vector space homomorphism.
Lemma 6.3.9. £ is surjective.

Proof. TI(Q, X)ye, is spanned by the elements {7f(y) : u € S}, where S is the
set of paths of Q% starting at v of degree k. Since O(u) = 0 for p ¢ Imm,
we can replace S by the set S’ of paths in Imn starting at v of degree k. By
Lemma 6.3.3, each element of S’ has the form 7(p) for some p € Pmaz - Thus

1(Q, ¥)xe, is spanned by the elements {70(p) : p € P22}, as required. O
Lemma 6.3.10. £ is an A-module map.

Proof. Tt suffices to check that if p € P¥ and ¢ € P then &(m(¢(p)q)) is
the same as the A-module product pé(m(q)) which is by definition prfn(q) =
70(pn(q)). We assume that there is a unique p € P with n(p) = p and t(p) =

h(q), since otherwise ¢(p)q and pn(q) are both zero. Then &(7(d(p)q)) = Em(pq).
Since pg € P by Lemma 6.3.4, this is 70n(pq) = w(?(n(p)n(q)) = 70(pn(q))

as required. O

This completes the proof of Main Lemma 1.

6.4 Proof of Main Lemma 2

We prove Main Lemma 2 by constructing a ‘inverse’ G of F'. Note that G will
not be a functor. A representation Y of A can be identified with a representation
of Q> which satisfies the relations

YoV YV =0,

i—1

for all arrows 3,7 € QT with t(y) = w}, , h(8) = ui. Given such a represen-
tation, define vector spaces M, and N, for all v € Qo. If v = u’, € Q}, then
let

Y. ImY LYY,

a€Qy
h(a)=a}
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and otherwise let N, = Y5. If v = w!, € Qy, then let

M, = Z ImYy ... VY,

acQy )
h(o) =i

and otherwise let M, = 0.

Lemma 6.4.1. (i) For all v € Qo, we have M, C N, C Y.
(ii) For all a : v — v € Q1, we have Yz(M,) C M, and Yz(N,) C N, .
(i4) Nyi = M,y . Thus, if we label the members of each ¥ as v1,...,vx so that

= M,,.

i
m

o(v) = vig1, one has Ny,

Proof. (i) The only non trivial case is where v € Q) N Qf, i.e. v = ul = w! .
We know that m > n, and that l;iH_k = 6jn+k for all k£ € Z which make sense.

Thus clearly

M, = > ImYu ...YauYa

aEQ?_
h(a)=w
C ImYy ...Yau
m—1 m—nt1

= ImY})Z‘Hl .. .Y}){Ya

= N,,

%

where a = ¢! is the unique arrow of Q with head at u} = wi, _,.

n—m
(ii) If v € Qf, then it is obvious, so assume that v = w!, € Q. If m < n;, then

a=ch, and v/ = w! ,, and so Yz(M,) = M. If m = n,, then Y;(M,) =0
because of the relations. The proof for N is similar.

(iii) is clear. O

We define G(Y) to be the representation X of @ given by X,, = N,,/M,, and
X, : X, — Xy to be the map induced by Y, i.e. for € N, define X,(z+ M,)
to be Yz(z) + M. Parts (i) and (ii) of the previous lemma show that this is
well defined, and part (iii) shows that

FG(Y}/) = @Nv/Mv :Y};/le @le/MUQ @"'@ka,lv

VED
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which can be identified with Y3, and hence FG(Y) can be identified with Y.
We now need to show that if X is an indecomposable representation of ) with
X, # 0 for some v € Qf, then GF(X) can be identified with X, which will

complete the proof.

Lemma 6.4.2. Let X be an indecomposable representation of @ with X, # 0

for some v & Q. For all i,

and each Xy is surjective.

Proof. Suppose otherwise. Let W be the representation of ) where Wui is
the complement of the sum in Xu’i , and the remaining W, are zero. There is a
homomorphism f from X to W (take fui to be the projection of X, onto W ).
However, this is impossible because the only indecomposable representations of
() which have non zero maps to W have support contained in @’. The second
part follows easily because we can restrict X to a representation X; of each
connected component @} of Q'. Each X; decomposes as a direct sum &;X;;,
with each (Xj;),: # 0 (because otherwise X;; is a proper summand of X),
and one therefore has that each (Xij)b’;'ﬂ ~ is surjective, and therefore so is each

X . O

Lemma 6.4.3. Let X be an indecomposable representation @ with X, # 0
for some v & Qp, let Y = F(X), and define the spaces M, and N,. One has
N, = @IUZUX’U and M, = Buw>vXy-

Proof. Ifv ¢ Qf, then v is the maximal element of 9, and so N, = Y5 = @y>0 Xy
is clear. Suppose then that v = u!, € Q}. If there is more than one arrow of

Q with head at u, then v € Q and so v is the maximal element of o, and one
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has

=
I

Z ImYj: —...Y,Ya
aEQIE_
h(a)=a}
> ImXy, Xy Xa

ac€Q
h(a)=uf

= Xva

using the previous lemma. If there is exactly one arrow a of @ ending at ui,

then

N'U == Im}/gq LY Y&

~7,
1 by

= @ImXUL(binfl) cee Xal(bi')Xai(a)a

where the sum is taken over all [ € Z which make sense. Clearly a ¢ Qj, so we

need only consider [ > 0. By the previous lemma, we have
ImXal(binil) s Xal(bi')Xal(a) = Xal(uin)v

for all I, which gives the result. The assertion for M, follows from (iii) of Lemma

6.4.1. (]

6.5 Nakayama algebras

Although we are only able to prove the conjecture in a special case, the special
case is wide enough to show that a ‘preprojective algebra’ exists for all Nakayama

algebras.

Definition 6.5.1. A module is uniserial if its submodules are totally ordered

by inclusion.

Definition 6.5.2. A finite dimensional algebra is a Nakayama algebra if both its

indecomposable projective and indecomposable injective modules are uniserial.
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If A is an indecomposable Nakayama algebra, then one can label its inde-
composable projective modules Py, P, ..., P,_1, so that P;;; is the projective
cover of rad P; for i = 0,1,...,n — 2, and Py is the projective cover of rad P,,_1
if P, is not simple. The sequence (fo, f1,..., fn—1), where f; = length(P;) is
called the admissible sequence of A. It has the property that f;11 > fi—1>1
fori =0,1,...,n—2 and fy > fn—1 — 1. Any sequence with this property is

called admissible.

Theorem 6.5.3. [1] Given an admissible sequence (fo, f1,..., fn—1), there is
a Nakayama algebra A such that (fo, f1,..., fan—1) is the admissible sequence of
A.

Proof. If f,_1 =1, then let Q) be the quiver

a1 Gn—1

ce
— e
3
\
)
S
\
—

If f,—1 > 1, then let Q be the quiver

a1 Gn—1

P P o o P Py

0'\ I n'_g/nl

ao

In either case let I be the ideal of K@ generated by the set of paths {p; : 0 <
i <n — 1}, where p; is the unique path of length f; starting at vertex i. It can
be easily checked that A = KQ/I is a Nakayama algebra, and (fo, f1,..., fn—1)

is its admissible sequence. O

Theorem 6.5.4. If A is a Nakayama algebra, then there is a quiver QQ and a
pairing ¥ satisfying the conditions of Theorem 6.2.4 such that A = KQ*/I*,

and thus TI(Q, X)) is an algebra satisfying the preprojective property for A.

Let (fo,.-., fn—1) be the admissible sequence corresponding to A. Let L be
the set {m : fi, > fmn—1 — 1} (assuming ‘f_;’ is equal to f,—_1), and list its

members as lq,ls,...,l; so that [; < l;11. Additionally, for later convenience,
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set lo = I —n and 41 = l; +n (they are not members of L), and put fi, = fi,
and f;, , = fi,. We write down some easy properties of these numbers which

are required for later.

Lemma 6.5.5. We have the following properties.

(1) Given I < m , if there exits i € L withl < i <m then f; +1 < fm + m,
otherwise fi +1= fm +m.

(2) Fori=1,2,....k—=1, i1 <lLi+ fi, — 1.

(3) 11 < fn1— 1 (with equality only when fr,—1 =1).

(4) e + fi, = fam1 +n— 1.

Proof. (1) Provided I + 1,1+ 2,...,m are not in L, one has f,, + m = fp,—1 +
m—1=---= f; + 1. Otherwise at least one equality must be replaced by >.

(2) Assuming (1), we have 2 < f;,,, —1 = fi, —liy1+1;+1, which is equivalent
to (2).

(3) Observe first that if f,,—1 = 1, then l; = 0 as required. We can therefore
suppose that f,_1 # 1, and assume that 3 > 0 (since otherwise the claim is
obviously true). Then by (1), fi,—1 +11 —1 = fo, and since I; > 0, we have
fo=fn1—1,andthusly = fr1 — fi,1 < fo1 — 1.

(4) Follows immediately from (1). O

We define Q to be the quiver with vertex set {(m,i) € N> : 1 <m < k,l,, <
i < lm+ fi,, — 1} and arrows {(m,i) — (m,i+1) : 1 <m < k1, <i <

Im + fi,, — 2}. Clearly @ has k connected components, a typical one being

(mul) (Mo + 1) (m, L+ 2)

(malm + flm - ]-)

Set @', Q" to be the full subquivers of @ with vertex sets {(m,q) : l;,41 <@ <
Im + f1,, — 1} and {(m,@) : L, < i@ < lpm_1 + f1,,_, — 1} respectively. Given
(m, i) € Q, define

(m—149)ifm>1

o((m. 1) = {(k,i—i—n) if m =1
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Lemma 6.5.6. ¥ = (Q',Q",0) is an end pairing satisfying the hypothesis of
Theorem 6.2.4.

Proof. We have (1,i) € Q) <= L <i<h+fi,-1 << L+n<i+n<
lo+n+fi,-1 < L1 <i+n<l+fi,-1 < (kii+n) e Qp,
and if m > 1 it is clear that (m,i) € Qf <= (m —1,i) € Q). Thus o
is a well defined bijective map, and can be extended to a quiver isomorphism
o:Q" — Q. Thus ¥ = (Q',Q",0) is a pairing. Since clearly l,,+1 > I, and,
using (1), lm—1+ f1,,_, — 1 <l + fi,, — 1 for all m, it is and end pairing, which
clearly satisfies the hypothesis of Theorem 6.2.4. O

Lemma 6.5.7. Q is the quiver given in Theorem 6.5.3, and 1> is the corre-

sponding ideal.

Proof. For j =0,1,...,n—1,set v; = {(m,i) € Qo : i =j mod n}. We claim
that each v; is an equivalence class. It is clear that if v € v; and v' € v, with
Jj # j', then v ¢ v/, so it remains to check that all members of each v; are
equivalent. This is done in several stages.

First we show that if (mq,4), (ma,i) € Qo with m; < mg, then (my,i) ~
(ma, 7). Given m with m; < m < maq, we have (m,i) € Qo because l,;, < lp,, <1

and i < I, +f1,, —1 <ln+/fi1,, —1using (1). Now if (m, i), (m+1,i) € Qo, then

my
(m+1,4) € Qf since i > lyq1. Thus (m,i) ~ (m+ 1,4) for all m; < m < ma,
and so (mq,i) ~ (my +1,7) ~ -+ ~ (ma, ).

Now we show that if (mq,%), (me,i + n) € Qo, then (my,i) ~ (ma,i + n).

We have I} <, <dtandit+n <lp, + f1,.. —1 <Iln_1+ fi,_, — 1 using the

ma
fact that (me,i+n) € Qo and (1). Thus i <l,—1—n+ fno1—1=1l+ fi, — 1,
and so (1,47) € Q) and then o(1,%) = (k,i+n) € Qo. Since (mq,i) ~ (1,7) ~
(k,i4+n) ~ (m2,i+n), we have the result.

Finally, we check that {i : (m,i) € Qo for some m} ={i: 1y <i<lp+ fi, —
1}. The C inclusion is obvious. Suppose i lies in the range I3 < i <l + f;, — 1.
If (m,1) € Qo for all m, then for each m either i < l,,, or i > l,, + f;,, — 1. Since

l; <, the set {m : l,, < i} is non empty. Choose its maximal member j, we
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must have ¢ > [; + f;;, — 1. Since i <l + f, — 1,4 <y, so j # k. Thus we have
i < ljy1 (since j was maximal) and i > [; + f;, — 1 which is impossible by (2).

This completes the proof that each v, is an equivalence class, since if (m, i),
(m/,i") € Qo with ' = i + kn, there is mg, m1,...,mk such that mg = m
and my, = m’ such that (m;,i+ jn) € Qo for all j. We then have (m,i) =
(mo,i) ~ (my,i+n) ~ -~ (mg,i+kn) = (m',). Finally since I+ fi, — 11 =
n—14 fn_1 —11 > n (using (1) and (3)), each equivalence class has at least
one member.

We now check the arrows are correct. First suppose f,—1 = 1, (and thus
Iy = 0). We claim there is an arrow v; — vj41 for j =0,1,...,n — 2. For each
J, there is some (m, j) € Qp. If additionally (m,j + 1) € Qo, there is clearly an
arrow as required. Supposing (m,j + 1) € Qo, we must have j =, + fi,, — 1,
and thus m < k (as using (1), lx + fi, = faci1+n—1=mn > j+1). Then
we have l,,,41 < j using (2), and j + 1 < g1 + fi,,,, — 1 using (1), and thus
(m=+1,j5),(m+1,j+1) € Qo, and there is an arrow v; — v;41. It is clear there
are no other arrows (there is no arrow starting at v,_1 because (m,n) ¢ @ for
all m since Iy, + f1, —1=n—1).

Now suppose that f,,—1 > 1. We show that there is an arrow v; — v;41 for
all j. We know that (m, j) € Qo for some m, and as above we can assume that
Jj=lm+ fi,, — 1. Suppose m = k. Using (3) and (4), we have [} < f,,_1 —2 =
fi.+lk—n—1=j—n,and using (1) and 4), j—n+1 =10+ fi, —n =
fno1—1< fo<li+ fi, —1,and thus (1,5 —n),(1,7 —n+1) € Qo. f m <k,
then (m+1,7),(m+ 1,74+ 1) € Qo as in the f,,_1 = 1 case. Either way, there
is an arrow v; — vjy1.

The final thing to check is that I* is the correct ideal. Given i, let p;
be the path starting at ¢ of shortest length which is not in Im#n. We claim
length(p;) = fi, and thus I* coincides with the ideal given in Theorem 6.5.3.
Clearly there is a path of length d starting at v; in Imn if and only if there
exists (m, j) € Qo with j =¢ mod n and (m,j + d) € Qo.

If there exists m with [,,, < i, then let @ be the maximal such m. Then one

has (T, i) and (M, i+ f; —1) in Qo because lizz < i and i+ fi—1 =l + fi,, —1 by
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(1). Thus there is a path of length f; — 1 starting at v; in Im ), which is clearly
the longest possible. Otherwise, if there is no such m, then one has (k,i + n)
and (k,i+mn+ f; — 1) in Qo because [, < i+ mnisclear and i+ f;+n—1 =
fo+rn—1=fo1+n—2=1;+ fi, — 1, using (1) and (4). Again we have a
path of length f; — 1 starting at v;, which is clearly the longest possible. O

This completes the proof of Theorem 6.5.4. It is possible to give the pre-
projective algebra of a Nakayama algebra as a quiver with relations. That is,
suppose A = KQ/I, where Q is a quiver of type A, or A,,, and I is the ideal
generated by paths p; = ajiaj2...a4,;. It has been stated in Section 6.1 that
I1(Q, X) is a quotient of H(Q) and it is reasonably straightforward to see that it
is the quotient generated by the paths p such that 70(u) = 0, i.e. the paths p
such that 7(p) = 0 for all paths p such that n(p) = p. It can be shown that (but

the proof is long and is omitted) that this quotient is the same as the quotient

*

by the paths pj, where p;, = a;k . ag

1441 - - - Gjn, —k- We can illustrate it with

an example. Suppose Q is the quiver

al ag as aq a,

]
)
N,

ao

and let I be the ideal generated by the paths asa; and asagaszas. Then if @ is

the quiver
o G2 . oGy o oay
III 5/ 3/ 4/
ay . R ay R ay as ~
0 \ 1 9 5)// ZI” /5
ao

and ¥ is the pairing with @’ (respectively Q") being the full subquiver of @
consisting of the vertices marked with ’ (respectively "), we have Q* = Q and

I¥ = I. Tt is easy to see that if u is any of the paths aga, asaz, a1as, 54403062,
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aiasasas, ajaiasas, ajajaias, asaiaias, then m@(u) = 0. In each case there is
at most one path p of Q such that n(p) = u, and then one has w(p) = 0. To
see that these are the only relations, one can in theory calculate the dimension
II(A) (by constructing a basis), and show that it is the same as the dimension of
I1(Q, ) (which is known to be the direct sum of the indecomposable modules
for A), which in this case is 65. [Another way to calculate the dimension of
I1(Q,Y) is to use the formula given after the statement of Main Lemma 2,
dim(II(Q, X)) = dim(II(Q)) — dim(II(Q’)). The dimension of a preprojective
algebra of type A, is n(n + 1)(n + 2), so dim(II(Q)) = 56 + 20 = 76 and
dim(TI(Q’)) = 10 + 1 = 11, so the formula is satisfied].
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Appendix A

The Reduction Algorithm

Given a K-algebra A which is presented by generators and relations, it is desir-
able to obtain a standard form for the elements of A which is unique, i.e., two
elements of A are equal if and only if they have the same standard form. The
most obvious example of this is a basis for A, since then we can express the
elements of A uniquely as a linear combination of the basis elements. For some
algebras, however, it is not obvious how to construct a basis. This problem has
been considered many times before, e.g. in [4], [6], in settings far more general
than is necessary for our purposes. In this Appendix we simplify this material

so that we can more easily apply it to the algebras studied in this thesis.

A.1 Introduction
The following example illustrates the purpose of this Appendix.
Example A.1.1. Let A be the algebra

K(b,c)/(b*,c*, cb*c — cbeb — bebe).

Can we find a basis for A? We write down a naive argument, which produces
an incorrect answer, then analyse what is wrong with it.

(1) A is spanned by the set of all words formed from b and c.

(2) Since b3 = ¢? = 0, A is spanned by the set of all words formed from b, ¢

which do not include bbb or cc as a subword.
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(3) If w is a word containing cbbc as a subword (say w = wucbbcv), then
w = uchcbv + ubchev since cb?c = cbeb + bebe. We can repeat until we have
expressed w as a linear combination of words not including cbbc as a subword.
Hence A is spanned by the set of words not including bbb, cc or cbbe as a subword.

(4) Since we have used all relations, this is a basis for A.

Now whilst statements (1) and (2) are correct, the logic of (3) is flawed
because if w = cbbcbe then it reduces to cbebbe + bebebe and then if we attempt
to reduce cbebbe we only end up where we started. This mistake might be
considered obvious but in a complicated situation it may not be so easy to see
whether such a statement is valid. There may be several statements involved in
a circular argument. Statement (4) is also clearly wrong since cbebe = (cb?c —
bebe)e = (cb? — beb)e? = 0 so the set of irreducible words is not independent.

The idea of starting with a spanning set and obtaining equations which
enable us to reduce it is correct, but we need to formulate some rules which will
prevent such errors in logic from occurring. Explicitly we need to ensure that

1. There is no possibility of circular arguments such as that in (3).

2. There is a condition which can be used to guarantee that a set of irre-

ducible words is a basis.

In the following sections we describe a suitable algorithm which consists of
forming a sequence of improving ‘reduction systems’ from which we can find
spanning sets for A. Section A.2 defines reduction systems and shows why they
produce a spanning set for A. Section A.3 explains how a reduction system can
be modified into a ‘better’ one. Section A.4 tells us how we can determine when
we have have arrived at the best possible reduction system, one which leads to
a basis for A.

We describe the setup which is used throughout this appendix. Let A be
an algebra generated by X = {z1,...,2,} with relations R = {ry,...,rn}
(we assume that X and R are finite for simplicity). We write K (X) for the

algebra K (x1,22,...,2,). Let W be the set of words formed from z1,...,z,,
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and denote the length of a word u by |u|. Let < be a partial ordering on W

with the following properties:

) If w < v then rus < rvs for all r,s,u,v € W.

(1) < has descending chain condition.

Note that in [4], a partial ordering satisfying (}) is called a semigroup partial
ordering. We are assuming (1) so that all words will be ‘reduction finite’. Section

A.6 discusses some possible orderings of this type.

A.2 Reduction Systems

Definition A.2.1. [6] Let v € K(X). If there is a word 7 such that v = \v — z,
where z is a linear combination of words strictly less than T (with respect to <)
and A is a nonzero scalar, then v is the leading word of v. If additionally A =1,

then v is said to be monic.

If < is a total ordering then every nonzero element of K(X) must have a

leading word, but otherwise there may be incomparable words.

Definition A.2.2. A reduction system for A = K(X)/Ig is a set Q C K(X)
of monic elements such that I C Ig. A reduction system 2 is full if Iq = Ig.
If v is the leading word of some v € €2, then we say v is an illegal word. Let Wq
be the set of illegal words. We say a word is irreducible (with respect to Q) if it
has no subword in Wq, otherwise we say w is reducible. Let Wg"{"“ be the set of

irreducible words.

If we choose an ordering which is sufficient to ensure the elements of R all
have leading words (e.g. a total ordering), then we can form a reduction system
by monicising the elements of R, that is, we divide an element by the coefficient
of its leading word. Clearly if we take {2 to be the set of all monicised elements of
R, then € is a full reduction system. If we only take a subset, then the reduction
system may not be full. We allow the possibility that a reduction system may not

be full because sometimes (e.g. Lemma 3.3.4) we are only interested in finding a
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spanning set for A, and it is convenient to ignore some of the relations. Clearly
A is a quotient of K(X)/Iq, so a spanning set for K (X)/Iq, is a spanning set for
A. If Q is a full reduction system then A = K(X)/Iq, so any basis of K(X)/Iq

is a basis of A.

Lemma A.2.3. If Q is a reduction system then K(X)/Iq (and hence A) is

spanned by the set of irreducible words.

Proof. Clearly K(X)/Iq is spanned by the set of of words. We show that each
word in W \ W™ can be expressed as a linear combination of words in W™,
Supposing otherwise, we can choose such a word w; € W \ W&™ which
cannot be so expressed. Since w; ¢ W&, w; has an illegal subword v € W,
say wi = r0s. Now there is an element v =7 — z € (), where z = >, Aju; for

some scalars A; and words u; <v. Now
wy —rzs =1(U — z)s = rus € Ig,

and therefore

wy =128 = E AjTU;S,
J

as elements of K(X)/Ig. We assumed that w; cannot be expressed as a linear
combination of irreducible words, so some ru;s ¢ Wé”. Let wy = ru;s. Now
u; < U so by (1), ruis < rus, that is, we < w;. We repeat the same process with

ws, obtaining w3 < we. Continuing, we obtain an infinite non stabilising chain
wy > wp > Wy > ...
contradicting (1), and completing the proof. O

The proof of the lemma leads us to the following definitions.

Definition A.2.4. Suppose w = rvs for some v € 2. Let z = v —v. We say
rzs is a single step reduction of w and write w — rzs. Clearly we can extend
this definition in the obvious way to apply to any element of K(X), not just
words. Namely, if y = Aw + ¢/ for some 3y’ € K(X), then y — Arzs +y'. If
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Y1 — Y2 — ... — Yy 1S a sequence of one or more single step reductions then
we say Y is a reduction of y; and write y; — yi. If additionally yy is a linear
combination of irreducible words (so cannot be reduced further), then we say

yr is a complete reduction of y; and it is customary to write y; ~~ yi.

Note that a single step reduction is just an addition of the element —rvs € Iq,
so if w — y, w =y as elements of K(X)/I, (and as elements of A).

We can now see what went wrong with Example A.1.1. In statement (2)
we were effectively working with the reduction system {b, ¢?} which is fine,
but in order for statement (3) to make sense, we require the leading word of
cb?c — bebe — cbeb to be cb?c. Namely, we would have to find some partial order
< on the set of words satisfying () and (f) with cbbc > bcbe, cbeb. This is
impossible, as by () we must have both

(cbbe)be > (cbeb)be,  cb(cbbe) > cb(bebe).

So in order to get a full reduction system, we must make either bcbe or cbeb the

leading term (in both cases we can define an ordering suitable for this purpose).

A.3 Modifying reduction systems

Given a reduction system €2, the above describes how we write a reducible
word w as a linear combination of irreducible words. However it may be the
case that forming a reduction system by monicising the relations does not give
a suitable set of irreducible words. In this case we wish to add some more
elements to the reduction system which will result in a smaller set of irreducible
words. Sometimes one may be able to see a suitable element by inspection,
but sometimes it may not be obvious. In this case we can use the ‘resolving’
method. It turns out that we can use the fact that the reduction system is not
suitable to improve it. We refer back to Example A.1.1 to illustrate this.

We gave the equation cbcbe = 0 to show that the set of irreducible words
was not independent (we ignore the fact that this isn’t a valid reduction system

because that is not relevant here). This equation was obtained by looking at
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the reductions of cb?c?. This has both cb?c and ¢? as a subword, and so could

be reduced in two different ways,
(cb*c)c — (cbeb — bebe)e — cbebe,

and

cb?(c?) 0.

and so cbcbe = 0 as an element of K (X)/Iq. This leads to the following defini-

tion.

Definition A.3.1. [4] Given a reduction system , and a word w we can
resolve w, which means we compute all possible complete reductions of w. If all

complete reductions are equal then we say w is reduction unique.

If w is not reduction unique, then we have unequal elements wy,wy € K (X)
such that w ~» w; and w ~» wy, and hence w; — we € Io. By multiplying
by a scalar (and refining the partial ordering if necessary) we can assume that
wy — wz is a monic element v, and let ' = QU {v}. The ideals I and I are
equal (since v € Ig) and so €' is a reduction system. Clearly W& C W&, so

Q' is an ‘improved’ reduction system.
Lemma A.3.2. If all words are reduction unique then KWE™ N Ig = {0}.

Proof. We claim that KW N Ig = {y : w ~» y for some w € I}

C is trivial since any element of Ig which is a linear combination of irre-
ducible words is already reduced.

For O we require that a reduction of an element of an element of I is in Iq.
This is clear since each single step reduction is just an addition of an element
of Ig.

We also claim that each element of I has a reduction to 0. This is true
because if x € I then x = ZZ x;, where x; = rv;8; = r;(U; — 2;)s; for some
v; € Q. Now each r;v;s; — 71;2;8;, so each x; ~ 0, and so z ~~ 0. Now since all
words are reduction unique, this is the only possible complete reduction, so by

the first claim we have the result. O
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Lemma A.3.3. [4, Theorem 1.2, (b) = (c)]. If Q is full reduction system in

which all words are reduction unique, then W™ is a basis for A.

Proof. Suppose that some linear combination of irreducible words y is equal to
0in A, ie., y € Ir. Then y € Iq since  is a full reduction system. Now by
the previous lemma, y = 0, and so W is a linearly independent set. Since we

know it spans A, it is therefore a basis. O

A.4 The Diamond Lemma

Definition A.4.1. [4] A word w is said to be minimally ambiguous if w = rst

for some words r, s,t which satisfy the following conditions.

(i) rs,st € Wq, with r,t having length at least 1,
(1i) s,rst € Wq.

In the first case we say w is an overlap ambiguity, in the second we say that w

is an inclusion ambiguity.

Lemma A.4.2. [/, Theorem 1.2, (a’') = (b))]. If Q is a reduction system such
that all minimally ambiguous words are reduction unique, then all words are

reduction unique.

Proof. Assuming the conditions of the theorem are satisfied, we prove by in-
duction that any word w is reduction unique. Assume that all words less than
w are reduction unique. Let w = r1v1s1 where 7 € Wq is chosen so that if
W = T9U282 with Tg in Wq then either |rq| > |ra| or |r1] = |r2| and |va| > |v1].

Since 17 € Wq, then there is v; € 2 such that v1 =v; —21. Let y1 = r12181.
Clearly w — y;1. By the induction hypothesis, y; ~» y for some unique y. We
want to show that if w ~» ¢/, then ¢y’ = y. A reduction of w must start with
some single step reduction w — yo. Suppose w = roTsse and ys = ro2259 where
Uy =Ty — 20 € Q and yo ~ 7.

We claim that y, ~» y, and this will complete the proof, since y, is reduction
unique by the induction hypothesis, so y’ = y. By the choice of vi, we must

have one of the following cases.
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(1) |r1] > |re| + |v2], so that v; and ve do not intersect.
In this situation we can write w = roUstv;51 for some word ¢, and so we have
Y1 = ToUstz181 and yo = To20tU181. We have y1 — ra22t2181 (using the single
step reduction of vs), and since y; ~» y is unique, r922tz181 ~ y. Now since
Yo > rozotz151 (using the single step reduction of U1 ), we see ya ~~ y, as claimed.

(2) |r1] < |r2| + |v2| and |r1| + |vi| > |r2| + |v2| so that v; and vy overlap.
We can write w = rorsts; where rs = U9 and st = v1, so y; = rorzis; and
Yo = rozots1. We know rst is reduction unique, since it is minimally ambiguous,
say rst ~ u. In particular, rst — rz1, so rz; ~» u and similarly rst — 25t, so
2ot ~» u. We have y1 = rarz181 — T2uS1, SO raUus] ~> Y (since Yy~ Y is unique).
Now yg = rozots; — rausy, and so ys ~ y, as claimed.

(3) |r1| < |re| + |ve| and |ri| + |vi| < |r2| + |v2| so that ve includes v;.
This follows in the same way as the previous case, again using the fact that rst

is reduction unique since it is minimally ambiguous. O

The proof can be illustrated with the following diagram.

w
single step any single step
reduction reduction
Y1 Y2
unique only possible
reduction reduction
P

For this reason this result is known as ‘The Diamond Lemma’.

Corollary A.4.3. If Q) is a full reduction system in which all minimally am-

biguous words are reduction unique, then W™ is a basis for A.

A.5 How this works in practice.

It is possible use the Diamond Lemma to formulate an algorithm which would

allow a computer to find bases in this way. However, there are problems with
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this, e.g.

1. It is not always obvious which ordering we should use without doing some
initial calculations. If an unsuitable ordering is chosen, then one may end up
with an unfeasibly large reduction system.

2. One may be able to spot suitable elements of a reduction system ‘by
inspection’, and not by resolving some ambiguity. This happens frequently in
the case where the algebra has invertible elements. It is sensible to use whatever
tools we have available, rather than restrict ourselves to one set of rules.

3. In some cases, we are only interested in showing an algebra is finite
dimensional, and so, instead of trying to find the best possible reduction system,
we can stop once the set of irreducible words becomes finite.

4. When dealing with an infinite class of algebras (e.g. when showing A4(Q)
is finite dimensional for all quivers of type D,,), one needs an argument which

deals with all the cases.

So instead, we write out our proofs like this:

(1) Prove a set 2 is a reduction system.
This may be done by showing the elements of €2 lie in Ir by a direct calculation,
or by the following step by step process.
(i) Set Q¢ = R with respect to some partial ordering <.
(i) Given Q;, we form ;11 by finding some elements s;1, ..., s € Ig, (usually
resolving some ambiguities in ;). Set ;11 = Q; U{s;1, Si2, .. ., sir} and repeat
(note that sometimes we may remove elements from €; before continuing).

If we are only interested in finding a spanning set for the algebra, then this
is sufficient. In the cases where we are trying to find a basis, we must prove (2)
and (3) which follow.

(2) Prove Q is a full reduction system.
For this, we need only show that I'r C I, or equivalently each r € I for all
r € R.

(3) Prove all minimally ambiguous words are reduction unique.

To do this, we list all minimally ambiguous words in order {wy,ws,...,wy}.
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Note that if wy, ..., wi_1 have been shown to be reduction unique, then all words
below wy, are reduction unique. So to show wy, is reduction unique, we need to
consider all its single step reductions (usually only two), say zk1, ..., Zkm. Then
we find some y so that each xy; has a reduction to y. Since each xy; is reduction

unique, ¥ is the unique reduction, and so wy, is reduction unique.

Example A.5.1. We return to the example given at the start of this Appendix,

and show how the reduction algorithm works. Let A be the algebra
K<b, C)/IR,

where R is the set of elements {b, ¢2, cb?c — cbeb — bebe}. Can we find a basis
for A?

We must choose a suitable partial ordering on the set of words. This or-
dering must make either cbeb or bebe the leading word as we have already seen
that we cannot make cb?c the leading word. The obvious ordering to use (see
the next section) is the length-lexographic ordering with b < ¢. We claim that
Q = {b3, 2, cbeb—cb?c+bebe, cb*ch? —beb*cb+b2eb?c} is a full reduction system in
which all minimally ambiguous words are reduction unique and therefore the set
of irreducible words {1, b, ¢, b, be, cb, b>c, beb, eb?, cbe, b2cb, beb?, bebe, cb?c, b2cb?,
b2cbe, beb?e, eb?cb, b2eb?c, beb?eb, ch?cbe, b2cb?ch, beb?cbe, b2cb?ebe} is a basis for
A.

We first prove that ) is a reduction system. We only need show that cb?ch? —
beb?eb + b2cb?c € I, This could be done in several ways, but the simplest is to

consider R as a reduction system. This has an ambiguity cbcb®. We resolve it:
cbe(b®) — 0.
(cbeb)b®  —  cb®cb® — b(cbeb)b
—  cb?cb® — beb?eb + b2 (cbeb)
= cb®eb® — beb?ch + b2 eb*c — (b%)che

—  cb?cb? — beb?eb + b2eb?e.

Equating the two reductions shows that cb?cb? — beb?cb + b2cb’c € Ig.
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It is obvious that 2 is a full reduction system. We now show that all mini-
mally ambiguous words for € are reduction unique. Arranging them in order,
they are {c®,b% b°, c2bcb, cbeb?, ebebeb, cb?cb?, c2b?cb?, cheb®cb?, cb?cb?ch?}. The

first three are clearly reduction unique.

(c*bcb — 0.

c(cbeb) +—  (c2)b*c — (cbeb)e i 0 — cb?(c?) + beb(c?) — 0.

cbe(b®) — 0.
(cbeb)b?  —  (cb®cb?) — b(cbeb)b — beb®ch — b2 cb?c — beb®eb 4 b (cbeb)

= —b%cb?c 4 b2eb*c — (b¥)cbe — 0.

(cbeb)eh  —  cb?(c?)b — beb(c)b — 0.

cb(cbeb) s (cbeb)be — cb?ebe — —b(cheb)e — —beb?(¢?) + bPeb(c?) +— 0.

cb?c(b®) — 0.

(cb®cb®)b —  b(ch?cb?) — bPeb®ch — (b3)cbc — 0.
(A)b*ch® — 0.

c(cb*ch?) +—  (cbeb)beb — cb*cb’e — cb?(cbeb) — b(cbebeb) — cb’eb*c

s cb?cb’c — c(b®)che — cb*cb?e — 0.
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ch(ch*ch?) —  cb®cb®ch — c(b®)cb?c — cbPcbPeh.
(cbeb)beb® b (cbeb)b — b(cbebeb)b — cb®cb®ch — ¢(b®)cbeb

—  cb?cb?cb.

cb?(ch?ch?) +—  cb>ch®ch — cbcb?c — 0.
(cb?cb®)cb®  —  beb?(cbeb)b — b2 cb? (c)b? — b(cb*cb®)eb — be(b)cbeb
= b2cb?(cbeb) — (b%)eb? b — b2 (cb?cb?)e — b2e(b®)che

= (b%)cbPebe — bieb?(c?) — 0.

A.6 Orderings for reduction systems

In this section we discuss some orderings which satisfy (1) and (1), so are suitable

for reduction systems. We start with the two most obvious examples.

Definition A.6.1. The length ordering, <ie, is defined by
U <jep v if and only if |u| < |v| or u = v.

Given a letter a, define |w]|, to be total number of occurrences of the letter a in

w. The a-degree ordering <, is defined by
u <q v if and only if |ul, < |v], or u=v.

It is clear that these orderings satisfy () and (). In fact they satisfy a
stronger version of (f), namely, v < v if and only if rus < rvs. From now
on, when we refer to (1), we mean this stronger property. We can combine
orderings which satisfy (f) and (f) in the following way to produce some more

refined orderings satisfying () and ().

Definition A.6.2. Given two partial orderings <., <,., we define the following

combination ordering, <, .. by

U <y vif and only if u <, voru £, v and v £, uw and u <., v
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In other words, to compare v and v we first examine them under the <,
ordering. Only if they are incomparable do we then try the <. ordering. For
example, let v = aaca, v = bbca, w = cabbab. Some relations are v <jen ¢ u,
W Zglen U, U Sien,q w. The last two show that <, ., is in general not the same

as i k-
Lemma A.6.3. If <., <.. satisfy (1) and (I), then so does <, .x.

Proof. Denote <, . by <. We need to show that for all r, s, u, v,
u < v if and only if rus < rvs.

There are three ways v and v can be related with respect to <.. We check
this statement for each case. If u <, v then rus <. rvs by (f) for <, and
the statement follows since both sides are true. If v <, w, then rvs <, rus
and the statement follows since both sides are false. So suppose that u and v
are incomparable with respect to <,. The left hand side is true if and only if
U <4x v which is true if and only if rus <,. rvs (using (1) for <,,), which is
true if and only if rus < rvs. The last part is true because rus and rvs are
incomparable (using (1) for <,).

To check (1) is satisfied, we let
Uy > ug > uz >

be an infinite non stabilising descending chain for <. Define a sequence of
integers i, inductively by ip = 1 and i,4+1 to be the least integer satisfying

Ui, ., < u,. The sequence must be infinite for if 4,, is the last member then
Uiy Zex Wiy 41 Zaer Wiy 42 Zare - o -

is an infinite non stabilising descending chain for <,.. However we now have an

infinite descending chain for <,, namely
Uiy Zx Ujy Zx Uiy s oo
which is a contradiction. O
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Sometimes it is possible that no such combination of the length and degree
orderings will give a sufficiently refined ordering. If two words have the same
number of occurrences of each letter (and so are the same length), then they are
incomparable under the length and degree ordering (and so are incomparable
under any combination of them). So if a relation involves two or more such
words (as in Example A.1.1), then in order to write the relation into standard
reduction form, it is necessary to introduce another way to compare words.

One example is the (left) lexographic ordering. First one chooses a total

ordering < on the letters and then define
U <jez v if and only if u = v or u = rbs and v = rct where b < c.

This does not satisfy (1), since ¢ > bc > b%c > ... is an infinite non stabilising
descending chain. Instead one will generally use the length-lexographic ordering
<ien,iex- This is a total ordering, so this would always be sufficient to write all
equations in standard reduction form.

In some cases, the length-lexographic ordering is not suitable, and instead
we use more complicated base ordering, defined below.

Let u be a word, and let a, b be letters, and let 7 be an integer between 0
and |ulp. Let f@°(u) be the number of occurrences of a between the i-th b and
the ¢ + 1-th b (counting from the left). For example, if u = acbaaccabbcaa, then

Sy =1, f00u) = 3, f2(u) = 0, f&P(u) = 2. Let m > 0 be an integer.
Define

[uls

o) = 3 ftm
i=0
So for the word above, g%*(u) = 1 + 3m + 2m?3.

Lemma A.6.4. For all words u,v

g% (w) = g% (u) + mllr gt (v),
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Proof. For simplicity write f; and g instead of ffl’b, gab.

?

[uvlp
o) = Y flm)m
i=0
fuls =1 | ol |
= Z filuv)m® + f|u‘b(uv)m‘“|b + Z filuv)m®
i=0 i=|ulp+1
[uls
= g(u) = flup, @m? + fiu, @o)m!" 4! 0)m
j=1
[v]p
j=1

= g(u) +m"g(v).

Definition A.6.5. Define the base ordering, < 4 p;m) by
U <(a,p;m) v if and only if g, (u) < g, (v) or u = v.
Lemma A.6.6. The ordering <y (qp.m) satisfies () and (1).

Proof. Write < for <y (qpm)- It is clearly a partial order with satisfying (1).
Clearly (1) is satisfied in the case that |u|, # |v]p. So suppose |u|, = |v]p. Using

the previous lemma,
Gap(rus) = ggy(r) + mlr‘bggfb(u) + mlmlbgam,b(s),

Gap(rvs) = gy (r) + mlr\bgg?b(v) + mlrvlbg;v}b(s).

Since [ruly = [roly, g2 (rvs) — g, (rus) = m!™ (g, (v) — g2 (u)). Now

rus <rvs & guy(rvs) — ggy(rus) > 0,
A mlr\b(g;v}b(v) — gap(u)) >0,
S Gap(v) = gyp(u) >0,
< u<wo.
S0 <(a,b;m) satisfies (1), and therefore so does <y (4 pim)- O
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