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String Algebras

Let k be a field, ) a quiver, not necessarily finite.
Let p be a set of zero relations, that is. paths of length > 2.
A string algebra is an algebra A = kQ/(p) satisfying:
(a) Any vertex of () is the head of at most two arrows and the tail
of at most two arrows, and
(b) Given any arrow y in (, there is at most one path xy of length 2
with zy ¢ p and at most one path yz of length 2 with yz & p.
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Classical Theorem

Theorem. The indecomposable finite-
dimensional modules for a finite-dimensional

string algebra are classified as “string” and
“band” modules

(Special cases due to Gelfand and Ponomarey,
Ringel; general case observed by Donovan and

Freislich, Wald and Waschbusch, Butler and
Ringel)



String modules

A string module M(C) is given by a walk C in the quiver
 The walk can reverse direction, but not along the same arrow

* The walk mustn’t pass through any zero relations

* The vertices give basis elements of the module M(C)

* The arrows show the action of the algebra
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Band modules

I

I'hese are the modules M (C') ® k-1 V

where

(' is a doubly infinite periodic word
M (C') is the corresponding string module
T acts on M(C') as the shift automorphism
V is a f.d. indecomposable k[T, T~ !]-module



INDECOMPOSABLE REPRESENTATIONS
OF THE LORENTZ GROUP

I.M. Gel® fand and V. A. Ponomarev

Let L be the Lie algebra of the Lorentz group or, what is the same, of the
group SL(2,C). We denote by Lp the Lie algebra of its maximal compact subgroup,
that is, of SU(2). Let M; be the finite-dimensional irreducible Lp-modules (the
finite-dimensional representations of Lp). Consider an L-module M. The authors call
M a Harish=-Chandra module if, regarded as Li-module, it can be written as a sum

J‘lf_'—® Mi.
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of finite-dimensional irreducible Lj-modules /f;. Here, for each M;, only finitely
many Lp-submodules egquivalent to ‘M*n are supposed to occur in the decomposition of
M.

A Harish-Chandra module is called indecomposable if it canmot be decomposed
into the direct sum of L-submodules. In this paper the indecomposable Harish-
Chandra modules over [ are completely described. We find that there are two types
of indecomposable Harish-Chandra modules. The modules of the first type are the
non-singular Harish-Chandra modules and are defined by the following invariants:
an integer 2il5(lg 3> 0), & complex number !,, and an integer n. The first two of
these invariants are alre known as invariants of the irreducible representations
of the Lorentz group (see 2]). The case of non-singular modules has been
investigated earlier by Zhelobenko [3] from a somewhat different approach.

The case of singular Harish-Chandra modules is of the greatest interest. The
solution of this problem reduces to a non-trivial problem of linear algebra,
which is investigated in detail in Chapter 2. The invariants of singular indecom-
posable modules are, as before, numbers lo, (3, lo 3 0, 2ly integral and 215 —|1,|
integral.
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Chapter 11

In this chapter we discuss the problem of linear algebra to which we
were led in Chapter I in trying to classify the singular modules. At the
Mathematical Congress of 1967 Szekeres communicated to us a similar
solution. However, we do not know his method, and therefore we are not
aware whether the more general problem we need may be solved in the same
way. We use here MacLane’ s notion of relations, which is a generalization
of the notion of a linear map. It is remarkable that to work with
relations is easier than with linear maps.

And so the problem is the following. We consider two linear spaces
P, and P, and three linear maps:

d+: Pl'_}PE'! d--: Pz'——}Pi, '5': Pz—*}Pﬂ, 'ﬁ:' Pj*—}ﬂ

such that &6d, =0, d8 =0, 8 and d_d, are nilpotent. We have to bring
this system to a canonical form.

If we introduce the space P—P, P P, and consider in it the maps
a and b given by the matrices

0 d ,_ (00
”:(d_ u)* :(0 a)’

then ab = ba= 0, and a and b are nilpotent.

Extract from page 26 of Gelfand and Ponomarev
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The Indecomposable Representations
of the Dihedral 2-Groups

Claus Michael Ringel

Let K be a field. We will give a complete list of the normal forms of pairs a, b of
endomorphisms of a K-vector space such that a* =b?=0. Thus, we determine
the modules over the ring R= K<{X, Y)/(X?, Y?) which are finite dimensional
as K-vector spaces; here (X2, Y?) stands for the ideal generated by X? and Y?
in the free associative algebra K{X, Y in the variables X and Y.

If G is the dihedral group of order 4 (where g is a power of 2) generated by the
involutions g, and g,, and if the characteristic of K is 2, then the group algebra
KG is a factor ring of R, and the KG-modules ;M which have no non-zero
projective submodule correspond to the K-vector spaces (take the underlying
space of ;M) together with two endomorphisms a and b (namely multiplication
by g,—1 and g, — 1, respectively) such that, in addition to a*=5b*=0, also
(ab)?=(ba)® =0 is satisfied.

We use the methods of Gelfand and Ponomarev developped in their joint
paper on the representations of the Lorentz group, where they classify pairs of
endomorphisms a, b such that ab=ba=0. The presentation given here follows
closely the functorial interpretation of the Gelfand-Ponomarev result by Gabriel,
which he exposed in a seminar at Bonn, and the author would like to thank him
for many helpful conversations.




&1 The apparatus of relations and the construction
of stabilized sequences.

1. Definition: Let C" be a n-dimensional complex vector space. Then we
mean by a relation any subspace of C" (@ C".

To a linear map a: C" — (" there corresponds the subspace of pairs
(x, ax) in C" (P C", where x ranges over C". Thus, a relation is a
generalization of a linear map. In particular, the zero map &; C"- 0
corresponds to the relation 6, consisting of the pairs (x, 0), where x
ranges over (",

The identity map I: C*- C” corresponds to the relation |, consisting
of the pairs (x, x), as x ranges over (",

We denote the relation corresponding to a linear map a hy the same
symbol a.

If A is a relation consisting of some set of pairs (x, y), then the
set of all pairs (y, x) defines a new subspace of C"(F C", called the
inverse relation A%, It is easy to verify that if a is an invertible linear
map, then a¥# -—g71,

We define the dimension ofa relation A as the dimension of the subspace
Aof C"@C". It is denoted by dim A = m(4).

Let A and B be two relations. Their product AB is defined in the
following manner: * (x, z) € AB if and only if there exists a y such that
(2, y) € Band (y, 2) € A.

It is easy to verify that if the relations are defined by linear maps,
then this definition coincides with the generally accepted definition of
multiplication of maps.

Extract from page 27 of Gelfand and Ponomarev




“Cantor set”-type filtration
Vector subspaces of a K[x,y]/(xy)-module M
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First new development:
Finitely generated/controlled modules

Definition. A module M is finitely controlled if for all
a in the algebra, aM is contained in a finitely
generated submodule.

Theorem. Any finitely controlled module for a string
algebra is a direct sum of string and band modules.

These summands are indecomposable and uniquely
determined up to isomorphism.




Example: k[x,yl/(xy)

The finitely generated modules which are not finite-
dimensional come from infinite strings, such as

/N
INAN

4 \,
_‘:/

(For this commutative algebra the classification is
not new, e.g. work of L. S. Levy.)



New ideas needed

e Results about relations on infinite-dimensional
vector spaces.

* Right definition and properties of functors
corresponding to infinite words (limit points in
the Cantor set).

* Given M, the functorial filtration argument gives
a submodule N which is a direct sum of string and
band modules, such that M/N is ‘primitive
torsion’. Need to adjust N to make it equal to M.
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Topological data analysis

From Wikipedia, the free encyclopedia

Topological data analysis (TDA) is a new area of study aimed at having applications in areas such as
data mining and computer vision. The main problems are:

1. how one infers high-dimensional structure from low-dimensional representations; and
2. how one assembles discrete points into global structure.

The human brain can easily extract global structure from representations in a strictly lower dimension, i.e.
we infer a 3D environment from a 2D image from each eye. The inference of global structure also occurs
when converting discrete data into continuous images, € g. dot-matrix printers and televisions communicate
images via arrays of discrete points.

The main method used by topological data analysis is:

1. Replace a set of data points with a family of simplicial complexes, indexed by a proximity parameter.

2 Analyse these topological complexes via algebraic topology — specifically, via the theory of
persistent homology ["!

3. Encode the persistent homology of a data set in the form of a parameterized version of a Betti
number which is called a persistence diagram or barcode [



Notices of
the AMS,
January
2011

WHAT 1§, ..

Persistent Homology?

Consider the art of Seurat or a piece of old
newsprint. The eye, or the brain, performs the
marvelous task of taking the sense data of individ-
ual points and assembling them into a coherent
image of a continuum—it infers the continuous
from the discrete.

Difficult issues of a similar sort occur in many
problems of data analysis. One might have samples
that are chosen nonuniformly (e.g., not filling a
grid), and, moreover, one is constantly plagued by
problems of noise—the data can be corrupted in
various ways.

Pure mathematicians have problems of this sort
as well. One is often interested in inferring proper-
ties of an enveloping space from a discrete object
within it or, in reverse, seeking commonalities of
all the discrete subobjects of a given continuous
one. To give one example, this theme is a central
one in geometric group theory, in which a typical

Shmuel Weinberger

In memory of my friend, Partha Niyogi (1967-2010)

The Seine at La Grande Jatte by Georges
Seurat.



C. Re

FIGURE 2. A fixed set of points [upper left] can be completed to a
Cech complex C, [lower left] or to a Rips complex R, [lower right]
based on a proximity parameter e [upper right]. This Cech complex
has the homotopy type of the €/2 cover (S' v S' v S1), while the
Rips complex has a wholly different homotopy type (S v S2).

R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the AMS 2008



FIGURE 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing €, holes appear and
disappear. Which holes are real and which are noise?

R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the AMS 2008



Persistence modules

Let R be a totally ordered set. A persistence module V is a functor
from R (considered as a category) to vector spaces. Thus it is given by
vector spaces V; for ¢t € R and linear maps p;s @ Vo, — V; for s <t.
Associated to any interval [ in R (=convex subset) there is an interval
module V = k; with

ko (tel)
0 (t&1).

In simple cases a persistence module can be written as a direct sum of
interval modules. The set of intervals is the barcode.

Persistent homology gives a persistence module indexed by R with
Vi = H,(X:, k), where X; = {union of balls of radius ¢}, and with
pis Induced by the inclusion X, C X,.



R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the AMS 2008



Decomposition result
(This version joint with V. de Silva and F. Chazal)

Assume that R is separable in the order topology (can weaken).

Theorem. If V' has the following descending chain conditions, then it

is a direct sum of interval modules

dcc on images: for all t > s > so > ... the following chain stabilizes
Vi D Im(pis,) 2 Im(pps,) 2 - ..

dcc on sufficient bounded kernels: for all t € R and v € V; there

is s <t such that (i) v € Im(p;,) and (ii) for all t < ... < ry < 1y the
following chain stabilizes

Vi 2 Kel'(;oms) » Kel‘(p'r’;ﬁ) D

Special case 1. If V is pointwise finite-dimensional, that is,
all V; are finite dimensional, then V' is a direct sum of interval modules.



Observable category

A persistence module V' is ephemeral if p;, = 0 for s < ¢
(Same as semisimple!)

Suppose R is a dense order. Then the ephemeral modules
form a Serre subcategory and we define

Persistence modules

Observable category =
Ephemeral modules

Special case 2. If V is a g-tame persistence module, that
1S, pts has finite rank for s < ¢, then rad V' is a direct sum
of interval modules.

Thus V' decomposes in the observable category into interval
modules.



The filtrations

An interval is given by two cuts

c=(c,c"), R=c Uc", sc€c,tcc=s<t

Given t € R, the cuts ¢ with t € ¢t give subspaces of V;:

Im| = U Im(pys),

Sec™

Im, = ﬂ I (o).

SEC+
s<t

Using kernels, the cuts ¢ with t € ¢ give subspaces of V4.
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