Übung 1

Proposition 0.1 Es sei A ein Ring. Es sei $f \in A[X_1, ..., X_d]$ ein Polynom, dessen Koeffizienten ein Ideal erzeugen, das einen Nichtnullteiler enthält. Dann ist f kein Nullteiler in $A[X_1, ..., X_d]$.

Beweis: Man geht von A zur Lokalisierung nach allen Nichtnullteilern über. Dann kann man voraussetzen, dass die Koeffizienten von f das Einsideal erzeugen.

Es sei zunächst (A, \mathfrak{m}) ein lokaler noetherscher Ring. Nach Voraussetzung ist, die Restklasse $\bar{f} \in (A/\mathfrak{m})[X_1, \ldots, X_d]$ nicht null und daher ein Nichtnullteiler. Es folgt, dass ist die Multiplikation mit \bar{f}

$$\bar{f}: (\mathfrak{m}^t/\mathfrak{m}^{t+1})[X_1, \dots, X_d] \to (\mathfrak{m}^t/\mathfrak{m}^{t+1})[X_1, \dots, X_d]$$

für jede natürliche Zahl t injektiv. Es sei $g \in A[X_1, \ldots, X_d]$, so dass fg = 0. Dann folgt durch Induktion $g \in \mathfrak{m}^t[X_1, \ldots, X_d]$ für alle $t \in \mathbb{N}$. Dass impliziert nach Krull, dass g = 0.

Es sei A ein beliebiger noetherscher Ring. Die Koeffizienten von f mögen das Einsideal erzeugen. Es sei $A_{\mathfrak{p}}$ die Lokalisierung nach einem beliebiegen Primideal. Es sei fg=0. Nach dem Bewiesenen ist das Bild von g in jedem der Ringe $A_{\mathfrak{p}}[X_1,\ldots,X_d]$ gleich null. Daraus folgt g=0.

Schliesslich sei A in beliebiger Ring und fg = 0. Dann gibt es einen Teilring $B \subset A$, der endlich erzeugt über \mathbb{Z} ist, so dass f und g in $B[X_1, \ldots, X_d]$ liegen und so dass die Koeffizienten von f das Einsideal in B erzeugen. Da die Aussage schon für B bewiesen wurde, folgt g = 0. Q.E.D.

Bemerkung: Man kann auch Algèbre Locale, IV-4, Proposition 15 benutzen.

Es sei A ein noetherscher Ring. Es sei $f \in A[X_1, \ldots, X_d]$ ein Nullteiler. Dann existiert ein $s \in A$, $s \neq 0$, so dass sf = 0. In der Tat, das Ideal, welches von den Koeffizienten von f erzeugt wird, besteht aus Nullteilern. Es ist daher in einem assoziierten Primideal von A enthalten.

Proposition 0.2 Es sei A ein Ring. Es sei $f \in A[X_1, ..., X_d]$ ein Nullteiler. Dann existiert $Element \ s \in A$, so dass $s \neq 0$ und sf = 0.

Beweis: Man beschränkt sich wie oben auf einen noetherschen Teilring $B \subset A$. Für B haben wir den Satz schon bewiesen.

Proposition 0.3 (Gauß): Es sei A ein Ring. Es sei $f \in A[X_1, ..., X_d]$ ein Polynom, dessen Koeffizienten in A das Einsideal erzeugen. Für ein Polynom $g \in A[X_1, ..., X_d]$ bezeichne $I(g) \subset A$ das Ideal, welches von den Koeffizienten von g erzeugt wird.

Es gilt: I(fg) = I(g).

Beweis: Offensichtlich gilt $I(fg) \subset I(g)$. Nach Proposition 0.1 induziert die Multiplikation mit f

$$f: (A/I(fg))[X_1, \dots, X_d] \to (A/I(fg))[X_1, \dots, X_d]$$

eine Injektion. Die Restklasse des Polynoms g wird dabei auf 0 abbgebildet. Also liegen die Koeffizienten von g in I(fg). Q.E.D.

Bemerkung: Es seien $f, g \in A[X_1, ..., X_d]$. Wenn das Ideal I(f) (lokal) von einem Nichtnullteiler erzeugt wird, so gilt I(f)I(g) = I(fg).