Übung 5

Satz 0.1 (naiver Abstieg): Es sei $K \subset L$ eine Erweiterung von Körpern. Es seien X und Y affine Schema von endlichem Typ über K. Es sei X reduziert und es sei $X(K) \subset X$ Zariski-dicht.

Es sei $f: X_L \to Y_L$ ein Morphimus von L-Schemata, so dass $f(X(K)) \subset Y(K)$.

Dann existiert ein Morphismus von K-Schemata $f_0: X \to Y$, so dass $f = f_0 \times_{\operatorname{Spec} K} \operatorname{Spec} L$.

Beweis: Es sei o.B.d.A. $X = \operatorname{Spec} A$ und $Y = \operatorname{Spec} K[T_1, \dots, T_m]$. Der Morphismus f ist gegeben durch Elemente $\alpha_i \in A \otimes_K L$, $i = 1, \dots, m$, so dass $T_i \mapsto \alpha_i$ der Komorphismus zu f ist. Wir müssen zeigen, dass $\alpha_i \in A$. Es sei $\xi : A \to K$ ein Punkt von X(K). Wir betrachten dass kommutative Diagramm:

$$A \otimes_{K} L \stackrel{f^{*}}{\longleftarrow} L[T_{1}, \dots, T_{m}]$$

$$\xi_{L} \downarrow \qquad \qquad \tilde{\eta} \downarrow$$

$$L \stackrel{\tilde{\eta}}{\longleftarrow} L.$$

Da der Punkt $\tilde{\eta} \in Y(K)$, folgt $\tilde{\eta}(T_i) \in K$. Also gilt $\xi_L(\alpha_i) \in K$ für $i = 1, \ldots m$.

In dem K-Vektorraum L wählen wir eine Basis $\{e_u \mid u \in U\}$ eines komplementären Vektorraums zu $K \subset L$. Dann können wir schreiben

$$\alpha_i = \alpha_i(0) + \sum_{u \in U} \alpha_i(u)e_u, \quad \alpha_i(0), \alpha_i(u) \in A.$$

Da $\xi_L(\alpha_i) \in K$ folgt $\xi(\alpha_i(u)) = 0$ für alle $u \in U$. Also liegt $\alpha_i(u)$ in allen maximalen Idealen $\mathfrak{m} \subset A$, die Punkten von X(K) entsprechen. Aus dem folgenden Lemma folgt, dass $\alpha_i(u) = 0$. Also gilt $\alpha_i = \alpha_i(0) \in A$. Q.E.D.

Lemma 0.2 Es sei A ein kommutativer Ring. Es sei $\mathfrak{p}_i \in \operatorname{Spec} A$, $i \in I$ eine Menge von Primidealen, die in $\operatorname{Spec} A$ dicht ist.

Dann gilt:

$$\bigcap_{i\in I}\mathfrak{p}_i=Nilradikal\ A.$$

In der Tat, wenn $a \in A$ nicht nilpotent ist, ist $D(a) \neq \emptyset$.