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ABSTRACT: We reprove a theorem of Cerednik on the p-adic uniformiza-
tion of Shimura curves associated to a quaternion algebra over a totally real
number field F at certain bad primes. The uniformization is given over the
Shimura field. Our method goes back to Drinfeld in the case F = Q. It
gives also a p-adic uniformization of higher dimensional quternionic Shimura
varieties.



Introduction

Let us denote the complex manifold C \R by X. The group Gl2(R) acts via
linear fractional transformations from the left on X.

We consider arithmetically defined subgroups Γ ⊂ Gl2(R), which are
obtained as follows. Let D be a quaternion division algebra over a totally
real number field F . We assume that there is a single archimedean place
α : F → R such that D splits in α:

D ⊗F,α R ∼= M2(R)

At all other archimedian places D is a division algebra.
Let G be the multiplicative group of D considered as an algebraic group

over Q. We have a natural decomposition:

GR ∼=
∏

ρ:F→R

Gρ

The group G(R) acts on X via the projection to Gα(R) ∼= Gl2(R).
For any congruence subgroup Γ ⊂ G(Q) the quotient Γ\X is a projective

algebraic curve. By Shimura it is canonically defined over a number field.
Alternatively one can consider an open compact subgroup C ⊂ G(Af ) of the
finite adelic points of G. Then the curve

ShC = G(Q)\(X ×G(Af )/C)

has a canonically defined model over the Shimura field E = α(F ). This
model is called the Shimura curve. Over C the curve ShC is a disjoint union
of curves Γ\X of the type above. For varying C one obtains a projective
system (or tower) of curves over E with a right action of the group G(Af ).

Let us identify the fields F and E by the isomorphism α. Consider a
place p of F such that Dp is a division algebra. Then the curve ShC has bad
reduction in p even if the group C is maximal in p (i.e. the assumptions of
corollary 3.2 below hold).

In the case where C is maximal in p the Shimura curve has a model ShC
over OFp , which admits a nice p-adic description discovered by C̆erednik:

One starts with the formal scheme Ω̂2
Fp

over SpfOFp defined by Mumford.

It is defined as follows [BC]. For each OFp-lattice M ⊂ F 2
p one considers

the projective space P(M) over SpecOFp . All these projective spaces are
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birationally isomorphic. One can take the join of any finite set of them, i.e.
the closed graph of the birational correspondence. Going to an inductive
limit one obtains a scheme whose p-adic completion is Ω̂2

Fp
. Each irreducible

component of this formal scheme is isomorphic to P1
κ, where κ denotes the

residue class field of F . The dual graph of the special fibre is the combinato-
rial Bruhat-Tits building of Gl2(Fp). It follows from the definition, that the

group PGlFp acts naturally from the left on Ω̂2
Fp

.

Let D̄ be the quaternion algebra obtained from D by changing the local
invariants exactly in the places α and p. One may choose an isomorphism
between the restricted products over all finite places w 6= p of F :∏

w

′
D̄∗w
∼=

∏
w

′
D∗w

In particular we get an action of the left hand side on G(Af ) =
∏′

wfinite D
∗
w.

Since we assume that Cp is the maximal compact open subgroup of Dp, we
have a natural isomorphism:

D∗p/Cp
∼= F ∗p /O

∗
Fp

The group D̄p acts by the determinant on the right hand side of this iso-
morphism. Hence altogether we obtain an action of the group (D̄ ⊗Af )

∗ on
G(Af )/C from the left, and hence also an action of the subgroup D̄∗.

Choosing an isomorphism D̄∗p
∼= Gl2(Fp), we obtain an action of this

group on Ω̂2
Fp

. We let D̄∗ act by the embedding D̄ ⊂ D̄p.

The following more precise formulation of C̆erednik’s theorem was proved
by Drinfeld [D] in the case F = Q.

Theorem 0.1. Let F̆p be the completion of the maximal unramified extension
of F . There is a G(Af )-equivariant isomorphism of towers of formal p-adic

schemes over F̆p:

D̄∗\(Ω̂2
Fp
×SpfOFp

SpfOF̆p
×G(Af )/C) ∼= Sh∧C ×SpfOFp

SpfOF̆p

Here Sh∧C denotes the completion along the special fibre.
Let τ be the Frobenius automorphism relative to Fp acting on F̆p. Then

τ acts on both sides of the isomorphisms above via the factor SpfOF̆p
. Let

Π ∈ D∗p ⊂ G(Af ) be a prime element, acting by multiplication on G(Af )/C.
Then the action of τ × Π on the left hand side of the isomorphism above
induces on the right hand side the action of τ .
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We show how this result may be deduced from the general non archimedean
uniformization theorems for Shimura varieties of PEL-type in [RZ]. By this
method one can extend the result easily to quaternionic Shimura varieties of
higher dimension (corollary 3.4).

If Cp is not maximal compact it is not easy to describe a model ShC over
SpecOFp . But one can obtain a uniformization theorem in the rigid analytic
setting.

In the theorem above it is natural to consider the formal scheme N =
(Ω̂2

Fp
×SpfOFp

SpfOF̆p
)×D∗p/Cp. It is equipped with an action of τ ×Π, which

we call the natural Weil descent datum. By Drinfeld the associated rigid
analytic space N rig admits a pro-analytic étale covering NFp with Galois
group O∗Dp

acting from the right (see (44) - (47) below).

The space NFp is a rigid analytic space over Sp
¯̆
Fp equipped with a left

action of D̄∗p , a right action of D∗p , and a Weil descent datum realtive to

F̆p/Fp.
The space NFp is used to obtain a uniformization for the rigid analytic

spaces (ShC ×SpecF SpecFp)
rig (see theorem 3.1). The proof is based on the

existence of a determinant map with connected fibers:

det : NFp ×Sp F̆p
Sp

¯̆
Fp −→ F ∗p

In fact we show the existence of a determinant map more generally for the
pro-analytic covering spaces associated to the formal schemes Ω̂d

Fp
for any d ≥

1, and determine the action of the Galois group on the connected components
of the covering spaces (theorem 2.3 below). The case d = 2 is dicussed in
[C] 4.3. We note that there is an analogue of the determinant map in equal
characteristic defined by Genestier [G].

To obtain the uniformization theorems in the generality above we have
to redo the uniformization theorem for the unitary group [RZ] 6.50 under
slightly more general assumptions. This is the contents of chapter 1. Similiar
results have been obtained by Y.Varshavsky, by a totally different method.
Chapter 2 is devoted to the determinant map. Chapter 3 contains the p-adic
uniformization of Shimura curves.

We would like to thank H. Carayol for his constant interest and advices
during the preparation of this work. We also thank A.S.Rapinchuk for helping
us with lemma 1.2.
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0.1 Uniformization for the unitary group

Let K be a CM -field with F ⊂ K the maximal totally real subfield. We
consider a division algebra B over K of rank d2 with a positive involution
b 7−→ b′, b ∈ B. Let W = B considered as a B-bimodule. Let

ψ : W ×W −→ Q

be an alternating nondegenerate bilinear form, which satisfies

ψ(bw1, w2) = ψ(w1, b
′w2).

We fix once for all a rational prime number p. Let us denote by p =
p0, p1, . . . , pm the prime ideals of OF over p. We assume that they all split
in K:

piOK = qiqi, qi 6= qi, i = 0, . . . ,m.

The prime ideals q0 and q0 will be also denoted by q and q.
We will use the notations Bpi = B ⊗F Fpi , Bqi = B ⊗K Kqi ,Wpi =

W ⊗F Fpi ,Wqi = W ⊗K Kqi for the completions in the corresponding prime
ideals. We assume that Bq is a division algebra of invariant 1/d.

Let OB ⊂ B be a maximal order, which has the property that OB ⊗ Zp
is fixed by the involution b 7−→ b′. We write Γ = OB ⊗ Zp if we view it as a
submodule of W ⊗Qp.

We assume that ψ induces a perfect pairing

Γ⊗ Γ −→ Zp.

The form ψ determines uniquely an alternating F -bilinear form

ψ̃ : W ×W −→ F (1)

by the equation

ψ(fw1, w2) = TrF/Qdiff−1fψ̃(w1, w2),

Here diff is an element of F , which locally at the primes over p generates the
different ideal of F/Qp. Let G̃• be the algebraic group over F , whose group
of points with values in a F -algebra R is
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G̃• = {g ∈ GlB⊗FR(W ⊗F R) | ψ̃(gw1, gw2) = γ̃(g)ψ̃(w1, w2),

γ̃(g) ∈ R?, w1, w2 ∈ W ⊗F R}

Let b 7−→ b? be the involution on B given by

ψ(w1b, w2) = ψ(w1, w2b
?), w1, w2 ∈ W ⊗F R, b ∈ B. (2)

We may rewrite the definition of G̃• as follows:

G̃• = {g ∈ ((B ⊗F R)opp)? | gg? ∈ R?}

The multiplicator is γ̃(g) = gg?.
Let G• = ResF/QG̃

• be the restriction of scalars à la Weil. For any Q-
algebra R we have

G• = {g ∈ GlB⊗QR(W ⊗Q R) | ψ(gw1, gw2) = ψ(γ(g)w1, w2)

γ(g) ∈ (F ⊗Q R)?, w1, w2 ∈ W ⊗Q R}

On the group of points G̃•(F ) = G•(Q) the maps γ̃ and γ will induce the
same map to F ∗.

The module schemes we are going to define will be associated to certain
open and compact subgroups C ⊂ G•(Af ) = G̃•(AF,f ). We will assume that
C is of the following type:

C = CpC
p (3)

where
Cp ⊂ G•(Ap

f )

and

Cp ⊂ G•(Qp) =
m∏
i=0

G̃•(Fpi).

The subgroup Cp should decompose

Cp =
m∏
i=0

Cpi , Cpi ⊂ G̃•(Fpi),
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where Cpi are subgroups of the following form. Since piOK = qiqi we have

a decomposition Bpi = Bqi × Bqi . The involution ∗ interchanges the factors
and hence defines an isomorphism

∗ : Bqi

∼−→ Bopp
qi
.

With this identification we may write

G̃•(Fpi) = {(b1, b2) ∈ (Bopp
qi

)? ×B?
qi
| b1b2 ∈ F ?

pi
} (4)

We assume that there is an open and compact subgroup Cqi ⊂ B?
qi

,
such that

Cpi = {(c1, c2) ∈ Cqi × Copp
qi
| c1c2 ∈ F ?

pi
} (5)

We assume that Cq ⊂ (Bopp
q )? is the maximal open compact subgroup

of this division algebra.

Let us consider the category of abelian schemes over a base S. An
abelian OK-scheme is a pair (A, ι), where A is an abelian scheme and ι :
OK ↪→ EndA is an action. An isogeny ρ : (A, ι) −→ (A′, ι′) is called of
order prime to p, if locally for the Zariski topology on S, there is an element
f ∈ OF , f /∈ p which annihilates the kernel of ρ. If we invert in the category
of OK-schemes all isogenies of order prime to p we obtain a category AV . Its
objects will be called abelian OK-schemes up to isogeny of order prime to p.

For an abelian OK-scheme (A, ι) we have a decomposition of the asso-
ciated p-divisible group

X =
m∏
i=0

Xqi ×Xqi .

Here OK acts on Xqi via the embedding OK −→ OKqi
etc.. If A ∈ AV

it makes still sense to speak of the p-divisible groups Xq and Xq, while Xqi

for i 6= 0 makes only sense up to isogeny. We note that the height of the
p-divisible group Xqi is 2 dimA

[K:Q]
bKqi : Qp].

Let A0 be an abelian OK-scheme and A ∈ AV its class. Then

EndA = (EndA0)⊗OF (OF )p.

We will denote by Â0 the dual abelian scheme and by Â ∈ AV its class. A

polarization of A will be a quasiisogeny λ : A0 −→ Â0, such that locally on
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S for a suitable natural number n the quasiisogeny nλ is an isogeny induced
by a line bundle ampel relative to S. In fact this condition depends only on
the induced morphism λ : A −→ Â in AV and not on the choice of A0. A set
of quasiisogenies A −→ Â of the form F ?λ = λF ?, where λ is a polarization,
will be called a F -homogenous polarization. Let us denote by Λ the F -vector
space F · λ.

If there is a λ′ ∈ F ?λ which induces an isomorphism in AV we call Λ a
F -homogenous polarization, which is principal in p.

We consider the subset Φ ⊂ Hom(K,Qp) given by

Φ =
m⊔
i=0

Hom(Kqi ,Qp). (6)

If Φ denotes the conjugate of Φ with respect to the conjugation of K/F we
have

Φ ∪ Φ = Hom(K,Qp).

Let us fix an embedding α : Kq0 −→ Qp. The image of α will be
denoted by E.

We define a B invariant subspace W0 ⊂ W ⊗ Qp, which is isotropic
with respect to ψ. To do this we consider the decomposition

W ⊗Qp = ⊕
ρ:K−→Qp

W ⊗K,ρ Qp

The space W0 will be a direct sum of B⊗K,ρQp-submodules of W0,ρ ⊂ Wρ =

W ⊗K,ρ Qp, which satisfy

dimW0,ρ =


0 if ρ ∈ Φ, ρ 6= α

d if ρ = α

d2 − d if ρ = α

d2 if ρ ∈ Φ, ρ 6= α

(7)

These conditions define the isotropic subspace W0 ⊂ W ⊗ Qp up to a sym-

plectic B-linear automorphism of W ⊗Qp.
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The polynomial function on B

detQp(b|W0)

is defined over E and independent of our choice of W0.

We are now ready to define the following variant of the moduli problems
considered in bRZ] §6.

Let AC be the functor on the category of OE-schemes, whose points
AC(S) with values in an OE-scheme S are given by isomorphism classes of
the following data

1) An object A of AV over S with an action of OB

ι : OB −→ EndA.

2) A F -homogenous polarization Λ of A, which is principal in p .

3) For each i = 1, . . .m a generator λi ∈ Λ⊗F Fpi mod Cpi ∩ F ?
pi

.

4) A class of isomorphisms of B ⊗ Ap
f -modules

ηp : V p(A) −→ W ⊗ Ap
f mod Cp

such that the Riemann form on V p(A) given by a polarization λ ∈ Λ
and ψ on W ⊗ Ap

f are respected up to a constant in (F ⊗ Ap
f )
?.

5) For each i = 1, . . . ,m a class of Bqi-module isomorphisms

ηqi : Vqi(A) −→ Wqi mod Cqi .

The following conditions should be satisfied

(i) The Rosati involution on EndA defined by Λ induces on OB the given
involution b 7−→ b′.

(ii) We have an identity of polynomial functions on OB :

detOS(b,LieA0) = detQp(b|W0)

for any abelian variety A0 in the class A.

8



We remark that the last condition (ii) is equivalent to the following:
The p-divisible group Xq of A0 is a special formal OBq-module in the sense
of Drinfeld and for i = 1, . . . ,m the p-divisible groups Xqi are étale. Indeed
this follows from [RZ] 3.58 and from the existence of a polarization which is
principal in p.

Proposition 0.2. For sufficiently small congruence subgroups C ⊂ G•(Af )
satisfying the conditions above the sheafification AC with respect to the étale
topology of the functor AC is representable by a projective scheme over OE.

Proof: Let us introduce the notation Ẑp = lim←−
(n,p)=1

Z/n and Ẑp(1) = lim←−
(n,p)=1

µn,

where µn is the sheaf of n-the roots of unity. We denote by Ap
F,f the ring

of adeles of F , which have component 0 at infinity and at the prime p. We
define a twist by the roots of unity outside p:

Ap
F,f (1)p = (

m∏
i=1

Fpi)× (F ⊗Ẑp Ẑ
p(1))

Let (A,Λ, {λi}, ηp, {ηqi}) be a point ofAC(L) for an algebraically closed
field L. There exists a polarization λ ∈ Λ, which is principal in p. To any
polarization λ of this type we associate a class

cls λ ∈ (Ap
F,f (1)p)?/γ(Cp). (8)

Here (Ap
F,f (1)p)? denotes the set of isomorphisms of Ap

F,f -modules

Isom(Ap
F,f , (A

p
F,f (1)p))

To do this we choose an isomorphisms ηp ∈ ηp. Then by the definition
of AC there exists an element fp ∈ (Ap

F,f ⊗Ẑp Ẑp(1))?, such that

ψ(fpηp(x), ηp(y)) = Eλ(x, y), x, y ∈ V p(A),

where Eλ is the Riemann form associated to λ. For each i = 1, . . . ,m there
is an element fpi ∈ F ?

pi
, such that λ = fpiλi. Then the residue class of

(fp, fpi , . . . , fqm) in the right hand side of (8) is by definition cls γ. This
definition is independent of the choice of ηp.

Let F ?
+,p be the multiplicative group of totally positive elements of F ,

which are units in p. The residue class of cls λ in

F ?
+,p \ (Ap

F,f (1)p)?/γ(Cp)
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is independent of the choice of λ ∈ Λ, and will be denoted by cls Λ.

More generally we can define a class

cls λ ∈ (Ap
F,f (1)p)?/γ(Cp).

for a point of AC(S) for a connected OE-scheme S, and a polarization λ ∈ Λ
which is principal in p by taking the class in any geometric point. Since the
action of the fundamental group leaves η invariant (by definition), the class
is well-defined. Again cls Λ is defined.

Let us choose an isomorphism Ẑp −→ Ẑp(1) over OEnr , the maximal
unramified extension of OE The induced isomorphism

(Ap
F,f )

?/γ(Cp)
∼−→ (Ap

F,f (1)p)?/γ(Cp)

is defined over a finite unramified extension R of OE. The prove the propo-
sition we may work over R and ignore the Tate twist by Ẑp(1).

Let us choose representatives κ1, . . . , κM ∈ (Ap
F,f )

?/γ(Cp) for the finite

set F ?
+,p \ (Ap

F,f )
?/γ(Cp). We define a functor ÃC over R by adding to the

data defining AC the following:

6) A polarization λ ∈ Λ, which is principal in p, such that cls λ = κj for
some j = 1, . . . ,m.

The functor ÃC is a moduli problem of polarized abelian varieties with a
polarization of bounded degree and hence representable. Indeed a polarized
abelian variety may be extracted from the data 1) – 6) as follows. Let
WZ = OB ⊂ W and W p = WZ ⊗Z Ẑp. Then there is a unique abelian
variety A0 ⊂ A in the isogeny class A, such that ηpT̂ p(A0)) = W p for any
ηp ∈ ηp, ηqi(Tqi(A0)) = OB ⊗0K OKqi

for any ηqi ∈ ηqi , and moreover the
elements λi induce perfect pairings between the p-divisible groups Xqi and
Xqi for i = 1, . . . ,m.

Then λ defines an quasiisogeny A0 −→ Â0, whose degree is bounded by
a constant depending on κ1 . . . κM and ψ. Moreover we may find a natural
number c = c(κ1, . . . , κM , ψ), such that c · λ is induced by an ample line
bundle.
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Hence the sheafification of the functor ÃC is representable by a quasipro-
jective scheme ÃC over SpecR. We claim that the morphism

ÃC −→ AC,R

is an isomorphism for sufficiently small C. The surjectivity of this map is
obvious. For the injectivity we assume that there are two points of ÃC(S) for
a connected scheme S are mapped to the same point ofAC,R(S). That means,

that we have a point (A,Λ, {λi}, ηp, {ηqi}) of AC,R(S) and two polarizations

λ′, λ′′ ∈ Λ giving use to points of ÃC(S). Then we must have clsλ′ = clsλ′′.

Therefore the polarizations λ′ and λ′′ differ by an element f ∈ F ?
+,p ∩

γ(Cp), which is a subgroup of the group of units of F . By a theorem of
Chevalley for sufficiently small Cp any element of F ?

+,p ∩ γ(Cg) is a square
in F . Then f = u2 for u ∈ F . But then the multiplication by u : A −→ A
defines an isomorphism between the points of ÃC(S) corresponding to λ′ and
λ′′.

Hence we have shown that the sheafification of AC is representable by
a quasiprojective scheme AC . To finish the proof we verify by the valuative
criterion that AC is proper.

Let R be a discrete valuation ring with algebraically closed residue
field k and field of fractions Q. Let (A,Λ, λi, η

p, ηqi) be a point of AC(Q)
and A0 ∈ A an abelian variety. We have to verify that A0 has potentially
good reduction. This is standard by Drinfeld [1]: We may assume that A0

has semistable reduction. Then the connected component of the special fibre
of the Néron modell A0 is an extension

0 −→ Gr
m,k −→ A0 −→M −→ 0

where M is an abelian variety. Then we get an action of B on the character
group X?(Gr

m,k)⊗Q ' Qr. Since r ≤ dimA0 = 1
2
[B : Q] and B is a division

algebra this is only possible for r = 0. �

The OE-schemes AC form for varying C of the type described above a
projective system with finite transition maps:

AC2 −→ AC1 for C2 ⊂ C1.
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We will now define a right action of G•(Af ) on the projective system
{AC}.

For g ∈ G•(Ap
f ) we consider the action in [RZ]:

g : AC −→ Ag−1Cg,

which maps a point (A,Λ, {λi}, ηp, {ηqi}) to (A,Λ, {λi, g−1ηp, {ηqi}).
Next we consider an idele gpj ∈ G̃•(Fpj). According to the decomposi-

tion Wpj = Wqj ⊕Wqj we will write

gpj = (gqj , gqj).

Then we define a right action

gpj : AC −→ Ag−1
pj
Cgpj

by associating to (A,Λ, {λi}, ηp, {ηqi}) the point obtained by changing λj to

λj · γ(g−1
pj

) and ηqj to g−1
qj
ηqj while leaving the remaining data unchanged.

Finally we define the action of G̃•(Fp). Let b ∈ B? be an element and
A ∈ AV be an object with the action ι : OB −→ EndA. Then we define a
new action by

ιb(x) = ι(b−1xb) for x ∈ OB. (9)

Since b normalizes OB ⊗OF OFp we see that ιb(x) is an endomorphism of A.
We will write Ab for the pair (A, ιb).

Let Λ be a F -homogenous polarization of A, such that ι respects the
involutions, i.e. the Rosati-involution of Λ induces on B the given involution
b 7−→ b′. Then ιb respects the involutions, if bb′ ∈ F ?. Let H be the
corresponding algebraic group over Q.

H(Q) = {b ∈ B? |bb′ ∈ F ?}

Lemma 0.3. The group H(Q) has the weak approximation property. �

Proof: Let H ′ be the derived group. It satisfies the weak approximation
property by [PR] Theorem 7.8. The center ZH of the group H is isomor-
phic to ResK/QGm. The group H is a ZH-torsor over H ′. Since the Galois
cohomology H1( ¯κ(H ′)/κ(H ′), ZH) vanishes by Hilbert Satz 90 the variety H
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is birationally equivalent to ZH × H ′. This implies the lemma by standard
facts on weak approximation. �

Let us consider an idele gp ∈ G̃•(Fp). We denote by Γp = OB⊗OF OFp ⊂
Wp the OB⊗OFOFp lattice. Then Γp = Γq⊕Γq and ψ induces a perfect pairing
Γq × Γq −→ Zp. Using this one check easily, that there exists an element
bp ∈ Bp, such that bpΓp = gpΓp and bpb

′
p ∈ F ?

p . By the weak approximation
property of H we may assume that bp is the image of an element b ∈ B, such
that bb? ∈ F .

Definition 0.4. The action of gp on the tower is a morphism for each level

gp : AC −→ AC

which maps a point (A,Λ, {λi}, ηp, {ηqi}) to (Ab,Λ, {λibb′}, ηpb, {ηqib}).

This definition is independent of the choice of b. Indeed if b is a unit in
OB ⊗OF OFp the multiplication by ι(b) : Ab −→ A is an isomorphism in the
category AV , which defines an isomorphism of the points above.

Hence the definition of the right action of G•(Af ) on the projective
system AC is finished.

We set A = lim←−AC , which exists as a scheme since the transition maps
are affine. It follows that we have an isomorphsim of locally ringed spaces

A/C ∼−→ AC .

For any open compact subgroup C ⊂ G•(Af ) which is maximal in p we
define AC = A/C. This is a projective scheme over OE. We show now that
the completion of AC along the special fibre admits a p-adic uniformization
by Drinfeld’s Ω̂d.

Let us denote by κ the residue class field of OE. It is an OFp-algebra
via the isomorphism α : OFp −→ OE. All special formal OBq -modules over

κ are isogenous. Let Φ be a fixed one. The dual p-divisible group Φ̂ is
naturally Oopp

Bq
-module. The fixed involution b 7−→ b′ induces an isomorphism

OBq
−→ Oopp

Bq
. We consider the action thus obtained

OBp = OBq ×OBq
−→ End(Φ× Φ̂)

Then the natural polarization on Φ× Φ̂ induces on OBp the given involution

b 7−→ b′. We will use the notation X = Φ× Φ̂.
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Let us denote by Ĕ the completion of the maximal unramified extension
Enr. We are going to define a module problem of p-divisible groups on the
category of OĔ-schemes T , such that p is locally nilpotent on T . We set
T = T ×Spec Zp Spec Fp. Let ϕ : T −→ Spec OĔ be the structure morphism

and ϕ : T −→ Spec OĔ/(p) −→ Spec κ its reduction.

Let X be a p-divisible group over T with an action of OBp . According
to the decomposition OBp = OBq ×OBq

we get

X = X1 ×X2

By the isomorphism Oopp
Bq
−→ OBq , we view the dual X̂2 as an OBq-

module. We say that X is of special type if X1 and X̂2 are special formal
OBq-modules.

Definition 0.5. Let M̆ be a functor on the category of OĔ-schemes T , where

p is locally nilpotent, such that a point of M̆(T ) is given by the following set
of data up to isomorphism.

1) A p-divisible OBp-module on X of special type on T .

2) A quasiisogeny of OBp-modules over T

ρ : ϕ?X −→ X

These data are subject to the following condition. The quasiisogeny ρ
splits naturally into the direct sum of two isogenies ρ = ρ1 × ρ2 :

ρ1 : ϕ?Φ −→ X1, ρ2 : ϕ?Φ̂ −→ X2

By rigidity the quasiisogeny ρ1ρ̂2 : X̂2 −→ X1 lifts uniquely to a quasi-
isogeny of special formal OBq-modules δ : X̂2 −→ X1. The condition is that
locally for the Zariski topology on T there is an element f ∈ F ?

p , such that

fδ : X̂2 −→ X1 is an isomorphism. Two points (X, ρ) and (X ′, ρ′) are called
isomorphic, if there is an isomorphism α : X −→ X ′ of OBp-modules, such
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that the following diagram is commutative

X
↗

ϕ?X ↓ α
↘

X ′

By [RZ] theorem 3.25 the functor M̆ is representable by a formal
scheme locally formally of finite type over SpfOĔ. In fact it will follow later

(30) and the remark after definition 0.11 that M̆ is a p-adic formal scheme.

Let us denote by τ : Spec OĔ −→ Spec OĔ the morphism induced by

the Frobenius automorphism of the unramified field extension Ĕ/E. For an
OĔ-scheme T we denote by T[τ ] the OĔ-scheme which is obtained by replacing
the structure morphism ϕ by τϕ. A formal OBp-module X of special type on
T remains of special type when it is regarded on T[τ ]. Let us denote by

Frob : X −→ τ ?X

the Frobenius relative to κ.

The formal scheme M̆ is equipped with a Weil descent datum [RZ]

ξ : M̆(T ) −→ τ ?M̆(T ) = M̆(T[τ ]). (10)

It associates to a point (X, ρ) ∈ M̆(T ) the point (X ′, ρ′) ∈ M̆(T[τ ]), where
X ′ = X and ρ′ is the composite

ϕ?τ ?X ϕ?(Frob)−1

−→ ϕ?X ρ−→ X (11)

Let us denote by J •(Fp) the group of all quasiisogenies of the OBp-module
X, which respect the polarization of X up to a constant in F ?

p . If we write

h = (h1, h2) : Φ × Φ̂ −→ Φ × Φ̂ the condition h ∈ J •(Fp) is equivalent to

ĥ2h1 ∈ F ?
p . The homomorphism h 7→ ĥ2h1 will be denoted by:

γJ • : J •(Fp) −→ F ?
p (12)

There is a natural left action of J •(Fp) on M̆:

15



Definition 0.6. Let (X, ρ) be a point of M̆(T ) and g ∈ J •(Fp). Then
h(X, ρ) is defined to be (X, ρh−1).

We next define a right action of the group G̃•(Fp) on M̆. For g ∈ G̃•(Fp)
there is an element b ∈ OBp , such that gΓ = bΓ, where bb′ ∈ F ?

p .

Definition 0.7. The right action of g ∈ G̃•(Fp) associates to a point (X, ρ)
the point (Xb, ι(b−1)ρ), where Xb is defined exactly in the same way as for
abelian varieties.

Next we define the uniformization morphism

Θ : M̆ × G̃•(Ap
F,f )/C

p −→ AC ×Spec OE Spec OĔ. (13)

We note that we have defined a right action of G̃•(AF,f ) = G•(Af ) on
the projective system on the right hand side. We have also a right action
on the left hand side of (13) of the group G̃•(AF,f ). Indeed the action of

G̃•(Ap
F,f ) is by definition the obvious one, by while G̃•(Fp) acts via M̆ by

definition 0.7.
By the required equivariance it is enough to define Θ on M̆× {1}. By

the same reason we may assume that the group C is sufficiently small in the
set of open compact subgroups of G̃•(AF,f ) which are maximal in p. The
definition of the morphism Θ will depend on the choice of a point indexed by
the letter s: (As,Λs, {λs,i}, ηps, {ηs,qi}) ∈ AC(κ) for some sufficiently small C.

We also choose elements ηps ∈ ηps ηs,qi ∈ ηs,qi and λs,i ∈ λs,i. The p-divisible
group Xs of As will have a decomposition:

Xs =
m∏
i=0

(Xs,qi ×Xs,qi).

Let us denote by Xs,p = Xs,q×Xs,q the p-component of the p-divisible group

of As. It does not change M̆ if we assume X = Xs,p. Given a point (X, ρ) ∈
M̆(T ) there is up to a unique isomorphism an object A in the category
AV over T whose p-component of its p-divisible group is X together with a
quasiisogeny (As)T −→ A which extends ρ : XT −→ X. Pushing forward the
data λs,i, η

p
s , ηs,qi and Λs, we obtain a point (A,Λ, {λi}, ηp, {ηqi}) ∈ AC(T ).

Finally by the criterion of Serre and Tate the given lifting X of X
defines a unique lifting of that point to a point

Θ((X, ρ)× 1) ∈ AC(T ).
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One checks immediately that the morphism thus defined is equivariant
with respect to the G̃•(Fp) actions given by the definitions 0.6 and 0.7.

Hence Θ is G̃•(AF,f )-equivariant by definition. Our next aim is to
determine the fibres of the morphism Θ. Let us denote by ϕ 7−→ ϕ′ the
Rosati involution induced by Λ on the finite dimensional Q-algebra End0

BAs.
We set

Ĩ•(F ) = {ϕ ∈ End0
BAs | ϕϕ′ ∈ F ?}. (14)

We regard Ĩ• as an algebraic group over F . Let γ̃ : Ĩ• −→ Gm,F be the
morphism given by ϕ 7−→ ϕϕ′. Let us denote by I• = ResF/QĨ

• the restriction
á la Weil. We are going to define group homomorphisms:

I•(Q) −→ J •(Fp)

I•(Q) −→ G̃•(Fpi) i = 1, . . .m (15)

I•(Q) −→ G̃•(Ap
F,f )

Since J •(Fp) acts on M̆ from the left definition 0.6 we get an obvious

action I•(Q) on M̆ × G̃•(Ap
F,f )/C

p from the left.

The first morphism of (15) associates to ϕ ∈ I•(Q) the induced quasi-
isogeny of the p-component X of the p-divisible group of As.

To define the second type of homomorphism we use the isomorphism

G̃•(Fpi)
∼−→ GLBqi

(W ⊗K Kqi)× F ?
pi

which is given by the natural action of G̃•(Fpi) on W⊗KKqi on the first factor
and by γ̃ on the second factor. Hence it is enough to define homomorphisms
ξi : I•(Q) −→ GlBqi

(W ⊗K Kqi) and I•(Q) −→ F ?
pi

. The last morphism is
given by γ̃ on I(Q), while ξi is defined by the commutative diagram

Vqi(As)
Vqi (ϕ)
−−−→ Vqi(As)

ηs,qi

y yηs,qi
W ⊗K Kqi

ξi(ϕ)−−−→ W ⊗K Kqi
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The third morphism of (15) is defined by a similar diagram involving
V p(As) and W ⊗Q Ap

f .
Since the p-divisible groups Xs,qi and Xs,q̄i for i = 0 . . .m are isoclinic,

it follows from [RZ] 6.29 that the algebra B̄ = End0
BAs with its Rosati

involution ′ is characterized up to isomorphism by the following properties:
(B̄, ′) is a central division algebra over K with a positive involution. We
have isomorphisms of algebras with an involution:

(B̄ ⊗F Ap
F,f ,

′) ∼= (Bopp ⊗F Ap
F,f , ∗)

(B̄ ⊗F Fp,
′) ∼= (Md(Fp)×Md(Fp)

opp, switch) (16)

Here ∗ denotes the involution defined by (2) and switch denotes the involution
which interchanges the factors.

Hence Ĩ• is the inner form of G̃•, such that Ĩ•(F⊗R) is compact modulo
center and such that we have the following isomorphisms:

Ĩ•(Ap
F,f )
∼= G̃•(Ap

F,f )

Ĩ•(Fp) ∼= J •(Fp) (17)

It follows as in [RZ] 6.29 and 6.30 that Θ induces an isomorphism of
formal schemes

Θ : I•(Q) \ M̆ × G̃•(Ap
F,f )/C

p −→ ÂC ×SpfOE SpfOĔ, (18)

where ÂC is completion along the special fibre of AC . Let us now compare
the descent data on both sides of (18).

We define ξj ∈ G̃•(Fpj) for j = 1, . . . ,m as follows. The action ξj on
the first summand of the decomposition Wpj = Wqj⊕Wqj is the identity, and
on the second direct summand is multiplication by q, where q is the number
of elements in the residue class field κ of E. Let us denote by ξp ∈ G̃•(Ap

F,f )
the idele with components ξj at the primes pj, j = 1, . . . ,m and 1 elsewhere.

Lemma 0.8. The canonical descent datum on the right hand side of

Θ : M̆ × G̃•(Ap
F,f )/C

p −→ AC ×SpecOE Spec OĔ.

induces on the left hand side the Weil descent (10) datum on M̆ multiplied
with ξp.

18



Proof: Let T be a scheme over SpfOĔ and ϕ : T −→ SpfOĔ be the
structure morphism. To compare the descent data on both sides of (18)
we start with a T -valued point (X, ρ) × g of the left hand side. Here ρ :
ϕ?X −→ XT is a quasiisogeny. For the comparsion we may assume g = 1.
Let (A,Λ, {λi}, ηp, {ηqi}) ∈ AC(T ) be the point described in the definition of
Θ. The natural descent datum

AC(T ) −→ AC(T[τ ])

maps this point to the same abelian variety A with additional structure
regarded on T[τ ]. The descent datum on M̆ maps ρ to the quasiisogeny

ρ1 = ρ ◦ ϕ?Frob−1
X : ϕ?τ ?X −→ ϕ?X −→ XT .

The image of (X, ρ1) by Θ is obtained as follows. We extend ρ1 to a quasi-
isogeny of abelian varieties

ϕ?τ ?As
ϕ?(Frob−1

As
)

−→ ϕ?As −→ AT

and push forward the data on ϕ?τ ?As induced by Λs, λs,i, η
p
s , ηs,qi . We note

that Frob−1
As

just induces the identity on the Tate-modules.

V`(As) = τ ?V`(As) = V`(τ
?As)

Frob−1
As−→ V`(As)

Hence the push-forwards of ηps and ηs,qi are ηp and ηqi . We claim that

the push-forward of an element λ ∈ Λs by Frob−1
As

is q ·λ. Indeed this follows
from the commutative diagram

τ ?As
Frob−1

As−−−−→ As

τ?λi

y yλi
τ ?Âs −−−−→

Frob−1

Âs

Âs

and the equality

F̂rob−1
As

= FrobÂs · q
−1.
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The assertion of the lemma is now obvious.

To the group G• and the module (W,ψ) there is associated a Shimura
variety. We set S = ResC/RGm. Let

h• : S −→ G•R (19)

be a morphism of algebraic groups such that h• defines on WR a Hodge struc-
ture of type (1, 0), (0, 1), and such that ψ(w1, h

•(
√
−1)w2), w1, w2 ∈ WR is

symmetric and positive definite. Then h• is determined by these proper-
ties up to conjugacy. Let Sh(G•,h•),C the corresponding Shimura variety, i.e.
tower of projective algebraic varieties indexed by C ⊂ G•(Af ). As above
we restrict our attention to those C, which satisfy the conditions under (5).
Then Sh(G•,h•),C is for sufficiently small C a fine module scheme for the étale
sheafification of the following functor. Let E(h•) be the Shimura field.

Then a point of the functor over a E(h•)-scheme S is given by the
same data and conditions as a point of AC except that the data 3) and 5)
are replaced by a single datum 3’ :

3’) For each i = 1, . . . ,m a class of Bpi-module isomorphisms

ηpi : Vpi(A) −→ Wpi mod Cpi

which respects the bilinear forms on both sides given by Λ respectively
ψ up to a constant in F ?

pi
.

We fix once for all a diagram:

C←− Q̄ ν−→ Q̄p (20)

According to this diagram the Hodge structure WC = W 1,0 ⊕W 0,1 given by
the morphism h• defines a corresponding decomposition:

WQ̄p = W 1,0 ⊕W 0,1 (21)

We require that W 1,0 satisfies the conditions of (7) on the space W0.
The condition may be reformulated as follows. The trace of an element

b ∈ B acting on W 1,0 is of the following form

TrC(b|W 1,0) =
∑

ρ:K→C

rρ(Tr
0b), (22)
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where rρ are natural numbers, such that rρ + rρ̄ = d.
Then the condition (7) is equivalent to:

rρ =


0 if ρ ∈ Φ, ρ 6= α

1 if ρ = α

d− 1 if ρ = ᾱ

d if ρ ∈ Φ̄, ρ 6= ᾱ

(23)

The diagram (20) determines a p-adic place of the Shimura field E(h•). One
checks easily, that under the conditions (23):

E(h•)ν = α(Kq) = E.

We compare now Sh(G•,h•),C and AC as varieties over E. Let Ep∞/E
be the field extension obtained by adjoining all pn-th roots of units for all
n ≥ 0. An element σ ∈ Gal(Ep∞/E) operates on the Ep∞-valued point of
Qp(1) by multiplication with an element uσ ∈ Z?p. It may be helpful to note
that the descent datum on the constant scheme Qp relative to Ep∞/E giving
rise to Qp(1) is multiplication by u−1

σ .

Lemma 0.9. There is an isomorphism

Sh(G•,h•),C ×SpecE SpecEp∞
∼−→ AC ×SpecOE SpecEp∞ ,

such that the action of idAC × σ on the right hand side gives on the left hand
side the action by ũσ × σ, where ũσ ∈ K?(Af ) is the image of uσ by the
diagonal embedding

Q?
p −→

m∏
i=1

K?
qi
⊂ K?(Af )

Proof: We choose an isomorphism Zp
∼−→ Zp(1) over SpecEp∞ and

denote by ζ ∈ Zp(1) the image of 1.

Let ϕ : T −→ SpecEp∞ be a scheme. We define a morphism

ξ : Sh(G•,h•),C(T ) −→ AC(T )

Let (A,Λ, ηp, ηpi) ∈ Sh(G•,h•),C(T ) be a point. The image

(A,Λ, {λi}, ηp, {ηqi}) by α is defined as follows. Let ηpi ∈ ηpi be an isomor-
phism. It decomposes as a direct sum
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ηpi = ηqi ⊕ ηqi : Vqi(A)⊕ Vqi(A) −→ Wqi ⊕Wqi .

This already defines ηqi . To finish the definition of ξ we need to say
what λi is. We give it by the equation

Eλi(x, y) = ϕ?(ζ)ψ(ηqi(x), ηqi(y)), x ∈ Vqi(A), y ∈ Vqi(A).

Here Eλi denotes the Riemann form associated an element λi ∈ Λ ⊗F
Fpi . Let σ ∈ Gal(Ep∞/E) be an element of the Galois group. We regard
(A,Λ, ηp, ηpi) as a point of Sh(G•,h•),C(T[σ]). Its image by ξ has the form

(A,Λ, {λ′i}, ηp, {ηqi}).

The classes λ
′
i are given by

Eλ′i(x, y) = ϕ?σ?(ζ)ψ(ηqi(x), ηqi(y))

= uσϕ
?(ζ)ψ(ηqi(x), ηqi(y))

This implies λ′i = λiuσ. By definition of the action of K?(Af ) on AC this
implies that we have a commutative digram

Sh(G•,h•),C(T ) −−−→ AC(T )

can

y ycan·ũ−1
σ

Sh(G•,h•),C(T[σ]) −−−→ AC(T[σ])

The lemma follows. �

We may now state the main theorem on the uniformization of the
Shimura variety Sh(G•,h•). Let Qab

p be the maximal abelian extension of Qp.

We set Ẽ = EQab
p = Ep∞E

nr. Let a ∈ Q?
p and σ be its image by the Artin

reciprocity map Q?
p −→ Gal(Qab

p /Qp). We denote by ã the image of a by the
diagonal map

Q?
p −→

m∏
i=1

K?
qi
⊂ K?(Af ). (24)
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We will now assmue that a is in the inverse image of Gal(Ẽ/E) ⊂
Gal(Qab

p /Qp). Then we define a Galois twist Sht(G•,h•),C of Sh(G•,h•),C over E

by the condition that there is an isomorphism over Ẽ

Sh(G•,h•),C ×SpecE Spec Ẽ
∼−→ Sht(G•,h•),C ×SpecE SpecẼ,

such that for any Ẽ-scheme T the following diagram is commutative

Sh(G•,h•),C(T )
∼−−−→ Sht(G•,h•),C(T )

can·ã−1

y ycan
Sh(G•,h•),C(T[σ])

∼−−−→ Sht(G•,h•),C(T[σ]).

Here can is the descent datum which comes from the E-structure on both
sides.

We may interpret Sht(G•,h•) as a Shimura variety: Let us denote by
Z• = ResK/QGm,K the center of the group G•.

Over Qp we have a decomposition:

Z•Qp =
m∏
i=0

ResKqi/QpGm,Kqi
×

m∏
i=0

ResKq̄i/QpGm,Kq̄i
(25)

Let

µp
K : Gm,Qp −→ Z•Qp

be the morphism, which is trivial on the first m + 2 factors, and which is
given by (24) on the last m factors. According to the diagram (20) we may
view µp

K as a morphism Gm,C → Z•Qp . Let hpK : S → Z•R be the morphism

with first component µp
K . Then Sht(G•,h•) coincides with the Shimura variety

Sh(G•,h•(hpK)−1). Let us also introduce the morphism

µK : Gm,Qp −→ Z•Qp ,

which is trivial on the first m + 1 factors of (25) and is given on the last
factors by the canonical adjunction morphism

Gm,Qp −→ ResKq̄i/Qp Gm,Kq̄i

There is a morphism hK : S → Z•R associated to µK , exactly as above for
µp
K .
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Proposition 0.10. There exists a tower of projective schemes ShtC over OE,
where C runs through the open and compact subgroups of G•(Af ), which
satisfy the conditions after (3). The tower is equipped with a G•(Af )-action
from the right. The general fibre of this tower is the tower Sh(G•,h•(hpK)−1),C

with its natural G•(Af )-action. There is a G•(Af )-equivariant isomorphism
of formal schemes over SpfOĔ

Θ : I•(Q) \ M̆ × G̃•(Ap
F,f )/C

p −→ Ŝh
t

C ×SpfOE SpfOĔ. (26)

Here Ŝh
t

C denotes the completion of ShtC along the special fibre. The left hand
side of (26) is equipped with a Weil-descent datum via M̆ (see (10)). This
is mapped by Θ to the canonical Weil descent datum on the right hand side.

Proof: This is a consequence of the lemma (0.8), the lemma (0.9), and
the explicit computation of the Artin reciprocity law for Qp ([CF] Chap. VI,
Thm. 3.2). �

We will reformulate the last proposition in terms of the formal scheme Ω̂d
E

defined by Deligne ([RZ] 3.71).
Let N̆ be the formal scheme over SpfOĔ, which classifies quasiisogenies

of the special formal OBq-module Φ over the OFp-algebra κ̄. We recall the
definition from [RZ] 3.59 and 3.21, using the notation of our definition (0.5).

Let T be a scheme over SpfOĔ, where p is locally nilpotent.

Definition 0.11. An element of N̆ (T ) is given by the following data:

1) A special formal OBq-module Y over T , with respect to T → SpfOĔ

α−→
SpfOFp .

2) A quasiisogeny
ρ1 : ΦT̄ −→ YT̄ .

This is a p-adic formal scheme as shown in [RZ] 3.63. It is equipped
with a Weil-descent datum relative to Ĕ/E

ξ1 : N̆ (T ) −→ τ ?N̆ (T ),

which is defined exactly in the same way as the Weil-descent datum for M̆
after definition (0.5). Let us denote by Gp the algebraic group over Fp given
by:

Gp(Fp) = AutBqWq
∼= (Bopp

q )?. (27)
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Let us denote by J (Fp) the group of quasiisognies of the special formal Bq-
module Φ. There is an isomorphism J (Fp) ∼= Gld(Fp),which we will fix ([RZ]
3.71).

We define a left action of J (Fp) and a right action of Gp(Fp) on N̆ , as
follows:

h(Y, ρ1) = (Y, ρ1h
−1), h ∈ J (Fp) (28)

(Y, ρ1)g = (Y b, ι(b−1)ρ1), g ∈ Gp(Fp) (29)

In the last definition b ∈ B?
q is any element satisfying gΓq = bΓq.

We have a natural isomorphism of formal schemes:

M̆ −→ N̆ × (F ?
p /O

?
Fp

) (30)

(X, ρ) 7→ (X1, ρ1)× f

Here (X, ρ), (X1, ρ1), and f have the same meaning as in definition 0.5 .
By F ?

p /O
?
Fp

we denote the constant formal scheme over SpfOĔ. We

define a Weil descent datum relative to Ĕ/E on this formal scheme, such
that

F ?
p /O

?
Fp
−→ τ ?(F ?

p /O
?
Fp

) = F ?
p /O

?
Fp

is the multiplication by q = cardκ. If we take this Weil descent datum into
account we write F ?

p /O
?
Fp

(1).

Proposition 0.12. The map (30) defines a morphism compatible with the
Weil descent data :

M̆ −→ N̆ × F ?
p /O

?
Fp

(1) (31)

Proof: This follows because the push forward of the canonical polar-
ization τ ?(λ0) on τ ?X by Frob−1 : τ ?X −→ X gives the polarization qλ0.
�

We define isomorphisms

G̃•(Fp) −→ Gp(Fp)× F ?
p (32)

J •(Fp) −→ J (Fp)× F ?
p , (33)

such that the morphism (31) becomes equivariant with respect to the various
actions defined above. The morphism G̃•(Fp) → Gp(Fp) is the restriction
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with respect to the inclusion Wq → Wq ⊕Wq̄ = Wp. The map G̃•(Fp)→ F ?
p

is the multiplicator γ̃. The morphism J •(Fp) → J (Fp) is the restriction

with respect to the inclusion Φ→ Φ× Φ̂. Finally γJ • : J •(Fp)→ F ?
p is the

multiplicator (12).Therefore we may rewrite the uniformization morphism
(26) as follows

Θ : I•(Q) \ N̆ × F ?
p /O

?
Fp

(1)× G̃•(Ap
F,f ) −→ Ŝh

t

C ×SpfOE SpfOĔ

Taking into account that Ŝh
t

C is a model over SpfOE of Sh(G•,h•(hK)−1),C , we
may reformulate the proposition 0.10 as follows:

Theorem 0.13. Let C ⊂ G•(Af ) be an open compact subgroup which is
maximal in idealp. Then there exists a model Sh(G•,h•,(hK)−1),C over SpecOE

of Sh(G•,h•(hK)−1),C and a G•(Af )-equivariant morphism of formal schemes:

I•(Q) \ N̆ × F ?
p /O

?
Fp
× G̃•(Ap

F,f )/C
∼→ Sh(G•h•(hK)−1),C ×SpfOE SpfOĔ, (34)

which is compatible with the canonical Weil descent data on both sides relative
to Ĕ/E. The canonical Weil descent datum on the left hand side is here the
descent datum induced from the given Weil descent datum on the factor N̆ .
�

Using [RZ] 3.72 it is easy to rewrite the theorem above in terms of
the formal scheme Ω̂d

E. Let us denote by Π a prime element of the division
algebra Bq. Then we have an isomorphism of formal schemes:

N̆ −→ (Ω̂d
E ×SpfOE SpfOĔ)× Z (35)

(Y, ρ1) 7−→ (Y Πn ,Π−n)ρ1 ×−n

Here Z denotes the constant formal scheme over SpfOĔ. The integer n is the
relative height of ρ1 with respect to the action of OBq . The relative height is
the multiple of the usual height, which satisfies that the isogeny induced by
Π on a special formal OBq-module has relative height 1 (see [RZ] 3.53 ).

If we equip Z with the Weil descent datum relative to SpfOĔ/SpfOE

given by

Z −→ τ ?Z = Z,
n 7→ n+ 1
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and Ω̂d
E ×SpfOE SpfOĔ with the natural Weil descent datum the morphism

(35 ) becomes compatible with the Weil descent data.
The action of Gp(Fp) on N̆ induces on the right hand side of (35) the

trivial action on the first two factors and the addition with ordFpNm0g on
the factor Z. Here g ∈ Gp(Fp) ∼= (Bopp

q )?, and Nm0 is the reduced norm from
Bopp

q to Fp. One may choose the isomorphism J (Fp) ∼= Gl2(Fp) in such a
way that the action of h ∈ Gl2(Fp) induced on the right hand side of (35) is

the natural action of h on the first factor Ω̂d
E, is trivially on the second factor

and is addition with ordFp deth on the factor Z.
We have surjective homomorphisms:

G̃•(Fp) −→ Z× F ?
p /O

?
Fp

g = (g1, g2) 7→ (ordFpNm0g1, λ̃(g))

J •(Fp) −→ Z× F ?
p /O

?
Fp

h = (h1, h2) 7→ (ordFp deth1, λJ •(h))

The kernel of the first of these maps is the maximal compact subgroup Cp ⊂
G̃•(Fp). Hence we obtain a homomorphism

J •(Fp) −→ G̃•(Fp)/Cp (36)

Taking this into account we may rewrite the uniformization isomorphism (34)
as a G•(Af )-equivariant isomorphism of towers of formal schemes over Ĕ:

Θ : I•(Q) \ (Ω̂d
E ×SpfOE SpfOĔ)×G•(Af )/C

∼→
Sh(G•,h•(hK)−1),C ×SpfOE SpfOĔ (37)

The group G•(Af ) acts on the right hand side of that isomorphism only over
the factor G•(Af ). The action of I•(Q) defining the quotient on the left hand
side is via the morphisms (15). Here the action of the group G̃•(Ap

F,f ) from

the left is the obvious one, while the left action of J •(Fp) on the factor Ω̂d
E

is via the obvious morphism J •(Fp) → J (Fp) defined above (33) and the
action of J •(Fp) on G̃•(Fp)/Cp is given by the morphism (36).
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Finally the Weil descent datum on the right hand side gives on the left
hand side the Weil descent datum induced from Ω̂d

E times the action with
the idele (Π,Π−1) ∈ G̃•(Fp) ⊂ G•(Af ) (with the notation of (4)).

There is a rigid analytic pro-space M associated to the functor M̆,
which was introduced in [RZ] (5.34). The pro-space M is defined over Ĕ. It
is equipped with an action of G̃•(Fp) from the right and an action of J •(Fp)
from the left.

We set:

G̃•(OFp) = {g ∈ G̃•(Fp)|gΓp = Γp}

By definition 0.7 this group acts trivially on M̆.
Let M̆rig be the rigid analytic space associated to M̆. There is an

equivariant étale covering map

M −→ M̆rig, (38)

with respect to the actions of G̃•(Fp) and J •(Fp).

Moreover there is a Weil descent datum on M relative to Ĕ/E, which
is compatible with the Weil descent datum on M̆rig with respect to the map
(38).

We will work with compact open subgroups Cp ⊂ G̃•(Fp) of the form
(5), but we do no longer assume that Cq ⊂ (Bopp

q )? is maximal. The pro-space
M is a projective limit of rigid analytic spaces MCp = M/Cp.

To define the various actions on M we make the following remark. Let
Z be a formal p-adic scheme over SpfOĔ. We denote by Zrig the associ-
ated rigid analytic space in the sense of Raynaud. We work in the category
whose objects are p-adic formal schemes Z over M̆ and whose morphisms
are morphisms of rigid analytic spaces over M̆rig. Then the spaces MCp

may be regarded as representing objects for the following functors. A point
of MCp(Zrig) is a pair (X, ρ) over Z as in the definition 0.5 and a class of
isomorphisms η̄p : Tp(X

rig) → Γp moduloCp. We require, that an element
ηp ∈ η̄p respects the symplectic structures in the following sense: The natu-

ral polarization on X = Φ× Φ̂ induces a quasipolarization λ on X. We note
that λ induces a quasiisogeny X1 → X̂2, which was denoted by δ−1 in the
definition 0.5. Let

Eλ : Tp(X
rig)× Tp(Xrig)→ Qp(1)
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be the corresponding Riemann form. Then we require the existence of an
element f ∈ (Fp ⊗Qp(1))? such that:

Eλ(t1, t2) = ψ(fηp(t1), ηp(t2)), t1, t2 ∈ Tp(Xrig) (39)

The class of f in (Fp ⊗ Qp(1))?/γ(Cp), does not depend on the choice
of ηp ∈ η̄p. We may also work with the Fp-bilinear form associated to Eλ and
ψ (compare (1)). Then the equation (39) becomes:

Ẽλ(t1, t2) = fψ̃(ηp(t1), ηp(t2))

The spaces M are used for the rigid analytic uniformization of ShG•,C for
open compact aubgroups C ⊂ G•(Af ), which are not necessarily maximal in
p. For this we introduce a functor AC on the category of schemes over E,
which in the case Cp maximal, is the general fibre of the functor AC . The
functor AC is defined by adding to the definition of AC the following datum,
which makes only sense in characteristic 0.

7) A class of Bp-module isomorphisms

η̄p : Vp(A) −→ Wp moduloCp (40)

Here Vp(A) denotes the p-part of the rational Tate module. We require the
following two conditions are satisfied: Firstly the Riemann form on Vp(A)
induced by λ ∈ Λ and the form ψ are respected by η̄p up to a constant in
F ?
p . Secondly the Tate module Tp(A) is mapped by any ηp in η̄p to Γp.

Again the sheafification of the functor AC is representable by a projec-
tive scheme AC .

Let us denote by Cp,m ⊂ G̃•(Fp) the maximal open compact subgroup. Let
Cm ⊂ G̃•(Af ) be the subgroup obtained from C by changing the p-part Cp

to Cp,m.
We remark that for C = Cm our second requirement in the definition of

AC already determines the datum η̄p uniquely. Hence in this case the schemes
AC,E and AC agree. In general there is an étale covering morphism AC →
ACm , which classifies isomorphisms η̄p as above for the universal abelian
scheme on ACm . From this it follows that the uniformization isomorphism
(18) gives rise to a uniformization isomorphism of rigid analytic spaces:

I•(Q) \M× G̃•(Ap
F,f )/C −→ Arig

C ×SpE Sp Ĕ (41)

29



The Weil descent datum (10) on M̆rig relative to Ĕ/E extends naturally to
the following Weil descent datum on M:

M(Zrig) −→M(Zrig[τ ] ) (42)

(X, ρ, η̄p) 7→ (X, ρFrob−1
X , η̄p)

The assertion concerning the Weil descent data of the lemma 0.8 remains
true for the morphism (41). Hence we obtain by twisting the morphism (41)
in the same manner as in proposition 0.10 :

Proposition 0.14. There is a G•(Af )-equivariant isomorphism of rigid an-

alytic spaces over Sp Ĕ

I•(Q) \M× G̃•(Ap
F,f )/C −→ Shrig

(G•,h•(hpK)−1),C
×SpE Sp Ĕ, (43)

which is compatible with the Weil descent data given on both sides. The right
action of G•(Af ) on the right hand side of (43) for varying C is induced on
the left hand side the obvious right action of G̃•(Ap

F,f ) and the right action

of G̃•(Fp) via the factor M. The quotient by I•(Q) is defined exactly in the
same way as after (15).

We now refomulate this result in terms of the rigid pro-analytic covering
space N → N̆ rig, which is defined in the same manner as M (see [RZ] 5.34
for the general case). The space N is equipped with a right action of Gp(Fp),

a left action of J (Fp), and a Weil descent datum relative to Ĕ/E.

Let Z be a formal p-adic scheme over SpfOĔ. Let Z → N̆ rig be a
morphism given by a pair (Y, ρ1) as in definition 0.11. For an open compact
subgroup Cq ⊂ Gp(Fp) = (Bopp

q )? a morphism Zrig → NCq is given by a class
of OBq-module isomorphisms

η̄1 : Tp(Y ) −→ Γq moduloCq (44)

The actions of Gp(Fp), J (Fp), and the Weil descent datum are given in the
same notations as (28) and (29) as follows:
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h(Y, ρ1, η̄1) = (Y, ρ1h
−1, η̄1) (45)

(Y, ρ1, η̄1)g = (Y b, ι(b−1)ρ1, g
−1η̄1Tp(ι(b))) (46)

N(Zrig) −→ N(Zrig[τ ] ) (47)

(Y, ρ1, η̄1) 7→ (Y, ρ1Frob−1
Φ η̄1)

Consider a congruence open compact subgroup of Cp ⊂ G̃•(Fp) ⊂ (Bopp
q )? ×

B?
q of the form Cp = Cq ×Copp

q . By the formula (39) we obtain a morphism:

MCp −→ NCq × (F ?
p (1)/γ(Cp))Ĕ (48)

(X, ρ, η̄) 7→ (X1, ρ1, η̄q)× f

Here the notations X1, ρ1 are from the definition 0.5. The rigid space
F ?
p (1)/γ(Cp) is a space over E, which over Ep∞ becomes isomorphic to the

constant space F ?
p /γ(Cp) equipped with the descent datum given before

lemma 0.9:

F ?
p /γ(Cp)(T ) −→ F ?

p /γ(Cp)(T[σ]) (49)

f 7→ u−1
σ f

Let us denote by F ?
p (recQp) the constant pro-scheme F ?

p = “ lim
←
′′F ?

p /U
n
p

over Q̄p with the following Weil descent datum. Let recQp : WQp → Q?
p be

the reciprocity law of class field theory. Then for ε ∈ WQp the Weil descent
datum is given by:

F ?
p (T ) −→ F ?

p (T[ε])

f 7→ recQp(ε)f

We may regard F ?
p (recQp) as a pro-scheme over Q̆p with a Weil descent datum

relative to Q̆p/Qp, but we may not consider it as a scheme over Qp. Let us

denote by Fp(recQp)E the pro-scheme over Ĕ obtained by base change from

Q̆p to Ĕ together with the induced Weil descent datum relative to Ĕ/E.
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Proposition 0.15. The morphism (48) defines an isomorphism of rigid pro-
analytic spaces

M −→ N× F ?
p (recQp)E, (50)

which is compatible with the Weil descent data on both sides. The map (50)
is equivariant with respect to the morphisms (32) and (33).

Proof: We have to show, that the morphism (48) is compatible with
the Weil descent data on both sides relative to Ĕ/E. Hence it is enough to
look for the Frobenius element in Gal(Ĕ/E). The effect of the Weil descent
datum at the Frobenius element on M is by definition, that it changes ρ to
ρFrob−1

X (see (42)). If λ on X is the push-forward by ρ of the canonical
polarization on X, then the push-forward by ρ ◦ Frob−1

X is qf . �

We obtain a rigid analytic version of theorem 0.13.

Theorem 0.16. For any compact open subgroup C ⊂ G•(Af ) there is an

isomorphism of rigid analytic spaces over Sp Ĕ:

I•(Q) \ N× F ?
p × G̃•(A

p
F,f )/C

∼→ Shrig(G•,h•(hK)−1),C ×SpE Sp Ĕ, (51)

which is G•(Af )-equivariant, and compatible with the Weil descent data on
both sides. The right action of G̃•(Ap

F,f ) on the left hand side is the obvious

one, while the right action of G̃•(Fp) is the action on N×F ?
p given by by the

homomorphism (32). The action of I•(Q) defining the quotient on the left
hand side is given by the homomorphisms (15), and (33).

Proof: One inserts (50) in the isomorphism (43) and twists the result
by the reciprocity law belonging to h−1

K hpK .

It is obvious that our proof gives the following generalization of the last
theorem. Consider the situation F,K,B, ψ at the beginning of this chapter.
Let Φ be the CM-type defined by (6). Let P = {p0, . . . ps} for some rational
number s ≤ m. We fix embeddings α0 : Fp0 → Q̄p, . . . αs : Fps → Q̄p. Let
us assume that Bqi is a division algebra of invariant 1/d, for i = 0, . . . , s.
Let h• : S → G•(R) be the morphism defined up to conjugacy by (19). We
require that the numbers rρ defined by the Hodge structure h• (22) are as
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follows:

rρ =


0 if ρ ∈ Φ, ρ 6∈ {α0, . . . , αs}
1 if ρ ∈ {α0, . . . , αs}
d− 1 if ρ ∈ {ᾱ0, . . . , ᾱs}
d if ρ ∈ Φ̄, ρ 6∈ {ᾱ0, . . . , ᾱs}

Let us denote by Ei = αi(Kqi) Let Ni be the formal scheme over SpfOĔi
,

which classifies special formal OBqi
with respect to αi for i = 0, . . . , s (cf.

definition 0.11). Let Ni → N rig
i be the rigid pro-analytic covering space

over Sp Ĕi. We denote by E the compositum of the fields Ei in Q̄p. Let

Ni,E = Ni×Sp Ĕi
Sp Ĕ be the space obtained by base change. It inherits from

Ni a Weil descent datum relative to Ĕ/E. With these assumptions we have:

Corollary 0.17. For any compact open subgroup C ⊂ G•(Af ) there is an

isomorphism of rigid analytic spaces over Sp Ĕ:

I•(Q) \
i=s∏
i=0

(Ni,E × F ?
pi

)× G̃•(AP
F,f )/C

∼→ Shrig(G•,h•(hK)−1),C ×SpE Sp Ĕ, (52)

which is G•(Af )-equivariant, and compatible with the Weil descent data on
both sides.

Here Ĩ• is the inner form of G̃•, such that Ĩ•(F ⊗R) is compact modulo
center and such that we have the following isomorphisms:

Ĩ•(AP
F,f )
∼= G̃•(AP

F,f )

Ĩ•(Fpi)
∼= J •i (Fpi), for i = 0, . . . , s

0.2 The connected components of the rigid

analytic covering spaces

We will obtain the connected components of M from the uniformization the-
orem and the knowledge of the connected components of a Shimura variety
associated to the group G•. In contrast to chapter 1 we will denote an open
compact subgroup of G•(Af ) by C•.

33



Let us introduce the torus T̃ • :

T̃ • = {(k, f) ∈ ResK/FGm,K ×Gm,F |kk̄ = fd}

We do not indicate the dependence on the degree d2 of the divison algebra
B/K in the notation of T̃ •. We have a surjective homomorphism:

ϑ̃• : G̃• −→ T̃ • (53)

It maps g ∈ G̃• to (Nm0g, γ̃(g)) ∈ T̃ •. We denote here by Nm0 the reduced
norm EndBW −→ K. The kernel of the map ϑ̃• is the derived group G̃•,der.
We also consider the Weil restriction of (53):

ϑ• : G• −→ T • (54)

Let (h1, h2) : Φ×Φ̂→ Φ×Φ̂ be an element in J •(Fp). We define a morphism:

ϑ•J : J •(Fp) −→ T̃ •(Fp) ⊂ Kq ×Kq̄ × Fp (55)

(h1, h2) 7→ (det(h1)× det(h2), ĥ2h1)

Here det denotes the determinant on the matrix algebra EndBqΦ respectively

EndBoppq
Φ̂.

We will denote by
¯̆
E the algebraic closure of Ĕ. If we speak about a

rigid analytic space over
¯̆
E we mean that it is naturally defined over some

finite complete extension of Ĕ.

Proposition 0.18. Let C•p ⊂ G̃•(Fp) be an open compact normal subgroup.

The right action of G̃•(Fp) and the left action of J •(Fp) on MC•p provide
actions on the geometric connected components π0(MC•p ). There is an equiv-
ariant isomorphism

detM : π0(MC•p ) −→ T̃ •(Fp)/ϑ
•(C•p ) (56)

with respect to the morphisms

ϑ• : G̃•(Fp) −→ T̃ •(Fp), ϑ•J : J (Fp) −→ T̃ •(Fp).

The isomorphisms (56) are functorial in C•p .
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If we view π0(MC•p ) as a constant rigid analytic space over
¯̆
E, it is

provided with a W (E/E)-descent datum. Hence on the right hand side of
(56) we get a similar descent datum. It is described as follows: Consider the
following “reciprocity” map

Rez : W (E/E) −→ E∗ −→ T̃ •(Fp) ⊆ K∗q × K∗q × F ∗p ,
σ 7→ e 7−→ α−1(e)× α−1(e−1)(NmE/Qpe)

d × NmE/Qpe

where the first arrow is the reciprocity law of local class field theory. Then
the descent datum on the right hand side of (56) is given by multiplication
with Rez(σ) ∈ T̃ •(Fp):

T̃ •(Fp)/ϑ
•(C•p )

Rez(σ)−→ T̃ •(Fp)/ϑ
•(C•p ) ∼= (T̃ •(Fp)/ϑ

•(C•p ))σ

Here the last identification is the descent datum on the constant rigid analytic
space T̃ •(Fp)/ϑ

•(C•p ) over E.

Proof: We do not know a local decription of the map (56), but we
should note here that in the theory of Drinfeld modules there is an analog of
the map (56) which admits a purely local description (Genestier [G]). For this

proof we denote by SC• the rigid analytic space Shrig(G•,h•(hp)−1),C• ×SpE Sp Ĕ

for an open compact subgroup C• ⊂ G•(Af ). Since we work over
¯̆
E, we will

denote during the proof by M, what is M×Sp Ĕ Sp
¯̆
E in our usual notation.

The uniformization isomorphism (43) then reads

Θ : I•(Q) \M× G̃•(Ap
F,f )/C

• ∼−→ SC• .

Taking the connected components we get an isomorphism

I•(Q) \ π0(MC•p )× G̃•(Ap
F,f )/C

•,p ∼−→ π0(SC•). (57)

Let us denote by T •(Q)+ the elements of T •(Q), which lie in the connected
of 1 ∈ T •(R). More explicitly T •(Q)+ is the subgroup of

T •(Q) = {(k, f) ∈ K∗ × F ∗ | kk = fd},

which consists of elements (k, f), such that f is totally positive. If d odd we
obtain T •(Q)+ = T •(Q).
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By [De] 2.7 we have a G•(Af )-equivariant isomorphism

π0(SC•) ' T •(Q)+ \ T •(Af )/ϑ
•(C•),

where the action of G•(Af ) on the right hand side for varying C• is via the
homomorphism

ϑ• : G•(Af ) � T •(Af ).

In particular the derived group G̃•,der(Ap
F,f ) acts trivially. It follows that (57)

induces a G•(Af )-equivariant isomorphism

I•(Q) \ π0(MC•p )× T̃ •(Ap
F,f )/ϑ

•(C•,p)
∼−→ T •(Q)+ \ T •(Af )/ϑ

•(C•) (58)

We note that Ĩ• is an inner form of G̃• and that I•(R) is compact
modulo center. Hence we have a morphism ϑ̃I• : Ĩ• −→ T̃ •. Let ∆ =
Hom(X∗Fp

(T̃ •),Z). Then we have maps [RZ] 3.52

G̃•(Fp) −→ ∆ (59)

Ĩ•(Fp) −→ ∆

It follows from [RZ] 6.17 that in the case where C•p = C•m,p is the maximal

compact subgroup of G̃•(Fp) we have

π0(MC•m,p) = π0(Mrig)
∼−→ ∆,

such that the last isomorphism is equivariant with respect to maps (59)
We note that the actions of G̃•(Fp) and Ĩ•(Fp) = J •(Fp) on π0(MC•p )

are continous. This follows because the fibres of π0(MC•p ) −→ π0(MC•m,p) are
finite and because an action of a p-adic Lie group on a finite set is always
continous. Indeed for any number N the N -th powers of elements form an
open subset.

The kernel of the map Ĩ•(Fp) −→ T̃ •(Fp) is isomorphic to the special
linear group Sld(Fp). Since it is generated by N -the powers for any N , the
action of Ĩ•(Fp) on π0(MC•p ) factors through T̃ •(Fp). Hence the action of
I•(Q) used on the left hand side of (58) factors through ϑI• : I•(Q) −→
T •(Q). Since the image of the last map is T •(Q)+ we may rewrite (58) as
follows
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T •(Q)+ \ π0(MC•p )× T̃ •(Ap
F,f )/ϑ

•(C•,p)
∼−→ T •(Q)+ \ T •(Af )/ϑ

•(C•) (60)

This map induces a G̃•(Fp)-equivariant isomorphism

(T •(Q)+∩ϑ•(C•,p))\π0(MC•p ) −→ (T •(Q)+∩ϑ•(C•,p))\T̃ •(Fp)/ϑ
•(C•p ) (61)

as follows.
Consider the map from π0(MC•p ) to the left hand side of (60), which

sends x ∈ π0(MC•p ) to the class of x × 1, where 1 ∈ T̃ (Ap
F,f )/ϑ

•(C•,p). This
map induces an embedding of the left hand side of (61) to the left hand side
of (60). We claim that there is an element h ∈ T̃ •(Ap

F,f )/ϑ
•(C•,p) and a

set-theoretic map ∆̃ : π0(MC•p ) −→ T̃ •(Fp), such that the left hand side of

(60) with (60), maps x to the residue class of ∆̃(x)× h.
To see this note that the group G̃•(Fp) acts transitively on π0(MC•p ).

Indeed, we know this if C•p is the maximal compact subgroup C•m,p. The
transitivity follows, because C•m,p acts transitively on the fibres of the map
π0(MC•p ) −→ π0(MC•m,p).

Let us choose a point x ∈ π0(MC•p ). Its image in the right hand side of

(60) is the class of an element ∆̃(x0) × h. Any other element x ∈ π0(MC•p )

may be written in the form x0gx, gx ∈ G̃•(Fp). By the equivariance of the
morphism (60) we see that x is mapped to the class of ∆̃(x0)ϑ•(gx) × h.
Hence we have the map ∆(x) = ∆̃(x0)ϑ•(gx)× h we were looking for.

If we embed the right hand side of (61) to the right hand side of (60)
by t ∈ T̃ •(Fp) goes to the class of t × h, we see that the map (60) induces
a G̃•(Fp)-equivariant isomorphism (61). We remark that the morphism (61)
depends on the choice of h and is only uniquely determined up to translation
by an element u ∈ T •(Q)+ on the right hand side of (61).

We have seen that the left action of J •(Fp) = Ĩ•(Fp) on MC•p induces

an action of T̃ •(Fp) on π0(MC•p ). Hence we get an action of T̃ •(Fp) on the
left sides of (60) resp. (61), which we call for the moment the left action. On
the other hand we have the right action of G̃•(Fp) on the left hand sides of
(60) respectively (61). These actions clearly factor through ϑ̃• : G̃•(Fp) −→
T̃ •(Fp). Let us show that these both actions agree. It suffices to do this for
the left hand side of (60). Let x ∈ π0(MC•p ), u ∈ T̃ •(Ap

F,f ) be elements
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and denote the class of x × u in the left hand side of (60) by (x, u). Let
ξpt
−1
p ∈ T̃ •(Fp) acts trivially on π0(MC•p ) with respect to the left action.

Then we obtain the coincidence of the actions:

(x, u)ξp = (x, u)(tp)−1 = (x, u(tp)−1)

= (x, (tp)−1u) = (tpx, u) = (ξpx, u)

The first equation may be checked on the right hand side of (60), where it
follows from ξpt

−1
p ∈ ϑ•(C•p ). The other equations are clear.

Making C•,p small and keeping C•p fixed, we see in particular, that the

action of G̃•(Fp) on π0(MC•p ) factors through G̃•(Fp) −→ T̃ •(Fp), and that

the right and left actions of T̃ •(Fp) on π0(MC•p ) agree.

We conclude the proof by showing that the T̃ •(Fp)-equivariant map
(61) is induced by a T̃ •(Fp)-equivariant isomorphism
π0(MC•p ) −→ T̃ •(Fp)/ϑ

•(C•p ).
We already know this for the maximal open compact subgroup C•m,p ⊂

G̃•(Fp). Therefore we consider the fibre PC•p of π0(MC•p ) −→ π0(MC•m,p) over
a fixed point of π0(MCm,p).

Let us use the abbreviations C
•
p = ϑ•(C•p ) etc.. Looking at the fibres of

the map from the morphism (61) to the corresponding morphism for C•p =

C•m,p, we obtain a C
•
m,p-equivariant isomorphism

(T •(Q)+ ∩ (C
•,p × C•m,p)) \ PC•p

∼−→ (T •(Q)+ ∩ (C
•,p × C•m,p)) \ C

•
m,p/C

•
p

Let U ⊂ T •(Q) be the group of units. Then for big numbers N the group UN

acts trivially on the finite sets PC•p and C
•
m,p/C

•
p. But a theorem of Chevalley

tells us, that for sufficiently small open compact subgroups C
•,p ⊂ T̃ •(Ap

F,f ),
we have

T•(Q)+ ∩ (C
•,p × C•m,p) ⊂ UN .

Hence we obtain a C
•
m,p-equivariant isomorphism

PC•p −→ C
•
m,p/C

•
p

by choosing C•,p small enough. It follows that the action of T̃ •(Fp) on
π0(MC•p ) provides the desired isomorphism:
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π0(MC•p )
∼−→ T̃ •(Fp)/ϑ

•(C•p ).

Passing to the proscheme we get an equivariant isomorphism

π0(M) −→ T̃ •(Fp)

Next we compute what the W (E/E)-descent datum on π0(M) does on
T̃ •(Fp). The W (E/E)-descent datum on π0(SC•) is given by the following
rule.

To the morphisms h•, hp : SR −→ G•R there are associated one param-
eter groups µ• and µp : Gm,C −→ G•C.

Consider the morphism ϑ• ◦ (µ•(µp)−1) : Gm,C −→ T̃ •C. It is defined
over E, according to the chosen embedding Q −→ Qp. Hence we obtain a
morphism

Rez : W (E/E) −→ E∗
ϑ•(µ•(µp)−1)−→ T •(E)

NmE/Qp−→ T •(Qp)

According to [De] the descent datum induced from π0(SC•) by the isomor-
phism

π0(SC•)
∼−→ T •(Q)+ \ T •(Af )/ϑ

•(C•)

on the constant scheme on the right hand side is multiplication by
Rez (σ), σ ∈ W (E/E).

The morphism µ• may be described as follows. Let Gm,C act on W⊗QC
via µ•. Then the corresponding weight decomposition contains only the
weights 0 and 1.

W ⊗Q C = W0 ⊕W1.

The space W0 should satisfy the condition (7). We make this a little more
explicit. Consider the decompsition

W ⊗Q C = ⊕
ϕ:K−→C

W ⊗K,ϕ C.

The form ψ defines perfect pairings for each ϕ

ψ : W ⊗K,ϕ C×W ⊗K,ϕ C −→ C
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We extend the involution C-linear to B ⊗Q C = ⊕
ϕ:K−→C

B ⊗K,ϕ C. Then the

involution induces isomorphisms

B ⊗K,ϕ C −→ (B ⊗K,ϕ C)opp (62)

We may choose isomorphisms B ⊗K,ϕ C ' Md(C) in such a way, that the
isomorphisms (62) are the transposition of a matrix. Then W⊗K,ϕC becomes
an Md(C)-module and my be written in the form

Wϕ = W ⊗K,ϕ C ' Cd ⊗C Uϕ.

The Uϕ are d-dimensional C-vectorspaces. By the Morita equivalence
we obtain from ψ non-degenrate pairings

βϕ : Uϕ × Uϕ −→ C.

For the given embedding α : K −→ C we choose any decomposition

Uα = U ′α ⊕ U ′′α
such that U ′α has dimension 1 and U ′′α has dimension d− 1. Then the spaces
W 0 and W 1 defined as follows

W 0 =Cd ⊗ U ′′α ⊕ Cd ⊗ (U ′′α)⊥ ⊕ ( ⊕
ϕ∈Φ\α

Wϕ)

W 1 =Cd ⊗ U ′α ⊕ Cd ⊗ (U ′α)⊥ ⊕ ( ⊕
ϕ∈Φ\α

Wϕ)

An element g ∈ G•C induces an endomorphism gϕ : Uϕ −→ Uϕ for each
ϕ : K −→ C. Then

Nm0g =
∏

det gϕ ∈ K ⊗ C ∼=
∏

ϕ:K−→C

Cϕ

Here we use the notation Cϕ = K ⊗K,ϕ C.
Then the morphism ϑ•µ• : Gm,C −→ (K ⊗ C)∗ × (F ⊗ C)∗ is given as

follows. The projection of ϑ•µ•(z), z ∈ C∗ on the factor (F ⊗ C)∗ is 1 ⊗ z
while the projection ϑ•µ•(z)ϕ to the factor C∗ϕ of (K ⊗ C)∗ is:
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ϑ•µ•(z)ϕ =


z if ϕ = α

zd−1 if ϕ = α

1 if ϕ ∈ Φ \ α
zd if ϕ ∈ Φ \ α

Over the field E = α(Kq) the map ϑ•µ• is given as follows. The algebra
Kq ⊗Qp E is a direct sum of all composite of the field K and E. One of the
composite is α ⊗ id : Kq ⊗Qp E −→ E. Let ε : E −→ Kq ⊗Qp E the section
of α ⊗ id given by that direct sum decomposition. In the same way the
composition α⊗ id : Kq ⊗Qp E −→ E defines a section ε : E −→ Kq̄ ⊗Qp E.

The map

ϑ•µ• : Gm,E −→ T •E ⊂ (ResK/QGm,K)E × (ResF/QGm,F )E

is given on the second factor by

Gm,E −→ (ResF/QGm,F )E = (F ⊗ E)∗,

e 7−→ 1⊗ e

and is given on the first factor by

Gm,E −→ (Kq ⊗Qp E)∗ × (Kq ⊗Qp E)∗ ×
m∏
i=1

(Kqi ⊗Qp E)∗ ×
m∏
i=1

(Kqi ⊗Qp E)∗

e 7−→ ε(e) × ε(e−1)(1⊗ e)d × 1 × (1⊗ e)d

The corresponding reciprocity map is

E∗ −→ T •(Qp) ⊂ K∗q × K∗q ×
m∏
i=1

K∗qi ×
m∏
i=1

K∗qi × (F ⊗Qp)
∗,

e 7−→ α−1
0 (e)× α−1

0 (e−1)(Nm e)d × 1 × (Nm e)d × Nm e

where Nm e denotes NmE/Qpe.
It is clear that the map ϑ•µp

K : Gm −→ T • is defined over Qp and that
the corresponding reciprocity map is
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Qp −→ K∗q × K∗q ×
m∏
i=1

K∗qi ×
m∏
i=1

K∗qi × F ∗p ×
m∏
i=1

F ∗pi

z 7−→ 1 × 1 × 1 × zd × 1 × z

Finally we obtain that the reciprocity map associated to ϑ•◦(µ•(µp
K)−1)

is given by the map

E∗ → T̃ •(Fp) ⊂ K∗q × K∗q × F ∗p (63)

e 7−→ α−1(e)× α−1(e−1)(Nm e)d × Nm e

followed by the inclusion T̃ •(Fp) −→ T •(Qp).
That the descent datum induced from π0(MC•p ) on the right hand side

of (53) is as desired follows from the fact that the descent datum on π0(SC•)
is given by (63) and from the isomorphsim (60). This completes the proof of
the proposition.

The proposition gives us the following refinement of the uniformization
for SC• :

Corollary 0.19. The map induced by detM and ϑ•

I•(Q) \M× G̃(Ap
F,f )/C

• −→ T •(Q)+ \ T •(Af )/ϑ
•(C•)

is up to translation by an element t ∈ T •(Af ) induced via (43) by the map
given by [De]

Sh(G•,h•(hpK)−1),C• −→ T •(Q)+ \ T •(Af )/ϑ
•(C•).

Theorem 0.20. Let Dp/Fp be a division algebra of invariant 1/d over a
local field Fp. Let G̃p be the multiplicative group of Dp considered as algebraic
group over Fp and J̃ = Gld,Fp. Let ϑ : G̃p −→ Gm,Fp be the reduced norm
and det : Gld,Fp −→ Gm,Fp be the determinant.

Choose an embedding α : Fp −→ Qp and set E = α(OFp) Let N̆ be
the formal scheme over OĔ which classifies special formal ODp-modules. Let

N −→ N̆ rig be the associated rigid pro-analytic covering space over Ĕ. N is
equipped with a left action by J̃ (Fp) and a right action of G̃p(Fp).
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There is an equivariant map over
¯̆
E

detN : N −→ F ∗p (64)

with respect to the morphisms ϑ and det. This map is compatible with the
Weil-descent data, if we equip the right hand side of (64) with the W (E/E)-
descent datum given by

W (E/E) −→ E∗
α←− F ∗p .

For any open compact-normal subgroup Cp ⊂ G̃p(Fp) the map (64) induces
an isomorphism

π0(NCp) ' F ∗p /ϑ(Cp).

Proof: The map

T̃ •(Fp) ⊂ K∗q ×K∗q × F ∗p
projection−→ K∗q × F ∗p

defines an isomorphism T̃ •(Fp)
∼−→ K∗q × F ∗p

From the proposition (0.15) we get a diagram over
¯̆
E.

M ∼−−−→ N× F ∗py y
T̃ •(Fp)

∼−−−→ K∗q × F ∗p
The right vertical map is defined by the commutativity of the diagram. It
is compatible with the projections to F ∗p . The left vertical map is given by
the proposition 0.18. It follows that the diagram above is equivariant with
respect to the following diagram

G̃•(Fp)
∼−−−→ G̃(Fp)× F ∗py y

T̃ •(Fp)
∼−−−→ K∗q × F ∗p

The proposition follows immediately from the proposition 0.18. �
For the map (64) we will also use the notation

detN : N −→ F ∗p (recα) (65)
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to indicate the Weil descent datum on the right hand side, which is respected
by this map.

0.3 The uniformization of Shimura curves

Let D be a quaternion division algebra over the totally real number field F .
Let α : F −→ R be a place of F such that

D ⊗F,α R 'M2(R)

We assume that D is ramified at all other infinite places of F .
Let us denote by G̃ the multiplicative group D∗ considered as algebraic

group over F and let G = ResF/QG̃ be the Weil restiction. The action of C∗
on C = R2 defines a group homomorphism

h : S −→ Gl2(R) ' G̃⊗F,α R ⊂ GR.

Let ShG = Sh(G,h) be the associated Shimura variety.

By the diagram (20) α defines an embedding α : F −→ Qp an hence a

prime ideal p of OF . Let us assume that Dp is a division algebra. Let D a
quaternion algebra over F , such that Dp ' M2(Fp), D ⊗F,α R is a division
algebra, and such for all places w of F , which are different from p and α, the
algebras Dw and Dw are isomorphic.

For an open and compact subgroup C ⊂ G(Af ) the Shimura varieties
ShG,C are projective and defined over the Shimura field E(h) = α(F ). Let
E = E(h)ν = α(Fp) the localization at the place ν given by (20). We denote
by ShrigG,C the rigid analytic space over E associated to the algebraic variety
ShG,C ×SpecE(h) SpecE.

The uniformization theorem describes the tower of rigid analytic spaces
ShrigG,C over E together with the G(Af )-action as follows.

The group D
∗

acts from the left on N by the isomorphisms D
∗
p
∼=

Gl2(Fp) ∼= J (Fp), and from the left on G̃(Ap
F,f ) by the isomorphism

(D ⊗F Ap
F,f )

∗ ' (D ⊗F Ap
F,f )

∗ = G̃(Ap
F,f ).

The group G(Af ) acts from the right on N× G̃(Ap
F,f ), where the action

on the first factor is by the projection G(Af ) −→ G(Fp) = Gp(Fp) and the
action on the second factor is right translation. This action is compatible
with the Weil descent datum given by (47).
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Theorem 0.21. There is a G(Af )-equivariant isomorphism of towers of rigid

analytic spaces over Ĕ

D
∗ \ N× G̃(Ap

F,f )/C
∼−→ ShrigG,C ×SpE SpĔ (66)

If we equip the left hand side with the Weil-descent-datum coming from the
factor N, the isomorphism (66) becomes compatible with the Weil descent
data on both sides.

Let

ϑ̃ : G̃ −→ Gm,F (67)

be the map induced by the reduced norm of D. Together with the determinant
map

detN : N −→ F ∗p (recα),

we obtain a map of rigid analytic spaces over Ĕ compatible with the Weil
descent data

D
∗ \ N× G̃(Ap

F,f )/C −→ (F ∗+ \ (F ⊗ Af )
∗(recα)/ϑ(C), (68)

and which is equivariant with respect to the map induced by ϑ̃:

ϑ : G(Af ) −→ (F ⊗ Af )
∗

The geometric fibres of the map (68) are connected rigid analytic spaces.

If we assume that C = Cp Cp, with Cp ⊂ G̃(Ap
F,f ), and that Cp ⊂

G̃(Fp) is maximal compact, we may formulate the theorem in terms of formal
schemes.

Corollary 0.22. There is a model ShG,C of the tower ShG,C over OE with
G(Af )-action, such that there is a G(Af )-equivariant isomorphism of formal
schemes

D
∗ \ N̆ rig × (G̃(Ap

F,f )/C
p)

∼−→ ShG,C (69)

We prove the theorem by embedding ShG,C into a Shimura variety as-
sociated to a unitary group of the type considered before.
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Let B = Dopp ⊗F K, and let ? be the involution on B, which is the
tensor product of the main involution on Dopp and the conjugation on K.
There is a naturally defined algebraic group G• over Q, such that

G•(Q) = {b ∈ (Bopp)∗ | bb∗ ∈ F ∗}.
We introduce the notations Z = ResF/Q Gm,F , Z

• = ResK/Q Gm,K . It
is easly seen that the group G• sits in an exact sequence.

1 −→ Z −→G× Z• −→ G• −→ 1, (70)

f 7−→f × f−1

d× k 7−→ d⊗ k

where we have indicated, what the maps do on the Q-valued points f ∈ F ∗ =
Z(Q), d ∈ D∗ = G(Q), k ∈ K• = Z•(Q). The notation Z resp. Z• means
that we have identify these groups with the centers of G resp. G•.

Further down we will write the exact sequence (70) in the form

G×Z Z• = G• (71)

We identify the group G• with one of the groups considered at the
beginning of chapter 1. For this we have to define a suitable alternating
Q-bilinear form ψ on W = B that satisfies the relation

ψ(w1, w2b) = ψ(w1b
∗, w2) (72)

We choose K and the CM -type Φ as in chapter 1. There is a natural
isomorphism

K ⊗Q C '
∏

ϕ:K−→C

Cϕ,

where Cϕ is an exemplar of C for every embedding ϕ : K −→ C. Consider
the morphism µαK : Gm,C −→ Z•C, which is given on the C-valued points as
follows

C∗ → Z•(C) =
∏

ϕ:K−→C

C∗ϕ

z 7−→
∏

zε(ϕ),
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where the exponents ε(ϕ) are given by

ε(ϕ) =

{
0, if ϕ ∈ Φ ∪ α
1, if ϕ ∈ Φ \ α

Here α : K −→ C is the unique extension, which belongs to Φ.
We denote by hαK : S −→ Z•R the morphism with first component µαK .

We set

h• = h ◦ hαK
One proves [De] that there is a form ψ on W as above (72), such that the
R-bilinear form: ψR(w1, h

•(
√
−1)w2), w1, w2 ∈ W ⊗ R is symmetric and

positive definite. Then ψ induces a positive involution b 7−→ b′ on B and we
are exactly in the situation of chapter 1:

G•(Q) = {g ∈ GlBW | ψ(gw1, gw2) = ψ(γ•(g)w1, w2)}.

The Shimura varieties Sh(G•,h•h−1
K ) and Sh(G•,h) where h denotes here the map

h : S h×1−→ G × Z• −→ G•, differ by a Galois twist associated to the central

cocharacter µK,α : C∗ id−→ C∗α ⊂ Z•(C).
Hence by the uniformization isomorphism (51), we obtain after twisting

the descent data, a G•(Af )-equivariant isomorphism

I•(Q) \ N× F ∗p (recα)× G̃•(Ap
F,f )/C

• ∼−→
Shrig(G•,h),C• ×SpE Sp Ĕ, (73)

which is compatible with the Weil descent data.
Next we choose C• in dependence of C as follows. We set CZ = Z(Af )∩

C. Then for a sufficiently small subgroup C ′K ⊂ Z•(Af ) we have

C ′K ∩ Z(Af ) ⊂ CZ
(74)

C ′KZ
•(Q) ∩ Z(Af ) ⊂ CZZ(Q).

We set CZ• = C ′KCZ , which is another open compact subgroup of Z•(Af )
satisfying (74). Then in the notation (71) we set
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C• = C ×CZ CZ• (75)

Then (compare [De]) ShG,C ⊂ Sh(G•,h),C• is an open and closed subvariety.
Considering the maps to the connected components [De] 2.7 we obtains a
cartesian diagram

ShG,C
κ−−−→ T (Q)+ \ T (Af )/ϑ(C)y y

Sh(G•,h),C
κ•−−−→ T •(Q)+ \ T •(Af )/ϑ(C•)

(76)

The letter T denotes the torus ResF/QGm,F considered as factor group of G
by (67):

ϑ : G −→ T.

Then κ is equivariant with respect to G(Af ) −→ T (Af ) and has geometri-
cally connected fibres.

We have a commutative diagram

G× Z• ϑ×id−−−→ T × Z•y y
G•

ϑ•−−−→ T •

If we view T • as a subtorus of Z × Z•

T •(Q) = {(f, k) ∈ F ∗ ×K∗ | kk = f 2},
the right vertical map is given by the formula

(t, z) ∈ T (Q)× Z•(Q) 7−→ (tzz, tz2) ∈ F ∗ ×K∗.
Now we use this to rewrite the left hand side of (73). Firstly we find:

G̃•(Ap
F,f )/C

•,p = (G̃(Ap
F,f )/C

p)×Z(Ap
F,f ) (Z•(Ap

F,f )/CZ•)

To rewrite the other factor we note that there is an isomorphism

N×F ∗p K∗p
∼−→ N× F ∗p (recα)

n× (k1, k2) 7−→ nk1 × detN(n)k1k2
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The action of G̃•(Fp) on the right hand side given by (32) becomes on the
left hand side the natural action of

G̃(Fp)×F
∗
p K∗p

∼= G̃•(Fp),

i.e. G̃(Fp) acts as defined from the right on N and K∗p acts by multiplication
on itself.

Hence we may rewrite the unifromization isomorphism (73) as follows

I•(Q) \ (N× G̃(Ap
F,f )/C)×Z(Af ) (Z•(Af )/CZ•)

∼−→
Sh(G•,h),C• ×SpE Sp Ĕ. (77)

The map

detN×ϑ : N× G̃(Ap
F,f ) −→ T (Af )(recα0)

induces a map κ•1 from the left hand side of (77) to

π0(Sh(G•,h),C•) = T •(Q)+ \ T •(Af )(recα)/C• =

T (Q)+\T (Af )(recα)/C ×Z(Af ) Z•(Q) \ Z•(Af )/CZ• ,

which is compatible with the Weil descent data and equivariant with respect

to G × Z• ϑ×id−→ T × Z•. Hence κ•1 coincides with the map κ• of (76) up to
translation with an element of (T × Z•)(Af ):

κ•1(t× k) = κ•

By (76) ShrigG,C is the preimage of T (Q)+ \ T (Af )(recα)/C ⊂ π0(Sh(G•,h),C•)
by κ•. The coincides with the preimage of κ•1(1 × k). Since the preimage
of κ•1 and κ•1(1 × k) are isomorphic by the action of the Hecke operator
k ∈ Z•(Af ), we see that ShrigG,C is isomorphic as a tower with the G(Af )-
action to the inverse image of the map κ•1 .

To obtain the final result, we make the action of I•(Q) more explicit.

Lemma 0.23. There is an isomorphism

I•(Q) ∼= D
∗ ×F ∗ K∗.
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The action of I•(Q) on (N×G̃(Ap
F,f ))×Z(Af )Z•(Af ) that defines the left hand

side of (73) is given by the following action of D
∗ ×F ∗ K∗: The group D

∗

acts from the left on N via an isomorphism D
∗
p ' Gl2(Fp), and on G̃(Ap

F,f )

from the left by an isomorphism (D
∗ ⊗F Ap

F,f )
∗ ' G̃(Ap

F,f ), and trivially on
the factor Z•(Af ). The group K∗ acts obviously via the factor Z•(Af ).

Proof: To prove the assertion it is enough to work over
¯̆
E. It follows,

that we may work with the moduli problem AC and ArigC . The group I(Q) =
Ĩ(F ) was defined in terms of a κ-valued point (As,Λs{λs,i}, η−1

s , ηs,qi). Let
L = End0

BAs and denote by ` 7−→ `′ the Rosati involution defined by Λ.
The prove the first assertion of the lemma, it is enough to show that there
is K-algebra isomorphism L ' D ⊗F K, which sends the Rosati involution
on L to the tensor product of the main involution on D and the conjegation
on K. We claim that this assertion is local with respect to the number field
F . We know that the existence of a K-algebra isomorphism L ' D ⊗F K
(which does not necessarily respect the involutions) is a local question. If
we assume the existence of such an isomorphism, then the given positive
involution on D ⊗F K induces a positive involution ` 7−→ `∗ on L. Hence
we have to show that two involutions on L are isomorphic of they are locally
isomorphic. We easily see by the theorem of Skolem-Noether, that there
exists an element x ∈ L, x = x∗, such that `′ = x`∗x−1. Moreover x is
unique up to multiplication by an element of F ∗. The two involutions are
isomorphic, of there exists an f ∈ F ∗, such that the equation f ·x = uu∗ has
a solution u ∈ L. We see that the set of solutions is a right torsor under the
group

H = {g ∈ L | gg∗ ∈ F}

But by the isomorphism L ' D⊗K the group H fits into an exact sequence

1 −→ F ∗ −→ D
∗ ×K∗ −→ H −→ 1,

which shows that H satifies the Hasse principle. Therefore the question of
the existence of an involution preserving isomorphism is indeed local.

Let us now check, that (L,′ ) and (D⊗FK, ∗) are locally isomorphic. At
the infinite places this is clear, since any two positive involutions on M2(C)
are isomorphic. Let us consider a finite prime which does not lie over p. Then
ηps provides us with a B-module isomorphism V`(As) ∼= W ⊗Q`, which takes
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the Riemann form on V`(As) to ψ up to a constant in (F ⊗Q`)
∗. Hence we

find an involution preserving map

L⊗Q` −→ EndB⊗Q`W ⊗Q`, (78)

where the involution on the right hand side is induced by ψ. By [RZ] lemma
6.28 this induces the desired involution preserving isomorphism

L⊗Q` −→ Bopp ⊗Q` = D ⊗K ⊗Q`.

For the primes pi, i = 1, . . .m we obtain in the same way morphisms

L⊗K Kqi −→ EndBqi
W ⊗K Kqi

The involution ` 7−→ `′ defines an isomorphism

L⊗K Kqi ' (L⊗K Kqi)
opp

and the form ψ an isomorphism

EndBqi
W ⊗K Kqi ' (EndBqi

(W ⊗K Kqi))
opp.

One obtains an injection

L⊗F Fpi −→ EndBpi
(W ⊗ Fpi) (79)

which preserves the involutions. This is an isomorphism since the dimensions
of both algebras by the case ` 6= p are the same.

Finally we consider the prime p. Then we obtain a Kp-algebra isomor-
phism preserving the involutions.

L⊗F Fp −→EndBp×Bq
Φ× Φ̂ ' Dp ×D

opp

p (80)

' Dp ×Dp ' Dp ⊗Fp Kp.

Here the isomorphism D
opp

p ' Dp is the main involution. Hence we obtain
globally an involution preserving isomorphism:

(L, ′ ) ∼= (D̄ ⊗F K, ∗) (81)

To see that the actions are as stated in the lemma let us consider the prime
p. The action of the group I•(Q) = D

∗ ×F ∗ K∗ ⊂ L∗ on N ×F ∗p K∗p is given
by the isomorphism (80). This isomorphism may be written inserting (81):
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D
∗ ×F ∗ K∗ −→ D

∗
p ×Fp K∗p ⊂ Dp ⊗Fp Kp (82)

Since any automorphism of Dp ⊗Fp Kp which preserves the involution is the

conjugation by an element of D
∗
p we conclude that the map (82) is induced

by a map of the form D
localization−→ D

∗
p

conjugation−→ D
∗
p. Hence gives the predicted

action on N×Fp K∗p .
At the other place ν of F it is still true that any automorphism of

D⊗F Kν which preserves the polarization is induced by conjugation with an
element from Dν . Hence we can agree for the place ν in the same way using
the maps (78) respectively (79).

We are now able to prove the uniformization theorem for Shimura
curves. The lemma allows us to rewrite the left hand side of (77) as fol-
lows

(D
∗ \ N× G̃(Ap

F,f )/C)×Z(Af ) (Z•(Q) \ Z•(Af )/CZ•)

Since the inverse image of κ•1 is ShrigG,C we obtain the theorem.

Corresponding to corollary 0.17 we have an obvious generalization of
theorem 0.21.

Let D/F be a quaternion division algebra over a totally real number
field and let G be its multiplicative group. Let P = {p0, . . . , ps} be a set
of ideals of F over the rational prime p. Assume we are given embeddings
αi : Fpi → Q̄p. By the diagram (20) we obtain embeddings αi : F → R.

We make the assumption that

D ⊗F,αi R ∼= M2(R), for i = 0, . . . , s,

and that D is a division algebra at all other real primes. Let D̄ be the
quaternion algebra over F obtained from D by twisting exactly in the real
places α0, . . . , αs and at the places p0, . . . , ps.

Let Ei = αi(Fpi) for i = 0, . . . , s and let E be the compositum of the
fields Ei in Q̄p.

Consider the morphism

h : S −→
s∏
i=0

Gl2(R) ∼=
s∏
i=0

G̃⊗F,αi R ⊂ GR

defined by the natural action of C∗ on Cr = R2r. The corresponding Shimura
variety ShG is defined over E.
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Let Ni the formal scheme classifying special formal ODpi
-modules (def-

inition 0.11). Let Ni → N rig the pro-analytic covering space over Sp Ĕi. Let
Ni,E = Ni×Sp Ĕi

Sp Ĕ be the space obtained by base change. It inherits from

Ni a Weil descent datum relative to Ĕ/E.

Corollary 0.24. There is a G(Af )-equivariant isomorphism of towers of

rigid analytic spaces over Ĕ for C running through the compact open sub-
groups of G(Af ):

D̄∗ \
s∏
i=0

Ni,E × G̃(AP
F,f )/C

∼−→ ShrigG,C ×SpE SpĔ (83)

If we equip the left hand side with the Weil descent datum coming from the
factors Ni,E, the isomorphism (66) becomes compatible with the Weil descent
data on both sides.
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