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1 Introduction

Let k be a perfect field of characteristic p > 0 . We denote by W (k)
the ring of Witt vectors. Let us denote by ξ → F ξ , ξ ∈ W (k) the
Frobenius automorphism of the ring W (k) . A Dieudonné module over k is
a finitely generated free W (k) -module M equipped with an F -linear map
F : M → M , such that pM ⊂ FM . By a classical theorem of Dieudonné
(compare Grothendieck [G]) the category of p -divisible formal groups over
k is equivalent to the category of Dieudonné modules over k .

In this paper we will prove a totally similiar result for p -divisible groups
over a complete noetherian local ring R with residue field k if either p > 2 ,
or if pR = 0 . For formal p -divisible groups (i.e. without étale part) this is
done in [Z2].

We will now give a description of our result. Let R be as above but
assume firstly that R is artinian. The maximal ideal of R will be denoted
by m . The most important point is that we do not work with the Witt ring
W (R) but with a subring Ŵ (R) ⊂ W (R) . This subring is characterized by
the following properties: It is functorial in R . It is stable by the Frobenius
endomorphism F and by the Verschiebung V of W (R) . We have Ŵ (k) =
W (k) . The canonical homomorphism Ŵ (R)→ W (k) is surjective, and its
kernel consists exactly of the Witt vectors in W (m) with only finitely many
non-zero components. The ring Ŵ (R) is a non-noetherian local ring with
residue class field k . It is separated and complete as a local ring.

If R is an arbitrary complete local ring as above we set Ŵ (R) =
lim
←
Ŵ (R/mn) .

Let us denote by ÎR ⊂ Ŵ (R) the ideal, which consists of all Witt vectors
whose first component is zero.
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Definition 1 A Dieudonné display over R is a quadruple (P,Q, F, V −1),
where P is a finitely generated free Ŵ (R) -module, Q ⊂ P is a submodule
and F and V −1 are F -linear maps F : P → P, V −1 : Q→ P.

The following properties are satisfied:

(i) ÎRP ⊂ Q ⊂ P and P/Q is a free R -module.

(ii) V −1 : Q −→ P is an F -linear epimorphism.

(iii) For x ∈ P and w ∈ Ŵ (R), we have

V −1( Vwx) = wFx.(1)

In contrast with Cartier theory there is no operator V in our theory. The
strange notation V −1 is explained below by the relationship to Cartier’s V .
But there is a Ŵ (R) -linear map:

V ] : P −→ Ŵ (R)⊗F,Ŵ (R) P,(2)

which is uniquely determined by the relation V ](wV −1y) = w ⊗ y for w ∈
Ŵ (R) and y ∈ Q (see [Z2] Lemma 1.5 ).

If P is a Dieudonné display over k , then the pair (P, F ) is a Dieudonné
module, and this defines an equivalence of categories.

Theorem: There is a functor D from category of p -divisible groups
over R to the category of Dieudonné displays over R , which is an equiva-
lence of categories.

Let X be a p -divisible group over R and let P = D(X) be the
associated Dieudonné display. Then heightX = rankŴ (R)(P ) . Moreover
the tangent space of X is canonically identified with the R -module P/Q .

I stated this theorem as a conjecture during the p -adic Semester in Paris
1997. Faltings told me that I should prove it using proposition 19 below. We
follow here his suggestion. In the proof we will restrict to an artinian ring
R , because the general case is then obtained by a standard limit argument.

Other generalizations of Dieudonné theory are Cartier theory, and the
crystalline Dieudonné theory, which was developed by Grothendieck, Mess-
ing, Berthelot, de Jong and others (compare de Jong [J]). Dieudonné displays
are explicitly related to both of these theories. More precisely we construct
functors from the category of Dieudonné displays to the category of crystals
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respectively to the category of Cartier modules. In particular this explains
the relationship between Cartier theory and crystalline theory completely.
So far this relationship was only understood in special cases (compare the
introduction of Mazur and Messing [MM], and [Z3]).

We note that our theory works over rings with nilpotent elements, while
the crystalline Dieudonné functor is not fully faithful in this case. From our
point of view the reason for this failure of crystalline Dieudonné theory is that
we can recover from the crystal associated to a Dieudonné display P the
data P,Q, F but not the operator V −1 . On the other hand for a reduced
ring the prime number p is a non-zero divisor in Ŵ (R) and therefore V −1

may be recovered from the relation pV −1 = F .
Let us explain the relationship to Cartier theory. Like a Cartier module

a Dieudonné display may be defined by structural equations. Take any in-
vertible matrix (αij) ∈ Glh(Ŵ (R)) , and fix any number 0 ≤ d ≤ h . We
define a Dieudonné display P = (P,Q, F, V −1) as follows. We take for P
the free Ŵ (R) -module with the basis e1, . . . , eh . We set :

Q = ÎRe1 ⊕ . . .⊕ ÎRed ⊕ Ŵ (R)ed+1 ⊕ . . .⊕ Ŵ (R)eh

The operators F and V −1 are uniquely determined by (1) and by the
following relations:

Fej =
h∑
i=1

αijei, for j = 1, . . . , d

V −1ej =
h∑
i=1

αijei for j = d+ 1, . . . , h

(3)

Assume now for simplicity that R is an artinian ring. Let ER be the
local Cartier ring with respect to p (see [Z1]). Then we may consider in
the free ER -module with basis e1, . . . , eh the submodule generated by the
elements:

Fej −
h∑
i=1

αijei, for j = 1, . . . , d

ej − V (
h∑
i=1

αijei) for j = d+ 1, . . . , h

(4)
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where F and V are now considered as elements of ER . The quotient by
this submodule is the ER -module which Cartier associates to the connected
component of the p -divisible group X with the Dieudonné display D(X) =
P .

Finally we point out two questions, which we hope to answer in another
paper.

Let X be a p -divisible group over R , and let P be the associated
Dieudonné display. Then we cannot verify in general that the crystal we
associate to X coincides with the crystal Messing [M] associates to X . By
[Z2] this is true, if X is connected.

The other probably easier question is, whether our functor respects dual-
ity. In [Z2] we proved the following: If X is a connected p -divisible group,
whose dual group X t is also connected, the displays D(X) and D(X t) are
dual to each other. The same is then automatically true for the Dieudonné
displays. It is not difficult to see that a positive answer to the first question
gives also a positive answer to the second question.

2 Dieudonné Displays

Let R be an artinian local ring with perfect residue field k . There is a
unique ring homomorphism W (k) → R , which for any element a ∈ k ,
maps the Teichmüller representative [a] of a in W (k) to the Teichmüller
representative of a in R . Let m ⊂ R be the maximal ideal. Then we have
the exact sequence

0 −−−→ W (m) −−−→ W (R)
π−−−→ W (k) −−−→ 0.(5)

It admits a canonical section δ : W (k)→ W (R) , which is a ring homomor-
phism commuting with F . It may be deduced from the Cartier morphism
[Z2] (2.39), but it has also the following explicit Teichmüller description: Let
x ∈ W (k) . Then for any number n there is a unique solution of the equa-
tion Fnyn = x . Let ỹn ∈ W (R) be any lifting of yn . Then for big n the
element Fn ỹn is independent of n and the lifting chosen, and is the desired
δ(x) .

Since m is a nilpotent algebra we have a subalgebra of W (m) :

Ŵ (m) = {(x0, x1, . . . ) ∈ W (m) | xi = 0 for almost all i}
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Ŵ (m) is stable by F and V . Moreover Ŵ (m) is an ideal in W (R) .
Indeed, since any element in Ŵ (m) may be represented as a finite sum
N∑
i=1

V i [xi] , it is enough to show that [x0]ξ ∈ Ŵ (m) , for x0 ∈ m, ξ ∈ W (R) .

But this is obvious from the formula:

[x0] (ξ0, ξ1, . . . , ξi, . . . ) =
(
x0ξ0, x

p
0ξ1, . . . , x

pi

0 ξi, . . .
)
.

We may now define a subring Ŵ (R) ⊂ W (R) :

Ŵ (R) = {ξ ∈ W (R) | ξ − δπ(ξ) ∈ Ŵ (m)}.

Again we have a split exact sequence

0 −−−→ Ŵ (m) −−−→ Ŵ (R)
π−−−→ W (k) −−−→ 0,

with a canonical section δ of π .

Lemma 2 Assume that the characteristic p of k is not 2 , or that 2R =
0 . Then the subring Ŵ (R) of W (R) is stable under F and V .

Proof: Since δ commutes with F , the stability under F is obvious. For
the stability under V one has to show that

δ(V x)−V δ(x) ∈ Ŵ (m) for x ∈ W (k).(6)

If we write x = Fy and use that Ŵ (m) is an ideal in W (R) , we see
that it suffices to verify (6) for x = 1 . For the proof we may replace R by
WN(k) for a big number N . In W (W (k)) we have the following formula
using logarithmic coordinates (compare (7) below, and [Z2] 2.11):

δ(V 1)− V δ(1) = [ V 1, 0, . . . , 0, . . . ] = [p, 0, . . . ].

Our assertion is, that the Witt components of this Witt vector in W (W (k))
converge to zero in the p -adic topology of W (k) for p 6= 2 respectively
that they become divisible by 2 in the case p = 2 . We write

[p, 0, 0 . . . ] = (u0, u1, . . . ui, . . . ) , ui ∈ VW (k).
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The ui are determined by the equations

p = u0

0 =
up0
p

+ u1

0 =
up

2

0

p2
+
up1
p

+ u2

...

An elementary induction shows ordp un = pn− pn−1− · · ·− 1. Q.E.D.
We remark that in the case pR = 0 the section δ also commutes with

V . Indeed, in this case taking the Teichmüller representative is a ring ho-
momorphism k → R . We obtain δ , if we apply the functor W to this
homomorphism.

Since the ring Ŵ (R) has obviously all the properties mentioned in the
introduction,i.e. the definition 1 has now a precise meaning.

We consider now a surjection S → R of artinian local rings with residue
class field k as in the lemma. We assume that the kernel a of the surjection
is equipped with divided powers γi : a→ a . Then we have an exact sequence

0 −→ Ŵ (a) −→ Ŵ (S) −→ Ŵ (R) −→ 0,

and the divided Witt polynomials define an injective homomorphism:

Ŵ (a) −−−→ a
(N),(7)

If the divided powers are nilpotent in the sense that for a given element a ∈ a

the divided powers γpk(a) become zero for big k the homomorphism (7)
becomes an isomorphism ( compare [Z2] (3.4)). In this paper a pd-thickening
is a triple (S,R, γi) , which satisfies this nilpotence condition. We write an
element from the right hand side of (7) as [a0, ..., ai, ...] , where ai ∈ a are
almost all zero. We call it a Witt vector in logarithmic coordinates.

The ideal a ⊂ Ŵ (S) is by definition the set of all elements of the form
[a, 0, . . . , 0, . . . ] , where a ∈ a . Let P be a Dieudonné display over S and
P = PR be its reduction over R . Let us denote by Q̂ the inverse image of
Q by the homomorphism

P −→ P = Ŵ (R)⊗Ŵ (S) P.
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Then V −1 : Q→ P extends uniquely to V −1 : Q̂→ P such that V −1
aP =

0 .

Theorem 3 Let us consider a pd -thickening S → R as above. Let Pi =
(Pi, Qi, F, V

−1) for i = 1, 2 be Dieudonné displays over S . Let P i =
(P i, Qi, F, V

−1) = Pi,R be the reductions over R . Assume we are given a
morphism of Dieudonné displays u : P1 → P2 . Then there exists a unique
morphism of quadruples

u : (P1, Q̂1, F, V
−1) −→ (P2, Q̂2, F, V

−1),

which lifts the morphism u .

Proof: For the uniqueness it is enough to consider the case u = 0 . As in
the proof of [Z2] lemma 1.34 one obtains a commutative diagram

P1
u−−−→ Ŵ (a)P2

(V N )#

y x(V −N )#

Ŵ (S)⊗FN ,Ŵ (S) P1
1⊗u−−−→ Ŵ (S)⊗FN ,Ŵ (S) Ŵ (a)P2

Since V −N [a0, a1, . . . ]x = [aN , aN+1 . . . ]F
Nx, for [a0, . . . ] ∈ Ŵ (a) and

x ∈ P2 , any given element of Ŵ (a)P2 is annihilated by V −N for big N .
Since P1 is finitely generated it follows that V −Nu = 0 for big N . Then
the diagram shows u = 0 which proves the uniqueness.

As in the proof of [Z2] theorem 2.5 it is enough to consider the case where
P1 = P2 = P and u is the identity, if one wants to prove the existence of
u . One simply repeats the proof of [Z2] theorem 2.3 with Ŵ instead of W .
The proof goes through without changing a word up to the last argument
showing the nilpotency of the operator U defined by loc.cit. (2.16).

To complete the proof we have to show that for any F -linear map
ω̃ : L1 → pNŴ (a)/pN+1Ŵ (a)⊗W (S) P2 there exists a number m , such that
Umω̃ = 0 .

To see this we consider the following Fm+1 -linear map

τm : L1
ω̃→ pNŴ (a)/pN+1Ŵ (a)⊗Ŵ (S) P2

V −m→ pNŴ (a)/pN+1Ŵ (a)⊗Ŵ (S) P2

(8)
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By definition Umω̃ factors through the F -linear map obtained from τm
by partial linearization to an F -linear map:

Ŵ (S)⊗Fm,Ŵ (S) L1
1⊗τm−−−→ pNŴ (a)/pN+1Ŵ (a)⊗Ŵ (S) P2.

But as in the proof of the uniqueness any given element of pNŴ (a)/pN+1Ŵ (a)
⊗Ŵ (S) P2 is annihilated by some power of V −1 . Since L1 is a finitely

generated Ŵ (S) -module, it follows that τm is zero for big m . This proves
Umω̃ = 0 for big m. Q.E.D.

Theorem 3 gives the possibility to associate a crystal to a Dieudonné
display: Let P = (P,Q, F, V −1) be a Dieudonné display over R . Let
S → R be a pd-thickening. Then we define a functor on the category of
pd-thickenings:

KP(S) = P̃ ,

where P̃ = (P̃ , Q̃, F, V −1) is any lifting of P to S . The theorem 3 assures,
that P̃ is unique up to a canonical isomorphism. This functor is called the
Witt crystal. We also define the Dieudonné crystal:

DP(S) = S ⊗w0,Ŵ (S) KP(S)

The filtration:

Q/ÎRP ⊂ P/ÎRP = DP(R)

is called the Hodge filtration. The following statement is similiar to a result
of Grothendieck and Messing in crystalline Dieudonné theory.

Theorem 4 Let C be the category of all pairs (P ,Fil) , where P is a Dieu-
donné display over R and Fil ⊂ DP(S) is a direct summand, which lifts the
Hodge filtration of DP(R) . Then the category C is canonically isomorphic
to the category of Dieudonné displays over S .

This follows immediately from theorem 3 (compare [Z2] 2.2).
To a Dieudonné display P = (P,Q, F, V −1) we may associate a 3n-

display F(P) = (P ′, Q′, F, V −1) , where we set P ′ = W (R) ⊗Ŵ (R) P . The
submodule Q′ is defined to be the kernel of the natural map W (R)⊗Ŵ (R)
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P → P/Q . The operators F and V −1 for F(P) are uniquely determined
by the relations:

F (ξ ⊗ x) = F ξ ⊗ Fx ξ ∈ W (R), x ∈ P
V −1(ξ ⊗ y) = F ξ ⊗ V −1y y ∈ Q

V −1( V ξ ⊗ x) = ξ ⊗ Fx

We call a Dieudonné display P over R V -nilpotent, if F(P) is a
display in the sense of [Z2] 1.6. We recall that this is also equivalent to the
following condition. Let Pk = (Pk, Qk, F, V

−1) be the Dieudonné display
obtained by base change to k . Then the operator V = pF−1 : Pk → Pk is
topologically nilpotent for the p -adic topology.

If P is V -nilpotent a Dieudonné crystal DF(P)(S) was defined in [Z2]
2.6. The trivial statement that the functor F respects liftings leads to a
canonical isomorphism:

DP(S) ∼= DF(P)(S)(9)

Theorem 5 The functor F is an equivalence of the category of V -nilpotent
Dieudonné displays over R with the category of displays over R .

Proof: If R = k the functor F is the identical functor. By induction it
suffices to prove the following. Let S → R be a pd-thickening and assume
that the theorem holds for R . Then the theorem holds for S . But the
category of Dieudonné displays over S is decribed from the category of
Dieudonné displays over R and the Dieudonné crystal. Since the same
description holds for displays by [Z2] 2.7 , we can do by (9) the induction
step. Q.E.D.

Corollary 6 The category of p-divisible formal groups over R is equivalent
to the category of V -nilpotent Dieudonné displays over R

This is clear because the corresponding theorem holds for displays by
[Z2] theorem 3.21. The equivalence of the corollary is given by the functor
which associates to a V -nilpotent Dieudonné display the p -divisible group
BT (F(P)) . Let us describe this functor which will be simply denoted by
BT (P) .

Let X be a p -divisible group over R . It is an inductive limit of finite
schemes over SpecR . Hence we have a fully faithful embedding of the
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category of p -divisible groups to the category of functors from the category
of finite R -algebras to the category of abelian groups. We describe BT (P)
by giving this functor.

Proposition 7 Let P be a V -nilpotent Dieudonné display over R , and
let S be a finite R -algebra. Let PS = (PS, QS, F, V

−1) be the Dieudonné
display obtained by base change. Then we have an exact sequence:

0→ QS
V −1−id−→ PS −→ BT (P)(S)→ 0

Proof: First of all we note that S is a direct product of local artinian
algebras satifying the same assumptions as R . Therefore the notion of a
Dieudonné display makes sense over S . Moreover we may assume that S
is local with maximal ideal mS . In [Z2] we have considered BT (P) as a
functor on the category NilR of nilpotent R -algebras. In this sense we
have:

BT (P)(S) = BT (P)(mS)

Let PmS = Ŵ (mS) ⊗Ŵ (R) P ⊂ PS . We set QmS
= PmS ∩ QS . Then [Z2]

theorem 3.2 tells us that there is an exact sequence:

0→ QmS

V −1−id−→ PmS −→ BT (P)(S)→ 0

Let kS be the residue class field of S , and PkS the display obtained by
base change. Then we have PS/PmS = PkS and QS/QmS

= QkS . Hence
the proposition follows, if we show that the map V −1 − id : QkS → PkS is
bijective. Indeed, because V is topologically nilpotent on PkS for the p -
adic topology, the operator −V −V 2−V 3− . . . is an inverse. Q.E.D.

3 The Multiplicative Part and the Étale Part

For a p -divisible group G over an artinian ring there is an exact sequence:

0→ Gc −→ G −→ Get → 0

Here Gc is a connected p -divisible group and Get is an étale p -divisible
group. The aim of this section is to show that the same result holds for
Dieudonné displays.

Let us first recall a well–known lemma of Fitting (Lazard [L] VI 5.7):
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Lemma 8 Let A be a commutative ring and τ : A → A a ring automor-
phism. Let M be an A -module of finite length and ϕ : M → M be a
τ -linear endomorphism. Then M admits a unique decomposition

M = Mbij ⊕Mnil,

such that ϕ leaves the submodules Mbij and Mnil stable, and such that ϕ
is a bijection on Mbij and operates nilpotently on Mnil .

We omit the proof, but we remark that Mbij and Mnil are given by the
following formulas:

Mbij =
⋂
n∈N

Imageϕn, Mnil =
⋃
n∈N

Kerϕn.(10)

Here Imageϕn is an A -module because τ is surjective. In order to deal
with a more general situation we add two complements to this lemma.

Let A be a commutative ring and a ⊂ A an ideal, which consists of
nilpotent elements. We set A0 = A/a and more generally we denote for
an A -module M the A0 -module M/aM by M0 . Let τ : A → A be
a ring homomorphism, such that τ(a) ⊂ a , and such that there exists a
natural number r with τ r(a) = 0 . We denote by τ0 : A0 → A0 the ring
homomorphism induced by τ .

Lemma 9 Let P be a finitely generated projective A -module and ϕ : P →
P be a τ -linear endomorphism. Then ϕ induces a τ0 -linear endomor-
phism ϕ0 : P0 → P0 of the A0 -module P0 .

Let E0 be a direct summand of P0 , such that ϕ0 induces a τ0 -linear
isomorphism.

ϕ0 : E0 −→ E0.

Then there exists a direct summand E ⊂ P , which is uniquely determined
by the following properties:

(i) ϕ(E) ⊆ E.

(ii) E lifts E0 .

(iii) ϕ : E → E is a τ -linear isomorphism.
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(iv) Let C be an A -module, which is equipped with a τ -linear isomor-
phism ψ : C → C . Let α : (C,ψ) → (P, ϕ) be an A -module homo-
morphism such that α ◦ψ = ϕ ◦α . Let us assume that α0(C0) ⊂ E0 .
Then we have α(C) ⊂ E .

Proof: By our assumption on r we have an isomorphism

A⊗τr,A P = A⊗τr,A0 P0.

We define E to be the image of the A -module homomorphism

(ϕr)# : A⊗τr,A0 E0 −→ P.(11)

It follows immediately that ϕ(E) ⊂ E .
Let us prove that E is a direct summand of P . We choose a A0 -

submodule F0 ⊂ P0 , which is complementary to E0 :

P0 = E0 ⊕ F0.

Then we lift F0 to a direct summand F of P . We consider the map
induced by (11)

(ϕr)# : A⊗τr,A0 E0 −→ P/F.(12)

By assumption the last map becomes an isomorphism, when tensored with
A0⊗A . Hence we conclude by the lemma of Nakayama that (12) is an iso-
morphism. We see that E is a direct summand:

P = E ⊕ F

Applying Nakayama’s lemma to the projective and finitely generated
module E , we obtain that:

ϕ# : A⊗τ,A E −→ E

is an isomorphim.
Therefore we have checked the properties (i)− (iii) . The last property

follows from the commutative diagram:

A⊗τr,A0 E0
// E // P

A⊗τr,A0 C0

1⊗α0

OO

∼ // C

α

OO

Q.E.D.

We have also a dual form of the last lemma.
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Lemma 10 Let A,A0, τ, τ0 be as before. Let P be a finitely generated
projective A -module and

ϕ : P −→ A⊗τ,A P

be a homomorphism of A -modules. Let E0 ⊂ P0 be a direct summand of
the A0 -module P0 , such that ϕ0 induces an isomorphism

P0/E0 −→ A0 ⊗τ0,A0 P0/E0.

Then there exists a direct summand E ⊂ P of the A -module P , which is
uniquely determined by the following properties:

(i) ϕ(E) ⊂ A⊗τ,A E.

(ii) E lifts E0.

(iii) ϕ : P/E −→ A⊗τ,A P/E is an isomorphism.

(iv) Let C be any A -module, which is equipped with an isomorphism ψ :
C −→ A⊗τ,A C . Let α : P −→ C be an A -module homomorphism,
such that E0 is in the kernel of α0 . Then E is in the kernel of α .

Proof: The proof is obtained by dualizing the last lemma with the functor
HomA(−, A) , except for the property (iv) . We omit the details, but we
write down explicitly the definition of E . Let r be such that τ r(a) = 0 .
From the isomorphism A⊗τr,A P = A⊗τr,A0 P0 we obtain a map

ϕr : P −→ A⊗τr,A0 P0/E0.

Then E is the kernel of this map. Q.E.D.
We will apply these lemmas in the situation where A = Ŵ (R), A0 =

W (k) and τ is the Frobenius endomorphism of Ŵ (R) , i.e. τw = Fw . For
this we have to convince ourself that the kernel Ŵ (m) of the map Ŵ (R)→
W (k) is nilpotent and that F rŴ (m) = 0 for a sufficiently big number
r . By induction it is enough to prove that for a surjection of artinian rings
S → R with kernel b , such that pb = b

2 = 0 , we have Ŵ (b)2 =F Ŵ (b) = 0 .
This we know. Hence the lemmas are applicable and give the following:

Proposition 11 Let P be a finitely generated projective Ŵ (R) -module
and ϕ : P → P be an F -linear homomorphism.

Then there exists a uniquely determined direct summand Pmult ⊂ P with
the following properties
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(i) ϕ induces an F -linear isomorphism:

ϕ : Pmult −→ Pmult

(ii) Let M be any Ŵ (R) -module and ψ : M →M be an F -linear iso-
morphism. Let α : M → P be a homomorphism of Ŵ (R) -modules,
such that α ◦ ψ = ϕ ◦ α . Then α factors through Pmult .

Proof: Let us begin with the case R = k . For any natural number n the
Frobenius induces an isomorphism F : Wn(k)→ Wn(k) . Therefore Fitting’s
lemma is applicable to Pn = Wn(k)⊗W (k) P and ϕn = Wn(k)⊗W (k) ϕ . In
the notation of that lemma we set Pmult = lim

←−
n

P bij
n . From the definition of

P bij
n (see (10)) it follows that αn : Mn → Pn factors through P bij

n . Hence
α(M) ⊂ Pmult + pnP for any n , which proves (ii) .

Let us now consider the general case. We set P0 = W (k)⊗Ŵ (R)P . Then

we have already proved the existence of Pmult
0 . We lift Pmult

0 by the lemma
(9) to a direct summand Pmult of P . Then that lemma states that Pmult

has the desired properties. Q.E.D.

Proposition 12 Let R be as in the last proposition. Let P be a finitely
generated projective Ŵ (R) -module and let ϕ : P → Ŵ (R) ⊗F,Ŵ (R) P be a

Ŵ (R) -module homomorphism. Then there exists a projective factor module
P et of P , which is uniquely determined by the following properties.

(i) ϕ induces an isomorphism of Ŵ (R) -modules:

ϕ : P et −→ Ŵ (R)⊗F,Ŵ (R) P
et

(ii) Let M be a Ŵ (R) -module and ψ : M → Ŵ (R)⊗F,Ŵ (R)M be an iso-

morphism. Let α : P → M be a homomorphism of Ŵ (R) -modules,
such that (id⊗ α) ◦ ϕ = ψ ◦ α . Then α factors through P et .

Proof: Again we begin with the case R = k . Then F : W (k)→ W (k) is
bijective. We denote its inverse by τ . Then we have a τ -linear isomorphism:

W (k)⊗F,W (k) P −→ P
w ⊗ x 7−→ τ(w)x

14



Hence we consider ϕ as a τ -linear map:

ϕ : P −→ P.

To this map we apply Fitting’s lemma as in the last proposition. We
obtain the decomposition P = P bij⊕P nil . Then we set P et = P bij , and we
obtain the lemma for W (k) .

The general case is obtained, if we apply the lemma 10 to the situation
A = W (R), A0 = W (k) and τw = Fw for w ∈ W (R) . Q.E.D.

We will now define the étale part and the multiplicative part of a Dieu-
donné display over R .

Definition 13 Let P = (P,Q, F, V −1) be a Dieudonné display over R .
We say that P is étale, if one of the following equivalent conditions is sat-
isfied:

(i) P = Q .

(ii) V # : P −→ Ŵ (R)⊗F,Ŵ (R) P is an isomorphism.

Proof: Assume (i) is fulfilled. Then we have for any x ∈ P the formula
V #(ξV −1x) = ξ⊗x , where ξ ∈ Ŵ (R) . This implies that V # is surjective,
and hence an isomorphism. Conversly if V # is surjective, we consider the
composite of the following surjections:

Ŵ (R)⊗F,Ŵ (R) Q
(V −1)#

−→ P
V #

−→ Ŵ (R)⊗F,Ŵ (R) P.

Since the composite is by (2) induced by the inclusion Q ⊂ P , we conclude

Ŵ (R)⊗F,Ŵ (R) P/Q = (Ŵ (R)/ F ÎR)⊗F,R P/Q = 0.

But since P/Q is a projective R -module this implies P/Q = 0 . Indeed
F IR = p · Ŵ (R) and p is not a unit in Ŵ (R) . Q.E.D.

Definition 14 Let P = (P,Q, F, V −1) be a Dieudonné display over R .
We say that P is of multiplicative type, if one of the following equivalent
conditions is satisfied:

(i) Q = IRP .

(ii) F# : Ŵ (R)⊗F,Ŵ (R) P → P is an isomorphism.

15



Proof: The first condition implies that P is generated by elements of the
form V −1(V ξx) = ξFx, ξ ∈ Ŵ (R), x ∈ P . This implies the second condi-
tion.

Assume that the second condition holds. The image of a normal decom-
position P = L⊕ T by F# gives a direct decomposition

P = Ŵ (R)pV −1L⊕ Ŵ (R)FT.

Comparing this with the standard decomposition

P = Ŵ (R)V −1L⊕ Ŵ (R)FT,

we obtain p · Ŵ (R)V −1L = Ŵ (R)V −1L . Hence again since p is not a unit,
we have Ŵ (R)V −1L = 0 . This implies L = 0. Q.E.D.

Let P = (P,Q, F, V −1) be a Dieudonné display. Recall that P is called
V -nilpotent, if the following map is zero for big numbers N :

(V N)# : P −→ R⊗FN ,Ŵ (R) P

The Dieudonné display is called F -nilpotent if the following map is zero for
big numbers N :

(FN)# : Ŵ (R)⊗FN ,Ŵ (R) P2 −→ R⊗Ŵ (R) P2

Proposition 15 Let α : P1 = (P1, Q1, F, V
−1) → P2 = (P2, Q2, F, V

−1)
be a homomorphism of Dieudonné displays. Then α is zero, if one of the
following conditions is satisfied.

(i) One of the Dieudonné displays P1 and P2 is étale and the other is
V -nilpotent.

(ii) One of the Dieudonné displays P1 and P2 is of multiplicative type
and the other is F -nilpotent.

Proof: By rigidity (i.e. the uniqueness assertion of theorem 3) it is easy to
reduce this proposition to the case, where R = k is a perfect field. In this
case the proposition is well known. Q.E.D.
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Proposition 16 Let P be a Dieudonné display over R . Then there is a
morphism P → Pet to an étale Dieudonné display over R , such that any
other morphism to an étale Dieudonné display P → P1 factors uniquely
through Pet . Moreover Pet has the following properties:

1) The induced map P → P et is surjective.

2) Let P nil be the kernel of P → P et . Then (P nil, P nil ∩ Q,F, V −1) is
a V -nilpotent Dieudonné display, which we will denote by Pnil .

Proof: The map V # : P → Ŵ (R)⊗F,Ŵ (R)P determines by proposition 12 a

projective factor module P
α−→ P et , such that V # induces an isomorphism

P et → Ŵ (R)⊗F,Ŵ (R) P
et . We consider the inverse map

V −1# : Ŵ (R)⊗F,Ŵ (R) P
et −→ P et.

It is induced by an F -linear map V −1 : P et → P et . We set Qet = P et

and F = pV −1 : P et → P et . Then we obtain a Dieudonné display Pet =
(P et, Qet, F, V −1) . We will now check that the map α : P → P et induces a
homomorphism of displays P → Pet . To see that α commutes with F we
consider the following diagram:

Ŵ (R)⊗F,Ŵ (R) P
F#

−−−→ P
V #

−−−→ Ŵ (R)⊗F,Ŵ (R) P

1⊗Fα
y α

y y1⊗Fα

Ŵ (R)⊗F,Ŵ (R) P
et F#

−−−→ P et V #

−−−→ Ŵ (R)⊗F,Ŵ (R) P
et.

the right hand square is commutative by definition. Our assertion is that
the left hand square is commutative. Since V # for P et is an isomorphism
it is enough to show that the diagram becomes commutative, if we delete
the vertical arrow in the middle. But this is trivial because V # ◦ F# = p .
Since we have trivially α(Q) ⊂ P et it only remains to be checked that α
commutes with V −1 . For this we consider the diagram

Ŵ (R)⊗F,Ŵ (R) Q
(V −1)#

−−−−→ P
V #

−−−→ Ŵ (R)⊗F,Ŵ (R) P

1⊗Fα
y α

y y1⊗Fα

Ŵ (R)⊗F,Ŵ (R) P
et (V −1)#

−−−−→ P et V #

−−−→ Ŵ (R)⊗F,Ŵ (R) P

17



By (2) the composition of the arrows in the first horizontal row is induced
by the inclusion Q ⊂ P , while the composition in the lower horizontal row
is the identity. We deduce the commutativity of the first square as before.

Hence we have a morphism of Dieudonné displays α : P → Pet . the
proposition is known for R = k and in fact easily deduced from Fitting’s
lemma. In this case V exists and Q = V P . It follows that the map
Q → P et is surjective. In general we conclude the same by Nakayama’s
lemma. To show that (P nil, P nil ∩ Q,F, V −1) defined in the proposition
is a Dieudonné display, it remains to be shown that P nil/P nil ∩ Q is a
projective R -module. But because of the sujective map Q→ P et we have
an isomorphism P nil/P nil ∩ Q ' P/Q . The universality of P → Pet is an
immediate consequence of proposition 12. Q.E.D.

Dually to the last proposition we have:

Proposition 17 Let P be a Dieudonné display over R . Then there is a
morphism from a multiplicative Dieudonné display Pmult → P , such that
any other morphism P1 → P from a multiplicative Dieudonné display P1

factors uniquely as P1 → Pmult → P . Moreover Pmult has the following
properties:

1) The map Pmult → P is injective and Pmult ∩Q = IRP
mult .

2) (P/Pmult, Q/IRP
mult, F, V −1) is an F -nilpotent Dieudonné display.

Proof: We consider the map F : P → P , and we define the direct summand
Pmult ⊂ P according to proposition 11. We define Qmult = IRP

mult , and
obtain a Dieudonné display Pmult = (Pmult, QmultF, V −1) , which has the
required universal property. To prove 1) we consider a normal decomposition

P = L⊕T . Let P = W (k)⊗Ŵ (R)P and let L and P
mult

be the images of

L and Pmult . Since the proposition is known (and easy to prove by Fitting’s

lemma) for R = k , it follows that L ⊕ Pmult
is a direct summand of P .

By Nakayama’s lemma one verifies that L ⊕ Pmult is a direct summand of
P . Hence we may assume without loss of generality that Pmult is a direct
summand of T . From this 1) and 2) follow immediately, except for the
F -nilpotence, which may be reduced to the case k = R . Q.E.D.

18



4 The p-Divisible Group of a Dieudonné Dis-

play

In this section we will extend the functor BT of proposition 7 to the cate-
gory of all Dieudonné displays, and show that this defines an equivalence of
categories.

Let R be an artinian local ring with perfect residue class field k , satisfy-
ing the assumptions in the introduction. We will denote by R the unramified
extension of R , such that R is local and has residue class field k the alge-
braic closure of k . We will write Γ = Gal(k/k) for the Galois group. Then
Γ acts continuously on the discrete module R .

Let H be a finitely generated free Zp -module. Assume we are given
an action of Γ on H , which is continuous with respect to the p -adic
topology on H . The actions of Γ on Ŵ (R) and H induce an action on
Ŵ (R)⊗Zp H . We set:

P (H) = (Ŵ (R)⊗Zp H)Γ

One can show by reduction to the case R = k that P (H) is a finitely
generated free Ŵ (R) -module and that the natural map:

Ŵ (R)⊗Ŵ (R) P (H)→ Ŵ (R)⊗Zp H

is an isomorphism. We define an étale Dieudonné display over R :

P(H) = (P (H), Q(H), F, V −1)

Here P (H) = Q(H) and V −1 is induced by the map:

Ŵ (R)⊗Zp H → Ŵ (R)⊗Zp H
w ⊗ h 7→ Fw ⊗ h

Conversely if P is an étale Dieudonné display over R we define H(P)
to be the kernel of the homomorphism of Zp -modules

V −1 − id : Ŵ (R)⊗Ŵ (R) P → Ŵ (R)⊗Ŵ (R) P.

Hence the category of étale Dieudonné displays over R is equivalent to the
category of continuous Zp[Γ] -modules, which are free and finitely generated
over Zp .
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On the category of Dieudonné displays over R we have the structure of an
exact category: A morphism ϕ : P1 → P2 is called a strict monomorphism
if ϕ : P1 → P2 is injective and Q1 = ϕ−1(Q2) , and it is called a strict
epimorphism if ϕ : P1 → P2 is an epimorphism and ϕ(Q1) = Q2 .

Proposition 18 Let P = (P,Q, F, V −1) be a V -nilpotent Dieudonné dis-
play over R . Let us denote by CR the cokernel of the map V −1 − id :
QR → PR with its natural structure of a Γ -module. Then we have a natural
equivalence of categories:

HomΓ(H,CR) ∼= Ext1(P(H),P)(13)

Proof: Let us start with a remark on Galois cohomology. Let P be any
free and finitely generated Ŵ (R) -module with a semilinear Γ -action, which
is continuous with respect to the topology induced by the ideals V nŴ (R) .
Then we have

H1(Γ,HomZp(H,P )) = 0.(14)

Indeed we reduce this to the assertion, that for a finite dimensional vec-
tor space U over k with a semilinear continuous action of Γ , we have
H1(Γ, U) = 0 , because this is an induced Galois module by usual descent the-
ory. To make the reduction we consider first the case R = k . Then we have a
filtration with graded pieces HomZp(H, p

nP/pn+1P ) . Since the cohomology
of these graded pieces vanishes and our group is complete and separated for
this filtration, we are done for R = k . In the general case we consider a sur-
jection R→ S with kernel a and argue by induction. We may assume that
m · a = p · a = 0 . It is enough to show that H1(Γ,HomZp(H, Ŵ (a)P ) = 0 .

Because Ŵ (a)P '
⊕

n a⊗Frobn,k P k/IkP k the vanishing (14) follows.

We will use a bar to denote base change to R , i.e. QR = Q etc. Let us
start with an extension from the right hand side of (13) :

0→ P → P1 → P(H)→ 0(15)

It induces an exact sequence

0→ Q→ Q1 → Ŵ (R)⊗H → 0(16)
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of Γ -modules. The same argument as above shows H1(Γ,HomZp(H,Q)) =

0 , if we use a normal composition for Q . Hence the sequence (16) admits
a Γ -equivariant section over H :

s : H → Q1

We consider the function u : H → P given by:

u(h) = V −1s(h)− s(h)(17)

Since we may change s exactly by a homomorphism of Γ -modules H →
Q , we obtain that the class of u in the cokernel of the map:

HomΓ(H,Q)
V −1−id−→ HomΓ(H,P ),

is well-defined by the extension (15). Since the group cohomology vanishes
this cokernel is exactly HomΓ(H,CR) . This provides an injective group
homomorphism:

Ext1(P(H),P)→ HomΓ(H,CR)(18)

Conversely it is easy to construct from a homomorphism u ∈ HomΓ(H,P )
an extension of Dieudonné displays over R :

0→ P → Pu → P(H)→ 0,(19)

by taking (17) as a definition for the operator V −1 of Pu . Then one has
an action of Γ on Pu , for which the sequence (19) becomes Γ -equivariant.
Taking the invariants by Γ we obtain an element in Ext1(P(H),P) , whose
image by (18) is u . Hence (18) is an isomorphism. Q.E.D.

Remark: Our construction is functorial in the following sense. Let P ′
be a second V -nilpotent Dieudonné display, and H ′ be a second Zp[Γ] -
module, which is free and finitely generated as a Zp -module. Let u′ ∈
HomΓ(H,C ′

R
) be a homomorphism to the cokernel of V −1 − id : Q ′ → P ′ .

A morphism of data (P , H, u)→ (P ′, H ′, u′) has the obvious meaning. Then
it is clear that such a morphism induces a morphism of the corresponding
extensions:

0 // P //

��

Pu //

��

P(H) //

��

0

0 // P ′ // P ′u′ // P(H ′) // 0
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and conversely. Moreover, since there are no nontrivial homomorphims P →
P(H ′) , we conclude

Hom((P , H, u), (P ′, H ′, u′)) = Hom(Pu,P ′u′)

We associate to a continuous Γ -module H , which is free and finitely
generated as a Zp -module a Barsotti-Tate group as usual. The finite Γ -
module p−nH/H corresponds to a finite étale group scheme Gn . We set

BT (H) = lim−→
n

Gn.

The following analogue of proposition 18 seems to be well-known.

Proposition 19 Let H be as above and let G be a formal p -divisible
group over R . Then there is a canonical isomorphism of categories

HomΓ(H,G(R)) ' Ext1(BT (H), G)

Moreover this isomorphism is functorial in the sense of the last remark.

Before we proof this, we remark that it implies the main theorem of this
paper:

Theorem 20 There is a functor BT from the category of Dieudonné dis-
plays over R to the category of p -divisible groups over R which is an
equivalence of categories. On the subcategory of V -nilpotent Dieudonné dis-
plays this is the functor BT of proposition 7.

Proof: By the last proposition the category of p -divisible groups over
R is equivalent to the category of data (G,H, u : H → G(R)) . But since we
already know that the category of formal p -divisible groups is equivalent to
the category of V -nilpotent Dieudonné displays, such that G(R) is identi-
fied with CR we conclude by the remark after proposition 18. Q.E.D.

Proof of proposition 19: Let us start with an extension

0→ G→ G1 → BT (H)→ 0(20)

Let S be a local R -algebra, such that the residue class field l of S
is contained in a fixed algebraic closure k of k . Then we obtain an exact
sequence of Γl = Gal(k/l) -modules

0→ G(S)→ G1(S)→ H ⊗Zp Qp/Zp → 0(21)
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In fact this sequence is exact because the flat Čech-cohomology of a formal
group vanishes ( use [Z2] 4.6 or more directly [Z3] 5.5 ).

Conversely, if we are given for any S an extension of Γl -modules (21),
which depends functorially on S we obtain an extension (20).

If we pull back the extension (20) by the morphism H⊗Qp → H⊗Qp/Zp
it splits uniquely as a sequence of abelian groups because G(S) is annihilated
by some power of p . By the uniqueness it splits also as a sequence of Γl -
modules. Hence to give an extension (20) is the same thing as to give a
homomorphism of Γl -modules H → G(S) . The functoriality in S means
in particular that we have a commutative diagram

H // G(R)

��

H // G(S),

which is equivariant with respect to Γl ⊂ Γk . Hence to give functorially
extensions (21) is the same thing as a Γk -equivariant homomorphism H →
G(R) . Q.E.D.
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