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We generalize ideas of Bloch [Bl] about de Rham-Witt connections to a rel-
ative situation, and apply this to construct the Gauss-Manin connection in crys-
talline cohomology using Witt differentials.

Let S be a scheme such thatp is nilpotent onS. Let X be a scheme overS.
Then the Witt differentialsWtΩ

1
X/S are defined in [L-Z] for each natural number

t. These sheaves onX satisfy the same exact sequences and functorialities as the
usual K̈ahler differentials: LetX → Y → S be morphisms of schemes. Then
there is an exact sequence of sheaves onX.

Wt(OX)⊗Wt(OY ) WtΩ
1
Y/S → WtΩ

1
X/S → WtΩ

1
X/Y → 0

The reader will deduce this easily from the isomorphism (4.1).
Assume moreover thatX → Y is a closed immersion defined by a sheaf of

idealsa ⊂ OY . One can proof in the same way that there is an exact sequence:

Wt(a)/Wt(a)2 d→ Wt(OX)⊗Wt(OY ) WtΩ
1
Y/S → WtΩ

1
X/S → 0

The structure ofWΩ1
X/S in the case whereX is an affine space overS is

determined in [L-Z] Prop. 2.17.
Let E be a locally freeWt(OX) module onX. A de Rham-Witt connection

onE is a homomorphism of sheaves of abelian groups onX

(0.1) ∇ : E → WtΩ
1
X/S ⊗Wt(OX) E,

which satisfies the following relations:

∇(ξx) = dξ ⊗ x + ξ∇x,

whereξ andx are sections ofWt(OX) andE respectively. The operator∇ induces
mapsWtΩ

l
X/S ⊗Wt(OX) E → WtΩ

l+1
X/S ⊗Wt(OX) E, which we denote by the same

letter∇. We call the de Rham-Witt connection (0.1) integrable if∇2 = 0. A de
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Rham-Witt connection induces a connection on theOX-moduleE ⊗Wt(OX) OX .
If this connection is nilpotent [K], we call∇ nilpotent.

We denote byWt(S) the topological spaceS endowed with the structure sheaf
Wt(OS). This is a scheme. We consider the crystalline situsCrys(X/Wt(S))
with respect to the canonical divided powers onWt(S).

Theorem. LetX/S be a smooth scheme. Then the category of locally free crystals
of finite rank is equivalent to the category of locally freeWt(OX)-modules of finite
rank endowed with a nilpotent, integrable de Rham-Witt connection.

This was proved by Bloch ifS is the spectrum of a perfect field. LetE be a
crystal onX as indicated. The starting point of the proof is the construction of
Etesse [E] of the de Rham-Witt complex with coefficients inE over a perfect base
S and more recently over arbitraryS in [L–Z].

Let E be the value of the crystalE at the pd-thickeningX → Wt(X). The
crystal defines an integrable nilpotent de Rham-Witt connection (0.1) onE. Hence
we obtain a complex:

E
∇−−−→ WtΩ

1
X/S ⊗Wt(OX) E

∇−−−→ WtΩ
2
X/S ⊗Wt(OX) E

∇−−−→ · · ·

This is called the de Rham-Witt complex with coefficients inE.
We obtain a functor

(0.2) E 7→ (E,∇)

from the category of finite locally free crystals to the category of finite locally free
modules with a de Rham-Witt connection.

It follows that this functor is fully faithful. Indeed, letE′ be a second crystal.
We want to assign to a homomorphism(E,∇) → (E ′,∇′) a homomorphism of
crystals. This is a local question onX. Therefore we may assume that there is
a Witt-lift Y/Wt(S),i.e. Y is a smooth scheme overWt(S) which lifts X, with a
morphismWt(X)→ Y satisfying some properties ([L–Z] Definition 3.3). By the
Poincaŕe lemma [B–O] (compare [L–Z] 3.56) we have an resolution ofE by the
complex of crystalsLY (ΩY/Wt(S) ⊗EY ). The comparison with the de Rham-Witt
complex yields a quasi-isomorphim:

(0.3) E ∼= LY (WtΩX/S ⊗Wt(OX) E).

A homomorphism(E,∇)→ (E ′,∇′) induces a homomorphism of the de Rham-
Witt complexes with coefficients inE resp. E ′. Applying the functorLY one
obtains a morphism crystalsE → E′ from (0.3). Hence the functor (0.2) is fully
faithful. The assertion of the theorem is therefore local for the Zariski topology on
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X. For the proof we assume that a Witt-liftY of X is given. Let(E,∇) be an in-
tegrable de Rham-Witt connection. The arguments of Bloch with modifications in
the relative case yield a locally freeOY -module(M,∇M) with an integrable con-
nection that induces(E,∇) by the Proposition below. If∇ is nilpotent then∇M

is nilpotent and therefore defines the desired crystalE. This proves the theorem.
We formulate the proposition in terms of rings rather than schemes. LetR be

a ring. LetA be anR-algebra which iśetale over a polynomial ring overR. We
choose a Witt liftB/Wt(R) as in the proof of [L–Z] Proposition 3.2. The map
B → Wt(A) induces a map of complexes:

(0.4) Ω•
B/Wt(R) → WtΩ

•
A/R

This map is injective. Indeed, for a polynomial algebraB this follows from loc.cit.
Proposition 2.17. The general case is deduced byétale base change for the de
Rham-Witt complex.

Proposition 1. LetM be a freeWt(A)-module with an integrable connection:

(0.5) ∇ : M → WtΩ
1
A/R ⊗Wt(A) M.

Then there is a basism1, . . . ,mn of M such that

(0.6) ∇

 m1
...

mn

 = Θ⊗

 m1
...

mn

 ,

where the entriesθij of then× n-matrixΘ are in the image of the map (0.4).

Let us assume thatS is noetherian and that the Frobenius morphismFrob :
S/pS → S/pS is finite. This implies that the schemesWt(X), Wt(Y ), Wt(S) are
noetherian.

LetX → Y → S be smooth morphisms such thatY/S is of relative dimension
1. Then we construct an exact triangle

(0.7) WtΩ
1
Y/S

L
⊗Wt(OY ) WtΩ

•−1
X/Y −→ WtΩ

•
X/S −→ WtΩ

•
X/Y ,

in the derived category of Zariski sheaves onX. The reader may wonder where
the third side of this triangle is. The more precise statement is as follows: The
multiplication inWtΩ

•
X/S induces a natural map

WtΩ
1
Y/S ⊗Wt(OY ) WtΩ

•−1
X/Y −→ WtΩ

•
X/S

whose image is clearly in the kernel of the second map of (0.7). We choose a
complexC which represents the first complex in (0.7). From the last map above
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we obtain a mapC → WtΩ
•
X/S whose image is a fortiori in the kernel of the

second map of (0.7). Hence we obtain a map to the mapping cone of the last
morphism in (0.7):

C[1]→ WtΩ
•
X/S[1]⊕WtΩ

•
X/Y .

The exact meaning of the words “exact triangle” is that the last morphism is a
quasi-isomorphism. We note that this statement is local for the Zariski topol-
ogy onX. Therefore the global statement (0.7) follows from the local statement
Proposition 2 which we prove below.

Applying the projection formula ([H] page 106, 5.6) to the morphismα :
Wt(X)→ Wt(Y ) we obtain an isomorphism

Rα∗(WtΩ
1
Y/S

L
⊗Wt(OY ) WtΩ

•−1
X/Y ) = WtΩ

1
Y/S

L
⊗W (OY ) Rα∗WtΩ

•−1
X/Y

Hence the triangle (0.7) induces a morphism

Rα∗WtΩ
•
X/Y → WtΩ

1
Y/S

L
⊗W (OY ) Rα∗WtΩ

•
X/Y

By the comparison theorem [L–Z] Theorem 3.5 the hypercohomology groups
of Rα∗WtΩX/Y are the crystalline cohomology groupsHi

cris(X/Wt(Y )). Let us
make the assumption that these groups are locally freeWt(OY )-modules for alli.
Then we deduce the Gauß-Manin connection:

∇ : Hi
cris(X/Wt(Y )) −→ WtΩ

1
Y/S ⊗W (OY ) Hi

cris(X/Wt(Y )) .

The nilpotence of this connection follows from [K] since it is by definition a ques-
tion for t = 1. Since we are in the case of relative dimension1 it is automatically
integrable.

1 Witt–Differentials modulo IR

Let A be anR–algebra. Lett be a natural number. We setIR = V Wt−1(R) ⊂
Wt(R). To prove the proposition we filter the Witt-differentialsWtΩA/R by pow-
ers of the idealIR. We assume thatp is nilpotent inR. Then the idealIR is
nilpotent.

We define
WtΩ

•
A/R = WtΩ

•
A/R/IRWtΩ

•
A/R

This is a differential graded algebra. In particular we have:

WtΩ
0
A/R =Wt(A) = Wt(A)/IRWt(A) .
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We remark that the Teichm̈uller representativex 7→ [x] induces a ring homomor-
phismR → Wt(A). HenceWtΩ

•
A/R is a complex ofWt(A)–modules with an

R–linear differential
d : WtΩ

l
A/R −→WtΩ

l+1
A/R

We denote the image of
VWΩ•

A/R −→WtΩ
•
A/R

by IWtΩ
•
A/R and in degree 0 simplyIt = IWtΩ

0
A/R = VWt−1(A)/IRWt(A)

(note that there is no Verschiebung onW•ΩA/R, and we have an action ofF only
if pR = 0). IWtΩ

•
A/R is an ideal in the differential graded algebraWtΩ

•
A/R. We

obviously have
(IWtΩ

•
A/R)2 = 0 ,

becauseVω · Vη = p · V(ωη) = V1 · V(ωη).
We define a second idealFWtΩ

•
A/R as the kernel of the homomorphism of

differential graded algebras

(1.1) 0 −→ FWtΩ
•
A/R −→WtΩ

•
A/R −→ Ω•

A/R −→ 0 .

We have

(1.2) IWtΩ
•
A/R + d IWtΩ

•
A/R ⊆ FWtΩ

•
A/R .

If A/R is smooth, we will see that (1.2) is a direct sum decomposition and that
the differentiald is injective, i.e. we have

IWtΩ
•
A/R ⊕ d IWtΩ

•
A/R = FWtΩ

•
A/R

and there is an exact sequence
(1.3)

0 −−−→ IWtΩ
•
A/R

d−−−→ WtΩ
•
A/R/IWtΩ

•
A/R −−−→ Ω•

A/R −−−→ 0 .

A Witt-lift B/Wt(R) with B → Wt(A) defines a mapΩ•
B/Wt(R) → WtΩ

•
A/R

which induces – by reduction moduloIR – a mapΩ•
A/R → WtΩ

•
A/R, hence a

Witt-lift defines a splitting of the sequence (1.1). In particular a Witt-lift defines
(for A/R smooth) a direct decomposition

(1.4)
WtΩ

l
A/R = IWtΩ

l
A/R ⊕ d IWtΩ

l−1
A/R ⊕ Ωl

A/R

ω = η1 + dη2 + η3 .

We writeδω = η2. Letpr : WtΩ
l
A/R →WtΩ

l
A/R be the projection onΩl

A/R. Then
pr is homotopic to the identity:

(id− pr)(ω) = dδω + δdω .

Hence the complexesWtΩ
•
A/R andΩ•

A/R are homotopy equivalent.
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Remark.The differentiald : IWtΩ
•
A/R → FWtΩ

•
A/R/IWtΩ

•
A/R is a homomor-

phism ofWtΩ
•
A/R–modules for the action from the right:

d(Vηω) = dVηω + (−1)deg ηVη dω ≡ dVη ω mod IWtΩ
•
A/R .

It remains to prove the following.

Lemma 1. If A/R is smooth, then we have

IWtΩ
•
A/R ⊕ d IWtΩ

•
A/R = FWtΩ

•
A/R .

Proof. By [L–Z] (2.43) it suffices to show that the sum is a direct sum. For this it
suffices to show that theWt(A)–module homomorphism

(1.5) d : IWtΩ
•
A/R −→ FWtΩ

•
A/R/IWtΩ

•
A/R

is an isomorphism.
Let P = R[T1, . . . , Td] be a polynomial algebra. Assume thatA is étale over

P . We obtain (1.5) from the corresponding morphism forP by tensoring with the
étale morphismWt(P ) → Wt(A). Hence we may assumeA = R[T1, . . . , Td].
In this case each element ofWtΩ

l
A/R is a unique sum of basic Witt differentials

e(ξ, k, I0, . . . , Il) by [L–Z] Proposition 2.17. Recall that a weightk : [1, d] ∈
Z≥0[1/p] in such a sum has denominatorpu ≤ pt. We denote bye(ξ, k, I0, . . . , Il)
the images of the basic Witt differentials inWtΩ

l
A/R. Then the claim in Lemma 1

follows from the following.

Lemma 2. Letω ∈ WtΩ
l
P/R. Thenω has a unique representation

ω =
∑

k integral

e(ξk, k, I0, . . . , Il) +
∑
k frac

e(ξk, k, I0, . . . , Il)

with ξk ∈ R for k integral andξk ∈ V u
Wt−u(R)/p V u

Wt−u(R) for k fractional
such thatpu is the denominator ofk. The elements inIWtΩ

l
A/R are the elements

with a representation

ω =
∑
I0 6=∅
k frac

e(ξk, k, I0, . . . , Il) .

Proof. Lemma 2 follows from loc.cit. Prop. 2.17 in conjunction with Proposition
2.5.
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2 Integrable connections onWt(A)–modules

LetM be a freeWt(A)–module of rankn. We consider a connection

∇ : M−→WtΩ
1
A/R ⊗Wt(A)M

and call∇ integrable, if∇2 : M→WtΩ
2
A/R⊗Wt(A)M vanishes. Letm1, . . . ,mn

be a basis ofM. We write

(2.1) ∇

 m1
...

mn

 = Θ⊗

 m1
...

mn


whereΘ is a n × n–matrix with entries inWtΩ

1
A/R. We abbreviate (2.1) as

∇(m) = Θ⊗m, and we callΘ the connection matrix.

Lemma 3. Let (M,∇) be an integrable connection. Then there is a basism of
M, such that the connection matrix has coefficients inΩ1

A/R ⊂ WtΩ
1
A/R.

Proof. We first show the analogous claim for the induced connection

∇ : M−→ (WtΩ
1
A/R/IWtΩ

1
A/R)⊗Wt(A)M .

By (1.4) the connection matrixΘ of ∇ is of the formΘ = ω + dρ with ω ∈
M(n× n, Ω1

A/R) andρ ∈M(n× n, I). Then definem′ = (1− ρ)m. We get

∇m′ = d(1− ρ)⊗m + (1− ρ)ω ⊗m + (1− ρ)dρ⊗m

= ω ⊗m′ − ρdρ⊗m ≡ ω ⊗m′ mod IWtΩ
1
A/R ⊗M .

(2.2)

Hence we can find a basis ofM such thetΘ has coefficients inΩ1
A/R. Then the

connection matrixΘ with respect to this basis has the formΘ = ω + η with
ω ∈M(n× n, Ω1

A/R) andη ∈M(n× n, IWtΩ
1
A/R). Then we have

∇2m = dω ⊗m + dη ⊗m + ω2 ⊗m + ωη ⊗m + ηω ⊗m + η2 ⊗m .

We consider the matrix of this map∇2 : M → WtΩ
2
A/R ⊗M corresponding to

the decomposition (1.4)

(2.3) (ωη + ηω)⊕ (dη)⊕ (dω + ω2) .

We remark thatη2 = 0 because(IWtΩA/R)2 = 0. Since∇ is integrable, all
summands in (2.3) are zero, in particulardη = 0, henceη = 0. So the connection
matrixΘ has coefficients inΩ1

A/R. Lemma 3 follows.
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3 Proof of Proposition 1

ForA/R smooth we consider the filtrationIm
R WtΩ

•
A/R of the de Rham–Witt com-

plex. We set
W(l)

t Ω•
A/R = WtΩ

•
A/R/I l

RWtΩ
•
A/R

and
G•l = I l

RWtΩ
•
A/R/I l+1

R WtΩ
•
A/R .

Then we have a canonical map

(3.1) pl : IWtΩ
•
A/R −→ G•l .

Assume thatB → Wt(A) is a Witt-lift overWt(R) andΩ•
B/Wt(R) → WtΩ

•
A/R the

induced map. Similarly to (1.4) we find a direct sum decomposition

(3.2) G•l = pl IWtΩ
•
A/R ⊕ pld IWtΩ

•−1
A/R ⊕ I l

R/I l+1
R ⊗R Ω•

A/R .

We start with the connection∇ : M → WtΩ
1
A/R ⊗Wt(A) M of Proposition 1. This

induces connections onMl = M/I l
RM

∇(l) : Ml −→W(l)
t ΩA/R ⊗W(l)

t (A)
Ml .

Assume we have a basis̃m ofMl such that

(3.3) ∇(l)m̃ = Θ⊗ m̃ with Θ ∈M(n× n, Ω1
B/Wt(R)/I

l
RΩ1

B/Wt(R)) .

Since the existence of such a base was shown forl = 1 in section 2 it is enough to
show the following:

Claim. There is a liftingm of m̃ toMl+1 such that (3.3) holds forl + 1.

Proof. Let m be any lifting. Then (3.2) implies

∇(l+1)m = Θ⊗m + plη ⊗m + pldρ⊗m

with ρ, η having coefficients inIWtΩ
0 or 1 andΘ in Ω1

B/Wt(R)/I
l+1
R Ω1

B/Wt(R). Now
we consider the induced connection

∇̃(l+1) : Ml+1 −→W(l+1)
t ΩA/R/pl IWtΩ

•
A/R ⊗W(l+1)

t (A)
Ml+1 .

∇̃(l+1)(m) = Θ⊗m + pldρ⊗m .

Choosem′ = (1− plρ)m as new basis. As in (2.2) we can write

∇(l+1)m′ = Θ⊗m′ + plη ⊗m′ .
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We compute

(∇(l+1))2m′ = (dΘ + Θ2)⊗m′ + pl(Θη + ηΘ)⊗m′ + pldη ⊗m′ .

Since∇(l) is integrable, we havedΘ + Θ2 ∈M(n× n, I l
R/I l+1

R ⊗R Ω2
A/R). Since

pl(Θη + ηΘ) has coefficients inplIWtΩ
2
A/R, the decomposition (3.2) implies that

pldη = 0 and henceplη = 0. The claim follows.

4 The Gauß–Manin connection in the smooth case

Consider ring homomorphismsR → S → T . In the graded pro-algebraWtΩ
•
T/R

we can consider the idealIt generated by allds for s ∈ Wt(S). ThenIt is
invariant underd, and the pro-ideal{It} is invariant underF andV . We show
the invariance underF . A general element ofIt is a sum of elements of the
form ωds with ω ∈ WtΩT/R and s ∈ Wt(S). Let s = (x0, x1, x2, . . . ) and
ρ = (x1, x2, x3, . . . ). ThenFds = [xp−1

0 ]d[x0] + dρ and we have

F(ωds) = FωFds = Fω [xp−1
0 ]d[x0] + Fωdρ .

This is an element inIt−1.
The canonical epimorphismWtΩ

•
T/R → WtΩ

•
T/S factors obviously through a

map

(4.1) WtΩ
•
T/R/It −→ WtΩ

•
T/S .

The properties ofIt show that the left hand side is aF–V –pro-complex in whichd
becomes aW (S)–linear map. Hence the map (4.1) has a section by the universal
property ofWtΩ

•
T/S. This section is surjective, because it mapsdt, for t ∈ Wt(T ),

to the same element inWtΩ
•
T/R, and these differentials generateWtΩT/R. There-

fore the map (4.1) is an isomorphism and we have an exact sequence

0 −→ It −→ WtΩ
•
T/R −→ WtΩ

•
T/S −→ 0 .

We also have a sequence of maps, in fact a complex for eachk ≥ 1

(4.2) WtΩ
1
S/R ⊗Wt(S) WtΩ

k−1
T/R −→ WtΩ

k
T/R −→ WtΩ

k
T/S −→ 0 .

Let now S/R be smooth of relative dimension 1, henceWΩi
S/R = 0 for i ≥

2. This implies that the mapsWtΩ
1
S/R ⊗Wt(S) It → WtΩ

•
T/R are zero (because

ds1ds2 = 0 for s1, s2 ∈ Wt(S)). The sequence (4.2) factors through a sequence
of complexes

(4.3) WtΩ
1
S/R ⊗W (S) WtΩ

•
T/S[−1] −→ WtΩ

•
T/R −→ WtΩ

•
T/S .
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From now on we assume thatp is nilpotent inR, and that the Frobenius mor-
phism onR/pR is a finite map. Moreover all morphismsR → S → T will be
smooth andS/R will be of relative dimension 1. In the following we will prove
that (4.3) becomes a distinguished triangle when we replace the tensor product on
the left hand side by the derived tensor product. More precisely we show:

Proposition 2. Under the above assumptions the sequence (4.3) defines a distin-
guished triangle in the derived category ofWn(R)-modules.

(4.4) WtΩ
1
S/R

L
⊗W (S) WtΩ

•
T/S[−1] −→ WtΩ

•
T/R −→ WtΩ

•
T/S ,

The question is local for théetale topology onSpec T . To see this we choose
a numberm such thatpm annihilatesWt(R) and consequently all modules in the
triangle above. The individual modules in the complexes involved areWt(T )-
modules. We consider them asWt+m(T )-modules via restriction of scalarsFm :
Wt+m(T ) → Wt(T ). Then the complexes involved are complexes ofWt+m(T )-
modules with linear differentials. LetT → T ′ be a faithfully flatétale morphism.
Then the same holds forWt+m(T ) → Wt+m(T ′). Theétale base change for the
de Rham-Witt complex shows that

Wt+m(T ′)⊗Wt+m(T ) WtΩ
•
T/R
∼= WtΩ

•
T ′/R

as complexes in the category ofWt+m(T ′)-modules. Together with the corre-
sponding fact forT/R replaced byT/S this shows that the assertion is local with
respect to théetale topology onSpec T . Hence we may assume that the map
S → T of R-algebras fits into a square

(4.5)

T ←−−− Sx x
R[T1, . . . Td, X] ←−−− R[X],

where the vertical maps aréetale. LetS ′ = R[X]. We first reduce to the case
that S = S ′. Suppose that (4.4) holds for the diagram of ringsR → S ′ → T .
Since anyWt(S

′)–linear derivation onWt(T ) vanishes onWt(S) (becauseWt(S)
is étale overWt(S

′)) it follows from the universal property of{WtΩ
•
T/S} asF–

V –pro-complex, thatWtΩ
•
T/S = WtΩ

•
T/S′. The left hand side in (4.4) may be

rewritten as follows:

WtΩ
1
S/R

L
⊗W (S) WtΩ

•
T/S = (WtΩ

1
S′/R ⊗Wt(S′) Wt(S))

L
⊗W (S) WtΩ

•
T/S

= WtΩ
1
S′/R

L
⊗W (S′) WtΩ

•
T/S = WtΩ

1
S′/R

L
⊗W (S′) WtΩ

•
T/S′ .
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Hence we may assume thatS = R[X]. By theétale base change property of the
de Rham–Witt complex we may also assumeT = S[Y1, . . . , Yd] is a polynomial
algebra as well. We will show that the derived tensor product in the triangle (4.4)
is quasi-isomorphic to the kernel of the second map.

Let T̃ = Wt(S)[Y1, . . . , Yd] be the canonical Witt–lift ofT with the mapT̃
σ→

Wt(T ), Yi 7→ [Yi]. By [L–Z] (3.8) this induces a quasi-isomorphismΩ•
T̃ /Wt(S)

→
WtΩ

•
T/S. Hence we obtain a morphism:

(4.6) WtΩ
1
S/R ⊗Wt(S) Ω•

T̃ /Wt(S)
[−1]→ WtΩ

1
S/R ⊗Wt(S) WtΩ

•
T/S[−1]

This arrow represents the derived tensor productWtΩ
1
S/R

L
⊗W (S) WtΩ

•
T/S[−1].

From 4.6 we obtain a morphism

(4.7) WtΩ
1
S/R ⊗Wt(S) Ω•

T̃ /Wt(S)
[−1]→ WtΩ

•
T/R,

which factors throughIt. Therefore we have to show that 4.7 induces a quasi-
isomorphism.

(4.8) WtΩ
1
S/R ⊗Wt(S) Ω•

T̃ /Wt(S)
[−1]→ It.

We consider Witt differentials inIt of the following type: To denote basic
Witt differentials inWtΩ

•
T/R we use weight functionsk : [0, d] → Z≥0[1/p

t−1],
where the argument0 corresponds to the variableX. We will consider basic Witt
differentialse(ξ, k,P) = et(ξ, k,P) as in [L–Z] Prop. 2.17.

Definition 1. Let T be a polynomial algebra overR. We say a differentialω ∈
WtΩ

•
T/R is of weightk if it is a sum of basic Witt differentials of the typee(ξ, k,P).

TheWt(R)-moduleWtΩ
•
T/R is the direct sum of its graded piecesWtΩ(k)•T/R.

The operatorsF , V , d respect this graduation as follows ([L–Z] Prop. 2.5):

F : WtΩ(k)•T/R → WtΩ(pk)•T/R

V : WtΩ(k)•T/R → WtΩ(k/p)•T/R

d : WtΩ(k)•T/R → WtΩ(k)•T/R

A differential ω in the integral part may be indentified with a differential of the
de Rham complexΩW (R)[X,T ]/W (R). In this case the concept of weight above
coincides with the usual concept for the de Rham complex of a polynomial algebra
(compare [L–Z]§2.1 and 3.3).

Lemma 4. Let ω1, ω2 ∈ WtΩ
•
T/R be differentials of weightk1 respectivelyk2.

Then the productω1ω2 has weightk1 + k2.
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Proof. By the remark above this is clear if both weightsk1 andk2 are integral. In
the general case we assume thatωi for i = 1, 2 are basic Witt differentials. We
write ωi = V uiω′i or d V uiω′i for i = 1, 2 andω′1 andω′2.

Let us begin with the caseω1 = V u1ω′1 andω2 = V u2ω′2. Without loss of
generality we may assume thatu1 ≥ u2. Our assertion follows from the formula:

ω1ω2 = V u1 (ω′1p
u2 F u1−u2ω′2)

Next we show that the expressionV
u1ω′1d

V u2ω′2 is of weightk1 + k2. Using the
Leibniz rule and what we already proved, we may assume thatu1 ≥ u2. Then the
expression becomes:

V u1 (ω′1
F u1−u2dω′2).

The assertion follows from the integral case. The rest of the proof is similiar.

From now on we assumek(0) = 0, i.e. X doesn’t appear in the basic Witt
differentials. We will denote byl ∈ Z[1/pt−1] a number with denominatorpu(l),
such thatu(l) ≥ 0.

Then we consider Witt differentials of the following 3 types:

a) e(ξ, k,P) F r
d[Xs], wherer, s ∈ Z≥0, s not divisible byp, ξ ∈ Wt(R).

b) e(ξ, k,P)d V u(l)
[Xpu(l)l], whereu(k) ≥ u(l) > 0

c) e(1, k,P)d V u(l)
(η[Xpu(l)l]), whereu(k) < u(l), η ∈ Wt−u(l)(R).

Lemma 5. Each element inIt is a unique sum of elements of the type above.

Proof. We begin showing that an element ofIt may be expressed as a sum of
elements of type a),b),c).It is generated as an abelian group by elements of the
form ωds whereω ∈ WtΩ

•
T/R is a basic Witt differential ands ∈ Wt(S). If ω

doesn’t contain the variableX we are almost done, because an elementds may be
written by the one-dimensional case of [L–Z] loc.cit. in the form

(4.9) ξ F r

d[Xs], or d V u(l)

(η[Xpu(l)l])

Assume for example thatds is of the second type in (4.9) andu(k) ≥ u(l).
We may writeω = V u(k)

ω1. We write:

ωds = V u(l)

( V u(k)−u(l)

ω1dη[Xpu(l)l])

This permits to place the constantη in the Witt differentialω. Hence we obtain
the type b) above. The type c) is obtained in a similiar way.

12



Next we consider the case, whereω contains the variableX. Let us assume
thatω is integral, i.e. is in the de Rham complex of the liftingWt(R)[X, T ]. In this
caseω = [X]eω′ or ω = F t

d([X]e[Y ]f )ω′. If we have the first equality we just
have to write[X]eds as a sum of basic Witt differentials. If the second equality
holds we find by the Leibniz rule:

F t

d([X]e[Y ]f )ds = F t

d([Y ]f ) F t

[X]eds

This expression may be written as a sum of Witt differentials of type a). Now
assume thatω is not integral and writeω = V u

ω′ of d V u
ω′ for some integralω′.

If the first equation holds we write:

ωds = V u

(ω′ F u

ds)

We apply what we proved to the expression in brackets. Then we remark thatV u

applied to an element of type a),b),c). is again an element of this type by standard
formulas [L–Z] Definition 1.4 and (1.16). By the former case this expression may
be written in the formω1ds1, whereω1 doesn’t contain the variableX. The case
ω = d V u

ω′ is similiar.
To show the uniqueness we remark that the elements in the list a), b), c) above

are all homogenous for the weight graduation by Lemma 4. Therefore we have to
show that for a fixed weight a sum of these elements over different weights can’t
be zero, if not all members of this sum are zero.

Consider the case a) and assume thatk is integral. Note thatr, s are fixed
in the sum. Since we are in the de Rham complex of a polynomial algebra the
multiplication by F r

d[Xs] can’t kill a differential form, which doesn’t depend on
X. By the independence of thee(ξ, k,P) we conclude that all members of the
sum must be zero. Ifk is not integral we have a sum of basic Witt differentials of
type V u

e(ξ, k′,P) andd V u
e(ξ, k′,P) with k′ primitive integral multiplied with

F r
d[Xs]. Assume that this expression is zero and applyd. Then we obtain for the

remaining sum:

d V u(k)

(
∑
P

e(ξP , k′,P) F (r+u)d[Xs]) = 0

We claim that the sum is zero. Indeed by Lemma this sum is a sum of basic Witt
elements of primitive integral weight. There the operatord V u(k)

acts injectively
(compare: [L–Z] Theorem 2.24). Hence by the integral case all terms in this sum
are zero. Going back to the situation before applyingd, we see that no terms
V u(k)

e(ξ, k′,P) can appear in our sum. Doing our argument again the case a)
follows.

The same argument applies if we want to show our assertion in case b).
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Finally we consider the case of a sum of elements of type c). We use the
Leibniz rule:

e(1, k,P)d V u(l)
(η[Xpu(l)l]) =

±d(e(1, k,P) V u(l)
(η[Xpu(l)l]))∓ V u(l)

(η[Xpu(l)l])e(1, k,P)

The right hand side is a sum of two basic Witt differentials for different partitions.
Indeed for the first summand the first intervall of the partition is zero but for the
second not. Therefore in this case the assertion follows from the independence of
basic Witt elements.

We will now finish the proof of Proposition 2. It suffices to show that the
map (4.8) is a quasi-isomorphism. We know by [L–Z] Prop. 2.1 that the elements
e(1, k,P) ∈ Ω•

T̃ /Wt(S)
form a basis overWt(S), wherek : [1, d] → Z≥0 runs

over all integral weights. Hence any element in the abelian groupWtΩ
1
S/R ⊗Wt(S)

Ω•
T̃ /Wt(S)

is a unique sum of elements of the following type:

1) ξ F r
d[Xs]⊗ e(1, k,P), wherer, s ∈ Z≥0, s not divisible byp, ξ ∈ Wt(R).

2) d V u(l)
(η[Xpu(l)l])⊗ e(1, k,P), where0 < u(l), η ∈ Wt−u(l)(R).

These elements are mapped by (4.8) exactly to elements of type a) and c) above
with k integral. Therefore an element in the cokernelIt of (4.8) is a unique sum
of elements of type a), b), c) withk not integral. By [L–Z] Prop.2.6 the cycles
in the complexIt are generated by those elements, where the first intervall of
the partitionP is empty. But these elements are also boundaries. This proves
Proposition 2.
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