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We generalize ideas of Bloch [Bl] about de Rham-Witt connections to a rel-
ative situation, and apply this to construct the Gauss-Manin connection in crys-
talline cohomology using Witt differentials.

Let S be a scheme such thats nilpotent onS. Let X be a scheme ovef.

Then the Witt differential$V, Q) are defined in [L-Z] for each natural number

t. These sheaves oXi satisfy the same exact sequences and functorialities as the
usual Kahler differentials: LetX — Y — S be morphisms of schemes. Then
there is an exact sequence of sheaveXon

Wt((')x) ®Wt((j)y) Wtﬂ%//s — Wtﬂﬁ(/s — WtQi(/y — O

The reader will deduce this easily from the isomorphism (4.1).
Assume moreover that — Y is a closed immersion defined by a sheaf of
idealsa C Oy . One can proof in the same way that there is an exact sequence:

Wi(a)/Wi(a)? % W(Ox) @wioy) Wil s — Wildk g — 0

The structure oV} ¢ in the case wher& is an affine space oves is
determined in [L-Z] Prop. 2.17.

Let £ be a locally fredl;(Ox) module onX. A de Rham-Witt connection
on E is a homomorphism of sheaves of abelian groupxon

(0.1) Vi E— Wilys ®wiox) E,
which satisfies the following relations:
V(éx) =dé @ x+ &V,

where¢ andx are sections dil’;(Ox ) andE respectively. The operat&f induces
mapsiW, QY g @wiox) E — WtQ’;/ls ®w,(0x) £, which we denote by the same
letter V. We call the de Rham-Witt connection (0.1) integrabl&# = 0. A de



Rham-Witt connection induces a connection ondhe-module £ @y, o) Ox.
If this connection is nilpotent [K], we caW nilpotent.

We denote byV;(S) the topological spac€ endowed with the structure sheaf
W(Os). This is a scheme. We consider the crystalline sttugs(X/W,(S))
with respect to the canonical divided powersldp(S).

Theorem. Let X /S be a smooth scheme. Then the category of locally free crystals
of finite rank is equivalent to the category of locally fiég(O x )-modules of finite
rank endowed with a nilpotent, integrable de Rham-Witt connection.

This was proved by Bloch i is the spectrum of a perfect field. LEtbe a
crystal onX as indicated. The starting point of the proof is the construction of
Etesse [E] of the de Rham-Witt complex with coefficient&iaver a perfect base
S and more recently over arbitrafyin [L-Z].

Let £ be the value of the crystél at the pd-thickeningX — W;(X). The
crystal defines an integrable nilpotent de Rham-Witt connection (0.£) dtence
we obtain a complex:

v 1 v 9 v
E — WtQX/S Bw,ox) £ —— I/VtQX/S Bwyox) B —— -
This is called the de Rham-Witt complex with coefficientsin
We obtain a functor

(0.2) E— (E,V)

from the category of finite locally free crystals to the category of finite locally free
modules with a de Rham-Witt connection.

It follows that this functor is fully faithful. Indeed, Iéf’ be a second crystal.
We want to assign to a homomorphigi, V) — (E’, V') a homomorphism of
crystals. This is a local question oxi. Therefore we may assume that there is
a Witt-lift Y/W,(S),i.e. Y is a smooth scheme ovér;(S) which lifts X, with a
morphismi¥,(X) — Y satisfying some properties ([L—Z] Definition 3.3). By the
Poincaé lemma [B—O] (compare [L—Z] 3.56) we have an resolutiorfEdfy the
complex of crystald.y (Qyw,s) ® Ey). The comparison with the de Rham-Witt
complex yields a quasi-isomorphim:

(03) E& Ly(WtQX/S ®Wt((’)x) E)

A homomorphism £, V) — (E’, V') induces a homomorphism of the de Rham-
Witt complexes with coefficients iy resp. £E’. Applying the functorL, one
obtains a morphism crystals — E’ from (0.3). Hence the functor (0.2) is fully
faithful. The assertion of the theorem is therefore local for the Zariski topology on
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X. For the proof we assume that a Witt-Iift of X is given. Let(£, V) be an in-
tegrable de Rham-Witt connection. The arguments of Bloch with modifications in
the relative case yield a locally fr&2,-module()M, V) with an integrable con-
nection that induceg&F, V) by the Proposition below. ¥/ is nilpotent therV ,,

is nilpotent and therefore defines the desired cryistalhis proves the theorem.

We formulate the proposition in terms of rings rather than schemesk bet
aring. LetA be anR-algebra which i€tale over a polynomial ring ovet. We
choose a Witt liftB/W;(R) as in the proof of [L—Z] Proposition 3.2. The map
B — W;(A) induces a map of complexes:

(0.4) Bwir) — Willy/r

This map is injective. Indeed, for a polynomial algebr¢his follows from loc.cit.
Proposition 2.17. The general case is deduceéthle base change for the de
Rham-Witt complex.

Proposition 1. Let M be a freel?;(A)-module with an integrable connection:
(0.5) VM — Wiy p Qw,a) M.
Then there is a basis, . .., m,, of M such that

mq mq
(0.6) \Y : =0® : :

My, My,
where the entrie§;; of then x n-matrix © are in the image of the map (0.4).

Let us assume thét is noetherian and that the Frobenius morphiSnab :
S/pS — S/pSis finite. This implies that the schem#g (X)), W, (Y"), W,(S) are
noetherian.

Let X — Y — S be smooth morphisms such thats is of relative dimension
1. Then we construct an exact triangle

L
(0.7) Wiy)s ©wioy) Wiy )y — Wilks — Wilk)y

in the derived category of Zariski sheaves ®n The reader may wonder where
the third side of this triangle is. The more precise statement is as follows: The
multiplication in Wiy s induces a natural map

WtQ%’/S Qw,(0y) WtQ}(_/lY - VVtQB(/S

whose image is clearly in the kernel of the second map of (0.7). We choose a
complexC which represents the first complex in (0.7). From the last map above
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we obtain a mag’' — Wi /g whose image is a fortiori in the kernel of the
second map of (0.7). Hence we obtain a map to the mapping cone of the last
morphism in (0.7):

Cl1] = Wiy (1] & Wil )y

The exact meaning of the words “exact triangle” is that the last morphism is a
quasi-isomorphism. We note that this statement is local for the Zariski topol-
ogy onX. Therefore the global statement (0.7) follows from the local statement
Proposition 2 which we prove below.

Applying the projection formula ([H] page 106, 5.6) to the morphism
Wi(X) — W, (Y) we obtain an isomorphism

L L
Ra. (Wiy s @w, o) Wiy y) = Willyss @w(oy) Ry

Hence the triangle (0.7) induces a morphism

L
Ra, Wik )y — Wiy s Ow(oy) R Wiy

By the comparison theorem [L—Z] Theorem 3.5 the hypercohomology groups
of Ra, W {y,y are the crystalline cohomology groufs,, (X/W:(Y')). Let us
make the assumption that these groups are locallyiffg€®, - )-modules for alk.
Then we deduce the Gaul3-Manin connection:

V: H!

cris

(X/We(Y)) — Wiys ®w(oy) Hasa(X/WA(Y)) .

The nilpotence of this connection follows from [K] since it is by definition a ques-
tion fort = 1. Since we are in the case of relative dimensionis automatically
integrable.

1 Witt—Differentials modulo Ir

Let A be anR-algebra. Let be a natural number. We s&t = VW, (R) C
W(R). To prove the proposition we filter the Witt-differentiag. 24,z by pow-
ers of the ideallz. We assume thai is nilpotent in R. Then the ideal’y is
nilpotent.
We define
Wth&/R - WtQ;l/R/IRWtQ;X/R

This is a differential graded algebra. In particular we have:

Wi r = Wi(A) = Wi(A) /[ TRW(A) .



We remark that the Teichiatler representative — [z] induces a ring homomor-
phismR — W;(A). HenceW,(2;,  is a complex ofW;(A)—modules with an
R-linear differential
d: Wiy — W
We denote the image of
YW — Wi,

by ZW,Q3, ) and in degree 0 simplf, = IWtQ%/R = YW,_1(A)/IgW;(A)
(note that there is no Verschiebung (2,4, z, and we have an action éf only
if pR = 0). IWEY R is an ideal in the differential graded algebﬂaQ;l/R. We
obviously have
(IWtQA/R)Q =0 )

becauséw - Yn =p - Y(wn) =1 - Y(wn).

We define a second ideaTWtQ;l/R as the kernel of the homomorphism of
differential graded algebras

We have
(1.2) IWQ i+ AW n © FIWQ 5

If A/R is smooth, we will see that (1.2) is a direct sum decomposition and that
the differentiald is injective, i.e. we have

and there is an exact sequence
(1.3)

0 —— Iy —— Wi n/ Iy —— QU — 0.
A Witt-lift B/W;(R) with B — W;(A) defines a magly, vy, ) — Wikl
which induces — by reduction modulg; — a map(2;, , — W2, r, hence a
Witt-lift defines a splitting of the sequence (1.1). In particular a Witt-lift defines
(for A/ R smooth) a direct decomposition
Wy g = IWQY p © dIWQL L @ QY

1.4
(1.4) w = T + dns + 3

We writedw = 7. Letpr: W@, p — Wi}, be the projection of), .. Then
pr is homotopic to the identity:
(id — pr)(w) = dow + ddw .

Hence the complexes/tﬂ;l/R andQ;l/R are homotopy equivalent.
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Remark.The differentiald: ZW,(2%, , — FWiYy n/IWikYy , is @ homomor-
phism othQ;/R—modules for the action from the right:

d(Ynw) = d"nw + (=1)**"Vndw = d"nw mod IWiy R -
It remains to prove the following.

Lemma 1. If A/R is smooth, then we have
IWtQ:Ll/R @ dIWtQ;‘/R - thQA/R .

Proof. By [L—Z] (2.43) it suffices to show that the sum is a direct sum. For this it
suffices to show that thig’;(A)—module homomorphism

(1.5) d: TWy 5 — FW r/ IV 5

is an isomorphism.

Let P = R[Ty,...,T,] be a polynomial algebra. Assume thais étale over
P. We obtain (1.5) from the corresponding morphismfoby tensoring with the
étale morphisni?;(P) — W;(A). Hence we may assumé = R[T1,...,T,].
In this case each element Bf,QY/, , is a unique sum of basic Witt differentials
e(&, k, Iy, ..., I;) by [L—Z] Proposition 2.17. Recall that a weight: [1,d] €
Z>0[1/p] in such a sum has denominajér< p’. We denote by (¢, k, Iy, ..., I;)
the images of the basic Witt diﬁerentiaIsWtQQ/R. Then the claim in Lemma 1
follows from the following. O]

Lemma 2. Letw € Wthp/R- Thenw has a unique representation

w= Y &k To,... L)+ Y &k Io,... L)

k integral k frac

with &, € R for k integral andé, € V'W,_(R)/pV"'W;_.(R) for k fractional
such thap" is the denominator of. The elements iﬁWtQi‘/R are the elements
with a representation

w= Y e& k. I,....1).

3%
k frac

Proof. Lemma 2 follows from loc.cit. Prop. 2.17 in conjunction with Proposition
2.5. O]



2 Integrable connections onW;(A)—modules
Let M be a freeV;(A)—-module of rank:. We consider a connection
V: M — WtQAIA/R ®Wt(A) M

and callV integrable, iftV?: M — W,Q% @, (a) M vanishes. Letv, ..., m,
be a basis oM. We write

mq mq
(2.1) \Y : =0®

My s

where® is an x n—matrix with entries inW,}, .. We abbreviate (2.1) as
V(m) = © ® m, and we call® the connection matrix.

Lemma 3. Let (M, V) be an integrable connection. Then there is a basisf
M, such that the connection matrix has coefficien®ipn, C W,Q), .

Proof. We first show the analogous claim for the induced connection
v: M — (WtQ}Lx/R/IWtQ,lq/R) ®Wt(A) M.

By (1.4) the connection matri® of V is of the form© = w + dp with w €
M(n xn, ) andp € M(n x n,T). Then definen’ = (1 — p)m. We get

V' =d(1-p)@m+(1-pw@m+(1-p)dpem

(2.2) B , B , )
=wem —pdp@m=w®@m mod IWy, O M.

Hence we can find a basis @ft such the®® has coefficients 2}, . Then the
connection matrix© with respect to this basis has the fofh = w + n with
w € M(n xn, Q) p)andn € M(n x n,IW,Q} ). Then we have

Vim=dvo@m+di@m+uw@m+wn@m+nwe@m+n’@m.

We consider the matrix of this mag?: M — WtQi/R ® M corresponding to
the decomposition (1.4)

(2.3) (wn + nw) @ (dn) ® (dw + w?) .

We remark that)> = 0 becausgZW;Q4,z)? = 0. SinceV is integrable, all
summands in (2.3) are zero, in particular= 0, hencey = 0. So the connection
matrix © has coefficients i}, ;.. Lemma 3 follows. O
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3 Proof of Proposition 1

For A/ R smooth we consider the filtraticﬁletQ;l/R of the de Rham-Witt com-
plex. We set

WO 5 = W r/ oW 5

and
G = IeWisty p /T Wi -

Then we have a canonical map
(3.1) P IWSr — G

Assume thaz — W,(A) is a Witt-lit over Wy(R) andQy, .y, p) — W2y, the
induced map. Similarly to (1.4) we find a direct sum decomposition

(3.2) Gt = ' IWQ p © P AIW QY 3, © TR/ I ©r Qg

We start with the connectiox: M — WtQi‘/R ®w, 4y M of Proposition 1. This
induces connections o, = M /I, M

vl M, — Wt(l)QA/R ® y M

w® (4
Assume we have a basis of M; such that
B3) VYm=0cm with ©ecMnxn Qpuw,m/lEwnw) -

Since the existence of such a base was showhot in section 2 it is enough to
show the following:

Claim. There is a liftingm of m to M, ; such that (3.3) holds far+ 1.
Proof. Letm be any lifting. Then (3.2) implies

V) m =0em+pnom+pdpom

with p, n having coefficients iW,Q°°" and® in Q}, . /T Qs s ) - NOW
we consider the induced connection

Hl My — W R/p IWtQA/R ® l+1) Mz+1
VI (m) =0 @m+pldpom.
Choosen’ = (1 — p'p)m as new basis. As in (2.2) we can write

V(Z—H)m/ Sy ®m/ _|_pl17 ®m/ )
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We compute
(v(l+1))2m/ _ (d@ + @2) ® m/ ‘|—pl(@77 + 77@) (02 m/ _|_pld77 X m/ .

SinceV" is integrable, we havéo + ©% € M(n x n, IL/ I ®5 Q3 5). Since
p'(©n +nO) has coefficients imlIWtQi/R, the decomposition (3.2) implies that
pldn = 0 and hence'n = 0. The claim follows. O

4 The Gaul3—Manin connection in the smooth case

Consider ring homomorphism® — S — T. In the graded pro-algebWtQ'T/R
we can consider the idedl, generated by allis for s € W;(S). ThenZ, is
invariant underd, and the pro-idea{Z,} is invariant undet?” andV. We show
the invariance undef’. A general element of; is a sum of elements of the
form wds with w € W,Qp/p ands € Wy(S). Lets = (xg,21,22,...) and
p = (x1, 29, z3,...). Thenfds = [z8 "] d[zo] + dp and we have

Flwds) = Fwfds = Fw[ah " d[zo] + Fwdp .

This is an element iff;_;.
The canonical epimorphisﬂthQ}/R — WtQ'T/S factors obviously through a
map

(41) WtQ%/R/It — WtQ'}/S’ .

The properties aof; show that the left hand side ig&V —pro-complex in whichl
becomes &V (S)-linear map. Hence the map (4.1) has a section by the universal
property ofi1/; 22, /5" This section is surjective, because it mdpdort € W,(T'),

to the same element ﬁthQ;F/R, and these differentials generatg{),, . There-

fore the map (4.1) is an isomorphism and we have an exact sequence

0 — 17, — Wildp g — Wid3g — 0.
We also have a sequence of maps, in fact a complex for/leach
(4.2) Wi, Qwi(s) Wiy — Wil — WiQg,s — 0.

Let now S/R be smooth of relative dimension 1, hend& ., = 0 for i >

2. This implies that the mapd/,Qg, , ®w,s) Z — Wiy, are zero (because
dsi1dsy = 0 for s1,s5 € Wy(S)). The sequence (4.2) factors through a sequence
of complexes
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From now on we assume thais nilpotent inR, and that the Frobenius mor-
phism onR/pR is a finite map. Moreover all morphisnig — S — T will be
smooth andS/R will be of relative dimension 1. In the following we will prove
that (4.3) becomes a distinguished triangle when we replace the tensor product on
the left hand side by the derived tensor product. More precisely we show:

Proposition 2. Under the above assumptions the sequence (4.3) defines a distin-
guished triangle in the derived categoryldf, (R)-modules.

L
(44) WtQ}S'/R ®W(S) WtQ%/S[—l] — WtQ’}“/R — WtQ’}“/S y

The question is local for thetale topology orspec T'. To see this we choose
a numbenn such thap™ annihilatesi;(R) and consequently all modules in the
triangle above. The individual modules in the complexes involvedigrd")-
modules. We consider them 8§ ,,,(7')-modules via restriction of scalafs™ :
Wiim(T) — Wi(T). Then the complexes involved are complexe$igf.,,(7')-
modules with linear differentials. L&t — T’ be a faithfully flatétale morphism.
Then the same holds fo¥;.,,(7) — W, (T"). Theétale base change for the
de Rham-Witt complex shows that

Wi (T') @wipir) Welky g = Wil 5

as complexes in the category f,.,,(7")-modules. Together with the corre-
sponding fact fofl'/ R replaced byl’/S this shows that the assertion is local with
respect to thettale topology orSpec 7. Hence we may assume that the map
S — T of R-algebras fits into a square

T — S
(4.5) T T
RIT\,... Ty X] —— R[X],

where the vertical maps afdale. LetS’ = R[X]. We first reduce to the case
thatS = S’. Suppose that (4.4) holds for the diagram of ridgs— S’ — T.
Since anyiV;(S")—linear derivation o, (7") vanishes oiV;(.S) (becauséV;(S)

is étale overlV;(5")) it follows from the universal property ofiV:(25. ¢} as F—
V—pro-complex, thatV,(2}. o = W23 .. The left hand side in (4.4) may be
rewritten as follows:

L L
Wi r @w(s) Wil /s = (Wis g @wi(s1) Wi(S)) @w(s) Wiys

L ]]_A
= WtQ}S'//R ®W(S’) WtQ%/S = WtQ}g//R ®W(S/) WtQ%/S/ .
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Hence we may assume thét= R[X]. By theétale base change property of the
de Rham-Witt complex we may also assume- S[Y3,...,Y;] is a polynomial
algebra as well. We will show that the derived tensor product in the triangle (4.4)
is quasi-isomorphic to the kernel of the second map. B

LetT = W,(S)[Y1, . .., Yy] be the canonical Witt-lift of” with the mapl” =
Wi(T), Y; — [Yi]. By [L-Z] (3.8) this induces a quasi-isomorphigm%/wt(s) —
WtQ;F/S. Hence we obtain a morphism:

(4.6) WtQ}g/R ®w,(s) 2 — WtQ}S‘/R Qw,(S) WtQ.T/S[_l]

%/Wt(s> =1

L
This arrow represents the derived tensor prodiig® , ®w(s) Wi, g[—1].
From 4.6 we obtain a morphism

(47) WtQ‘ls«/R ®Wt(5) Q [—1] — Wth.l“/Ra

%/Wt(s)
which factors througlt;. Therefore we have to show that 4.7 induces a quasi-
isomorphism.

(48) WtQ,IS'/R ®Wt(5) Q —1] — It'

%/Wt(S)[

We consider Witt differentials i?; of the following type: To denote basic
Witt differentials inW,€23., , we use weight functions : [0, d] — Zso[1/p 1,
where the argumerttcorresponds to the variabl. We will consider basic Witt
differentialse(¢, k, P) = e,(&, k, P) as in [L—Z] Prop. 2.17.

Definition 1. Let 7" be a polynomial algebra ovek. We say a differentiab €
Wik g is of weightk if it is a sum of basic Witt differentials of the typg, &, P).

TheW,(R)-modulelV,€23. 1 is the direct sum of its graded piec@$<2(k) .
The operatorg’, V, d respect this graduation as follows ([L—Z] Prop. 2.5):

Wl (k) —  WSApk)s g

d: WtQ(k)}/R — WtQ(k>§“/R
A differential w in the integral part may be indentified with a differential of the
de Rham compleXdy z)x.r)/w(r)- In this case the concept of weight above

coincides with the usual concept for the de Rham complex of a polynomial algebra
(compare [L-Z]§2.1 and 3.3).

Lemma 4. Let w,wy € WtQ'T/R be differentials of weighk; respectivelyk;.
Then the product,w, has weighte; + ;.
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Proof. By the remark above this is clear if both weightsandk, are integral. In
the general case we assume thafor i = 1,2 are basic Witt differentials. We
writew; = V"W ord V"W for i = 1,2 andw; andwy.

Let us begin with the case; = V"'w| andw, = Y"™w). Without loss of
generality we may assume that > u,. Our assertion follows from the formula:

V”l( /oup FU17U2 /)

Next we show that the expressidn” w}d V"*w} is of weightk, + k,. Using the
Leibniz rule and what we already proved, we may assumeuthat u,. Then the

expression becomes:
VU] T duy).

The assertion follows from the integral case. The rest of the proof is similiar.

From now on we assumi0) = 0, i.e. X doesn't appear in the basic Witt
differentials. We will denote by € Z[1/p*~'] a number with denominatgr®),
such that(7) > 0.

Then we consider Witt differentials of the following 3 types:

a) e(&, k,P) I d[X®], wherer, s € Z=, s not divisible byp, £ € W,(R).
b) e(&, k, P)d V[ XP""Y, whereu(k) > u(l) > 0
c) e(1,k, P)d V" (n[x?""), whereu(k) < u(l), n € W, (R).
Lemma 5. Each element ifT; is a unique sum of elements of the type above.

Proof. We begin showing that an element Bf may be expressed as a sum of
elements of type a),b),c); is generated as an abelian group by elements of the
form wds wherew € W25, , is a basic Witt differential and € W,(5). If w
doesn’t contain the variabl® we are almost done, because an elermemhay be
written by the one-dimensional case of [L—Z] loc.cit. in the form

(4.9) erdx®), or V" (pxr")

Assume for example thats is of the second type in (4.9) andk) > u(l).
We may writew = V" w,. We write:

wds _ Vu(l)( Vu(k)fu(l)wldn[Xpu(l)l])
This permits to place the constapnin the Witt differentialw. Hence we obtain

the type b) above. The type c) is obtained in a similiar way.

12



Next we consider the case, whesecontains the variabl&'. Let us assume
thatw is integral, i.e. is in the de Rham complex of the liftiig(R)[ X, Z]. In this
casew = [X]%w orw = Fd([X]°[Y]L)w'. If we have the first equality we just
have to write[ X |°ds as a sum of basic Witt differentials. If the second equality
holds we find by the Leibniz rule:

Pa(x)e s = Ta(y)d) T [X]ds

This expression may be written as a sum of Witt differentials of type a). Now
assume thav is not integral and writey = V"w’ of d V"’ for some integral.’.
If the first equation holds we write:

wds = V" (W' ds)

We apply what we proved to the expression in brackets. Then we remarK'that
applied to an element of type a),b),c). is again an element of this type by standard
formulas [L-Z] Definition 1.4 and (1.16). By the former case this expression may
be written in the formw,ds;, wherew; doesn’t contain the variabl&. The case
w=d""W is similiar.

To show the uniqueness we remark that the elements in the list a), b), ¢) above
are all homogenous for the weight graduation by Lemma 4. Therefore we have to
show that for a fixed weight a sum of these elements over different weights can'’t
be zero, if not all members of this sum are zero.

Consider the case a) and assume théat integral. Note that, s are fixed
in the sum. Since we are in the de Rham complex of a polynomial algebra the
multiplication by 7" d[X*] can't kill a differential form, which doesn’t depend on
X. By the independence of th&¢, k, P) we conclude that all members of the
sum must be zero. K is not integral we have a sum of basic Witt differentials of
type Ve(&, K, P) andd V' e(¢, K, P) with k' primitive integral multiplied with
" d[X*]. Assume that this expression is zero and applyhen we obtain for the
remaining sum:

a3 e(ép, ¥, P) FHIAIXC]) = 0
P

We claim that the sum is zero. Indeed by Lemma this sum is a sum of basic Witt
elements of primitive integral weight. There the operatd?“ acts injectively
(compare: [L—Z] Theorem 2.24). Hence by the integral case all terms in this sum
are zero. Going back to the situation before applyingve see that no terms
V"“)e(g,k’,P) can appear in our sum. Doing our argument again the case a)
follows.

The same argument applies if we want to show our assertion in case b).
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Finally we consider the case of a sum of elements of type c). We use the
Leibniz rule:

e(1,k, P)d V" (n[x»"") =
+d(e(1,k,P) V" (X)) F VO ([ X7 ))e(1, k, P)

The right hand side is a sum of two basic Witt differentials for different partitions.
Indeed for the first summand the first intervall of the partition is zero but for the
second not. Therefore in this case the assertion follows from the independence of
basic Witt elements. O

We will now finish the proof of Proposition 2. It suffices to show that the
map (4.8) is a quasi-isomorphism. We know by [L-Z] Prop. 2.1 that the elements

e(l,k,P) € Q%/Wt(S) form a basis oveiV;(S), wherek : [1,d] — Zsq runs

over all integral weights. Hence any element in the abelian gV(zig.fDls/R Qw,(S)
Q%/Wt(S) is a unique sum of elements of the following type:

1) £d[X?*) @ e(1, k, P), wherer, s € Zq, s not divisible byp, £ € W,(R).
2) d V" (X)) @ e(1, k, P), where0 < u(l), n € Wy_y)(R).

These elements are mapped by (4.8) exactly to elements of type a) and c) above
with & integral. Therefore an element in the cokerfedf (4.8) is a unique sum

of elements of type a), b), c) with not integral. By [L-Z] Prop.2.6 the cycles

in the complexZ, are generated by those elements, where the first intervall of
the partition? is empty. But these elements are also boundaries. This proves
Proposition 2.
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