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ABSTRACT. We prove p-adic uniformization for Shimura curves attached to the group of uni-
tary similitudes of certain binary skew hermitian spaces V' with respect to an arbitrary CM
field K with maximal totally real subfield F. For a place v|p of F that is not split in K and for
which V;, is anisotropic, let v be an extension of v to the reflex field E. We define an integral
model of the corresponding Shimura curve over Spec O (,) by means of a moduli problem for
abelian schemes with suitable polarization and level structure prime to p. The formulation of
the moduli problem involves a Kottwitz condition, an FEisenstein condition, and an adjusted
invariant. The first two conditions are conditions on the Lie algebra of the abelian varieties;
the last condition is a condition on the Riemann form of the polarization. The uniformization
of the formal completion of this model along its special fiber is given in terms of the formal
Drinfeld upper half plane Q F, for F,. The proof relies on the construction of the contracting
functor which relates a relative Rapoport-Zink space for strict formal O, -modules with a
Rapoport-Zink space of p-divisible groups which arise from the moduli problem, where the
Op,-action is usually not strict when F, # Qp. Our main tool is the theory of displays, in
particular the Ahsendorf functor.
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1. INTRODUCTION

1.1. History of uniformization. One of the major results of the Mathematics of the 19th
century is the uniformization theorem. It states that any non-singular projective algebraic curve
X of genus g(X) > 2 can be uniformized, i.e., can be written as

X ~T\Qp, (1.1.1)

where Qp = P!(C) \ P1(R) is the union of the upper and the lower half plane and I' denotes a
discrete cocompact subgroup of PGLy(R). This notation reinforces the analogy with the p-adic
uniformization discussed below. The history of this theorem is very complicated, and involves the
names of many mathematicians, among them Poincaré, Hilbert and Koebe, comp. [12]. Inspired
by the uniformization theorem, Poincaré gave a systematic construction of cocompact discrete
subgroups of PGLy(R). For this he used the exceptional isomorphism between inner forms of
PGL; and special orthogonal groups of ternary quadratic forms. In fact, for his construction, he
used arithmetic subgroups of the special orthogonal group of an indefinite anisotropic ternary
quadratic form over Q, cf. [12].
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Now let p be a prime number. The history of the p-adic uniformization of algebraic curves
starts with Tate’s uniformization theory of elliptic curves. It turns out that not all elliptic
curves over p-adic fields admit a p-adic uniformization, but only those with (split) multiplicative
reduction [30, §6].

The next step was Mumford’s p-adic uniformization theory of algebraic curves of higher
genus, [23]. Again, it turns out that not all such algebraic curves over p-adic fields admit a
p-adic uniformization by an admissible open subset of P!, but only those with totally degenerate
reduction [23]. In view of Mumford’s results, it becomes interesting to single out classes of
algebraic curves with totally degenerate reduction. Such classes are exhibited by Cherednik’s
theorem [7].

Cherednik’s theorem states that Shimura curves associated to certain quaternion algebras
over a totally real field F' admit p-adic uniformization. The quaternion algebra is required to be
split at precisely one archimedean place w of F (and ramified at all other archimedean places),
and to be ramified at a non-archimedean place v of residue characteristic p. In this case, the
reflex field can be identified with F. Then one obtains p-adic uniformization by the Drinfeld
halfplane associated to F),, provided that the level structure is prime to v. Cherednik’s theorem
implies that if X is a connected component of the Shimura tower for such a level, considered as
an algebraic curve over F, then there is an isomorphism of algebraic curves over F,,

X ®p F,~(T\Qp,) ®F, F,. (1.1.2)

Here Qp, = IF’};U \ P}(F,) denotes the Drinfeld upper halfplane for the local field F,, and T
denotes a discrete cocompact subgroup of PGLa(F,). Recall that Qp, is a rigid-analytic space
over F,. The isomorphism is to be interpreted as follows: the rigid-analytic space I\Qp,
is (uniquely) algebraizable by a projective algebraic curve over F,. After extension of scalars
F, — F,,, there exists an isomorphism as in . We thus see that allows us to pass
from the original complex uniformization X ® C ~ I'\Qg, where T" is a congruence subgroup
maximal at v, to p-adic uniformization.

Let us comment on the proof of Cherednik’s theorem. When F' = Q, these Shimura curves
are moduli spaces of abelian varieties with additional structure, and Drinfeld [9] gave a moduli-
theoretic proof of Cherednik’s theorem in this special case. Furthermore, he proved an ‘integral
version’ of this theorem (which has the original version as a corollary). This integral version
describes a concrete model of the Shimura variety over SpecOp () and a description of the
formal completion along its special fiber in terms of a formal scheme version of Qg . It relies
on a theorem on formal moduli spaces of p-divisible groups, which is in fact the deepest part of
Drinfeld’s paper. When F' # Q, Cherednik’s Shimura curves do not represent a moduli problem
of abelian varieties, and Cherednik’s method of proof is indirect and apparently uses Ihara’s
theory of elliptic elements in congruence monodromy problems.

There are also higher-dimensional versions of p-adic uniformization. Drinfeld’s method has
been generalized by Rapoport and Zink [27] to Shimura varieties associated to certain fake
unitary groups. These are associated to central division algebras over a CM-field equipped with
an involution of the second kind; for Rapoport-Zink uniformization, one has to assume that
the p-adic place of the totally real subfield splits in the CM-field. This higher-dimensional
generalization also includes integral uniformization theorems. In [27], these integral uniformiza-
tion theorems appear as a special instance of a general non-archimedean uniformization theorem,
which describes the formal completion of PEL-type Shimura varieties along a fixed isogeny class.
In the case of p-adic uniformization, the whole special fiber forms a single isogeny class.

The method of [27] has been applied by Boutot and Zink [5] to prove variants of Cherednik’s
original theorem by embedding Cherednik’s Shimura curves into Shimura curves obtained by the
Rapoport-Zink method; however, the integral uniformization theorems in [5] are rather weak in
that they only show that there exists some integral model of the Shimura curve for which one
has integral uniformization.

A variant of Cherednik’s method has been developed by Varshavsky [31] [32] to obtain p-
adic uniformization of certain higher-dimensional Shimura varieties associated to fake unitary
groups, again at a split place. We refer to Boutot’s Bourbaki talk [3] for an account of all these
developments.
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In the present paper, we deal with Shimura curves attached to unitary similitude groups
associated to anti—hermitiarﬂ vector spaces V of dimension 2 over a CM-field K with totally
real subfield F' of arbitrary degree. Our results generalize those in [I8], where the case F = Q
is considered. Like Cherednik, we assume that V is split at precisely one archimedean place w
of F' (and ramified at all other archimedean places). We also assume that V' is ramified at a
non-archimedean place v of residue characteristic p of F. However, in contrast to the cases of
p-adic uniformization mentioned above, we assume that v does not split in K. Of course, these
Shimura curves are closely related to the Shimura curves considered by Cherednik (we refer to
[18] for a general discussion of the relation between quaternion algebras and two-dimensional
hermitian vector spaces). However, they are different. In particular, they have the enormous
advantage that they always represent a moduli problem of abelian varieties. Our uniformization
theorem is optimal when the level structure imposed is prime to p, in the sense that it extends
to an integral uniformization that allows an explicit interpretation of the points in the reduction
modulo p.

As in Drinfeld’s approach, our uniformization theorem relies on a theorem on formal moduli
spaces of p-divisible groups. In fact, the main work in proving our theorems is to establish an
isomorphism of our formal moduli spaces with the moduli space of Drinfeld. Such an isomorphism
is also constructed by Scholze and Weinstein [29]. Their construction relies on Scholze’s theory of
local Shimura varieties and his integral p-adic Hodge theory, as well as on results in a preliminary
(unpublished) version of the present paper on local models. Our construction here is more direct
and more elementary; it relies on the theory of displays, cf. [33].

Drinfeld’s version of Cherednik’s theorem for F© = Q has found numerous arithmetic ap-
plications, to level raising, level lowering and bounding Selmer groups, at the hands of Ribet,
Bertolini, Darmon, Nekovar and many others, comp. also the references in the introduction of
[18]. It is to be hoped that our direct construction is the basis of similar such applications for
general totally real fields F'.

Our results are an expression of the exceptional isomorphism between an inner twist of the
adjoint group of GLo and an inner twist of the adjoint group of Us. Just as for Poincaré’s excep-
tional isomorphism of inner forms of PGLs and special orthogonal groups of ternary quadratic
forms, there is no higher rank analogue.

1.2. Global results. Now let us state our global results. Let K be a CM-field, with totally
real subfield F. We denote the non-trivial F-automorphism of K by a — a. Let V be a two-
dimensional K-vector space, equipped with an alternating Q-bilinear form ¥: V' x V — Q such
that

Y(az,y) = Y(z,ay), z,y€V,ac€K. (1.2.1)
There is a unique anti-hermitian form s on V' such that
Trgq, ax(z,y) = Y(az,y), x,yeV,ac K. (1.2.2)

Conversely, the anti-hermitian form 3¢ determines the alternating bilinear form 1 with .
We say that s arises from v by contraction. Recall that anti-hermitian spaces V' are determined
up to isomorphism by their signature at the archimedean places of F' and their local invariants
inv, (V) at the non-archimedean places v of F. Let w be an archimedean place such that V,, has
signature (1,1) and such that V. is definite for all archimedean places w’ # w. Let us be more
precise. Let ® = Homg.a1g(K,C). Let r be a generalized CM-type of rank 2, special w.r.t. w,
i.e., a function
r:®— Zxo, P Ty, (1.2.3)

such that 7, +ry; = 2 for all ¢ € ®, and such that for the extensions {¢g, P9} of w we have
Teo = Tg, = 1 and with r, € {0,2} for ¢ € {@o, @0}, comp. [I8]. Then we demand that the
signature of V, =V ®g ,, C be equal to (ry,2 —1,).

We denote the reflex field of r by E = E,.. It is a subfield of Q, the algebraic closure of Q in
C. Note that F' embeds via g into E, and that the archimedean place of F' induced by

F2% FE-—C (1.2.4)

1Tt turns out to be more natural to consider anti-hermitian forms, rather than hermitian forms, cf. below.
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is equal tow. If F =Q, then £ = F.

Associated to these data, there is a Shimura pair (G,{h}). Here G denotes the group of
unitary similitudes of V', with similitude factor in G,,, an algebraic subgroup of GSp(V, ) over
Q. For an open compact subgroup K C G(Ay), there is a Shimura variety Shk, with canonical
model over the reflex field F/, whose complex points are given by

Shic(C) = G(Q)\[2= x G(A)/K].
Here Qg is acted on by G(R) via the projection to GU(Vy,)aq and a fixed isomorphism GU(Vy,)aq =~
PGL,(R).

Consider the following moduli problem on (Sch/E). It associates to an E-scheme S the set
of isomorphism classes of tuples (A, ¢, \,77). Here
e A is an abelian scheme up to isogeny of dimension 2[F : Q] over S.
e 1: Ox — End(A) is an action of Ox on A such that

Tr(i(a)| Lie A) = >

e )\ is a Q-homogeneous polarization of A such that its Rosati involution induces the conjugation
on K/F.
e a K-orbit of K-linear similitudes 7: V @ Ay = ‘7(14)
Here the rational Tate module is equipped with its natural anti-hermitian form arising by con-
traction from its polarization form. In the case where S is connected, a more precise formulation
of the last datum is as follows. Fix a geometric point w — S. Then 7 is a K-orbit of K-linear
similitudes 7 : V @ Ay = V(A,,) which is invariant by the action of 71 (S,w) on V(A,).
This moduli problem is represented by a quasi-projective scheme Ak g which is the canonical
model of Shk over E. It is a projective scheme when the existence of v as below is imposed.
Let p be a prime number and let v be a p-adic place of F’ which is non-split in K and such that
V, is a non-split K, /F,-anti-hermitian space, i.e., inv, (V) = —1. We take the open compact
subgroup of the form K* = K7 -K?, where K? is an arbitrary open compact subgroup of G (A’}),
and where K7 has the following shape. Let

V®Qp:€9n\pvp

be the orthogonal decomposition according to the prime ideals of F' over p. Note that the prime
ideal p,, corresponding to v occurs as an index here. Then

a(@) < [T, G»(@y).

where G, denotes the group of unitary similitudes of V}, with similitude factor in G,,. We take
K7 of the form

e rop(a), forall a € O.

K; = G(Q,) NK, K", (1.2.5)

where K, is the unique maximal compact subgroup of G, (Q,), and where K3 C Hp#pu Gp(Qp)
is an arbitrary open compact subgroup.

Let J be the inner form of G which is anisotropic at w and quasi-split at v, and which locally
coincides with G at all places # v, w of F. Then there exists an identification of the adjoint
group Jy 2a(Qp) with PGLo(F,) and an action of J(Q) on G(Ay)/K* (which is, however, not
induced by an action of J(Q) on G(Ay)).

We now formulate our main theorem in the version over a p-adic field, cf. Corollary
Recall the embedding (1.2.4) of F' into E. We choose a place v of E over v. Throughout the
paper, we always assumd| p # 2 if v is ramified in K.

Theorem 1.2.1. Let K* = K;K?, where K7 is of the form (1.2.5). Let E, be the completion
of the maximal unramified extension of E,, in @p. There is a finite abelian extension E‘; of E,

and an isomorphism of algebraic curves over E;,
Ak 1 Xspee £ Spec Ef ~ (J(Q\[Qp, x G(Af)/K*]) Xspec F, SPec E*

2In the light of the results of Kirch [I4], it should be possible to remove this blanket assumption.
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Here, as before, Qp, denotes the Drinfeld halfplane relative to the local field F,, and the
interpretation is as before that the scheme on the LHS is the algebraization of the rigid-analytic
variety on the RHS. If K, is of the form below, then we may take E‘; = Eu, cf. Theorem
below; but in general, one needs a non-trivial extension, comp. Theorem |1.2.4

From this theorem we deduce an analogue of Cherednik’s isomorphism , noting that
any geometric connected component X of Shk« is defined over the maximal abelian extension
E® of B,

X @pa» B ~ (D\Qp,) @p, E2P. (1.2.6)

Here Eﬁb denotes the maximal abelian extension of EV, and T is a cocompact discrete subgroup
of PGLy(F,). Since the Cherednik Shimura datum is a central twist of (G, {h}), the geometric
connected components of Shk can be identified with those appearing in Cherednik’s theorem,
so that in fact follows from Theorem m

By extending the moduli problem for Shxk integrally over Spec O, ), we obtain semi-global
integral models of these Shimura varieties. This gives us the possibility of formulating an ‘inte-
gral’ version of this theorem. Let us explain the moduli problem in question.

We first explain the level structure. For every p|p, we fix a lattice A, in V,,. We assume that
A, is a self-dual lattice when p is either split in K or ramified. When p is unramified in K, we
assume that A, is selfdual when inv, (V) = 1, and almost selfdual when inv, (V) = —1. Let

K, = {g € G(Q,) | gAy = A, for all plp}. (12.7)

We also fix an open compact subgroup K? C G (A’}) and set K = K,K?. We continue to assume
that for the distinguished p-adic place v we have inv, (V)= —1.

We now define a functor Ak on the category of O, (,, y-schemes. Let S € (Sch/Og ., ))-
Then a point of Ak (S) consists of an equivalence class of quadruples (A4, ¢, A, 77). Here

e Ais an abelian scheme over S and ¢: Ox — End(A) ® Z, is an action of O on A.

e )\ is a Q-homogeneous polarization of A such that its Rosati involution induces the conjugation
on K/F.

o P VAL VP(A) is KP-class of K-linear similitudes.

Here the prime-to-p-rational Tate module yr (A) of A is equipped with its natural anti-hermitian
form arising by contraction from its polarization form. Two quadruples (A, ¢, A\, 7?) and (A, ', N, 7P"")
are equivalent, if there exists an isogeny A — A’ of degree prime to p compatible with the re-
maining data.

We impose the following conditions on the quadruples (4,¢, \,7?). First, for the action of
Og on Lie A induced by ¢, we impose the Kottwitz condition (KC,) relative to r, comp. [I§]. In
addition, we demand that this action also satisfies the Fisenstein condition (EC,.) relative to .
This condition is defined in section [2} and is a key novelty of this paper. The condition (EC,.)
follows from the Kottwitz condition (KC,) when S is an E-scheme but is quite subtle when p is
nilpotent in Og. Imposing this condition ensures the flatness of the moduli scheme.

Secondly, we demand that there exists a polarization A\ € A such that, for every p|p, the
localization of the kernel of the polarization A at the place p satisfies

|(Ker A)p| = [AY : Ay]. (1.2.8)

Thirdly, we impose that for each p|p, the r-adjusted invariant invy, (A, ¢, A) coincides with the
invariant inv, (V') of the hermitian space V. Here the r-adjusted invariant of the triple (4, ¢, A),
defined in Appendix A, is another key novelty of this paper. This condition is automatically
satisfied when p,, is the only prime ideal of F’ over p. In general, this condition cuts out the open
and closed part of the moduli scheme defined by the Shimura variety. The reason for the name
r-adjusted is that this adjusts the definition of the invariant in [I8], where it was erroneously
asserted that the invariant is locally constant in families. We prove here that this local constancy
indeed holds for the r-adjusted invariant, cf. Proposition [8.2.1

Proposition 1.2.2. Let r be a generalized CM-type of even rank n, with associated reflex field
E. Let S be an Og-scheme. Let (A,t,\) be a CM-triple over S which satisfies the Kottwitz
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condition (KC,.). Let ¢c € {£1}. Then for every non-archimedean place v of F, the set of points
s € S such that

invy (As, s, As) = ¢
is open and closed in S.

We refer to the body of the text for the terminology used.
Here, now, is our main theorem in the context of schemes over p-adic integer rings, cf. Theorem

33

Theorem 1.2.3. Let K = K, K?, where K,, is of the form .

(i) The functor Ak is representable by a projective flat Oy, )-scheme, with semi-stable reduc-
tion. Its generic fiber Ax ®oy , , E is identified with Ak g, which is the canonical model of
Shy .

(ii) Let Ak be the formal completion of Ak along its special fiber, which is a formal scheme
over Spf Og, . Then there exists an isomorphism of formal schemes over Spf OE?

AK XSPfOEU SpfOEV ~ J(Q)\[(ﬁpﬂ XSPfOFU SpfOEV) X G(Af)/K] .

For varying KP, this isomorphism is compatible with the action of G(A?) through Hecke corre-
spondences on both sides.

Here ) r, denotes the formal scheme version of Qp over Spf Op, due to Deligne, Drinfeld
and Mumford, cf. [0]. In section [7| we give a variant of the RHS, which allows us to express
the descent datum from Oy to Op, of the LHS. Theorem is optimal in the sense that it
describes explicitly the scheme Ak over Og, and its p-adic uniformization.

If we assume that there are prime ideals p|p different from p,, we may pass to deeper level
structures and still prove an integral version of p-adic uniformization. Let K3 C G(Q,) be of
the form

K} = G(Q,) NK, K}, (1.2.9)
where K, is the stabilizer of Ay, , and where K}»¥ is an arbitrary open compact subgroup of
G*(Qp) = [l,zp, Gp(Qp). The system of such subgroups is stable under conjugation with
elements of G(Q,). For such subgroups, we have the following version of our main theorem, cf.

Corollary [7.4.14]

Theorem 1.2.4. Let K* = K;KP, for a choice of KP C G(AY), where K is of the form (1.2.9).
There exists a normal scheme Aj. over Spec Oy = such that for the p-adic completion of this
scheme there is an isomorphism

. = JQ\[(Qr, Xspror, SPEOR ) X G¥(Q,)/KL" x G(AY) /K]
For varying K*, these schemes form a tower with an action of the group G(Q,) X G(A?), where
the action of G(Q,) factors through G(Q,) — G¥(Q,). The isomorphism of formal schemes is
compatible with these actions.
The general fibre of Aj. is a Galois twist of Ak~ g Xspec E Spec E, as follows. There is a
character xo : Gal(E%/E,) — G(Q,) with values in the center of G(Q,) and an isomorphism

ab * ab
-AK*,E XSpec E Spec Es — AK* X Spec Op, Eg

such that, for o € Gal(Eﬁb/Ey), the action of ida; , % Speco on the right hand side induces
on the left hand side xo(0) x Speco, where xo(o) acts as a Hecke operator. The Galois twist
respects the Hecke operators.

The scheme Aj. represents a moduli problem of abelian varieties with additional structure
over Op, , cf. section @ We refer to sectiofor the explicit determination of yq.

It should be pointed out that Theorem is not optimal since we cannot describe the
descent to F,. Also, when v is ramified in K, we can only give the character x( explicitly after
restricting to a subgroup of index 2. This is in contrast to Theorem [I.2:3] The deeper reason for
this deficiency lies in the fact that the natural context for Theorem is the class of Shimura
varieties appearing in [24]. Let ¥ C ® be a CM-type for K/F such that

TN (@ N\ {vo,P0}) = {v € @\ {po, Po} | 7 = 2} (1.2.10)
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There are two possibilities for U. Let Eg be the reflex field of ¥ and let E be the composite of
Ey and E = E,. Then E is an extension of degree one or two of E,. Associated to (V,1, ¥),
there is a finite number of Shimura varieties Shg (G, {h}) with reflex field E, cf. [24, §3]. Here
G maps surjectively to G with kernel a central torus, hence the Shimura varieties Shf((é, {iL})
are central twists of the Shimura variety Shk (G, {h}). Each one represents a moduli problem
on (Sch/ E) In a sequel to this paper, we will construct semi-global integral models of these
Shimura varieties over Spec Of ()" These are described by moduli problems of abelian varieties
on (Sch/Og (;)) and admit p-adic uniformization in the strong sense of Theorem [1.2.3, when

the congruence condition on the open compact subgroup K is prime to the chosen place v. The
trade-off in comparison with our Shimura variety is that the corresponding reflex field Eis larger
than the reflex field E of our Shimura variety (which, in turn, is larger than the reflex field F' of
Cherednik’s Shimura variety).

Both Theorems and are proved in [I8] when F, = Q,. Most of the work in [I§]
was local, and an essential ingredient was the alternative moduli interpretation of the Drinfeld
halfplane in [I7]. Once this is accomplished, the proof of the global theorems follows in a
relatively straightforward way from the general non-archimedean uniformization theory of [27]
Chap. 6]. The same is true here. In [I8], we expressed the hope that it might be possible to
eliminate the strong limitation F;,, = @, made there, and this hope is achieved in the present
paper. As explained in [I§], the main issue is the contrast between the condition on the action
of Op, on the Lie algebras of the p-divisible groups in the local moduli problems. On the one
hand, for the moduli problem represented by the Drinfeld half-plane Q r,, the action of O, on
the Lie algebra is required to be strict, i.e., to factor through the structure morphism of the base
scheme S. On the other hand, in the global moduli problem, the Lie algebras of the relevant
abelian schemes are often free O ®7 Og-modules. The main results of the present paper, and
in particular the contracting functor defined in section 4, provide the bridge between the two
types of moduli problems.

1.3. Local results. Let us now formulate our local results, referring to section [2| for more
details and more explanations of some terms used here. Let p be a prime number, and let F'
be a finite extension of degree d = [F' : Q] of Q, and let K/F be a quadratic extension. Let
® = Homg,-a14(K, Q,), and fix a pair {¢g, o} of conjugate elements in ®. Here go(a) = ¢o(a).
Let r be a local CM-type of rank 2 which is special w.r.t {©g, g0}, i.e., a function

r:®— Z>o, P Ty, (1.3.1)

such that r, + 75 =2 for all p € ®, and ry,, =1rp, = 1 and r, € {0,2} for ¢ & {po, Po}, comp.
[18]. We denote the reflex field of r by E. It is a subfield of Q,.

For an Og-scheme S, we consider triples (X, ¢, \), where X is a p-divisible group of height
4d and dimension 2d over S, where ¢: Ox — End(X) is an action of Ox on X, and where
A: X — XV is a polarization of X such that its Rosati involution induces on O the conjugation
involution over Op. We impose the Kottwitz condition (KC,) and the Eisenstein conditions
(EC,) on the action of Ok on Lie X. Furthermore, we assume that A is a principal polarization
if K/F is ramified, and that A is an almost principal polarization if K/F is unramified.

We fix such a triple (X, tx, A\x) over the algebraic closure k of the residue field kg of E, and
refer to it as a framing object. When K/F is unramified, then any two such triples are isogenous
by an Og-isogeny of height zero which preserves the polarizations. The same is true when K/F
is ramified, provided we impose that the r-adjusted invariant inv’ (X, x, Ax) is —1 (this last
condition is automatic when K/F is unramified). In either case, the group J(Qp) of Ox-self-
quasi-isogenies of (X, tx) preserving the polarization Ax can be identified with the unitary group
of a split K/F-hermitian space of dimension 2.

We consider the Rapoport-Zink space M. over Spf O j representing the functor on (Sch/ Spf Op)
which associates to S € (Sch/ Spf O ) the set of isomorphism classes of 4-tuples (X, ¢, A, p), where
(X, 1, ) is as above, and where p is a framing of height zero, with framing object (X, tx, Ax). Our
main local result may now be formulated as follows. We fix an isomorphism J*(Q,) ~ SLa(F).
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Theorem 1.3.1. The RZ-space M, is isomorphic to ﬁp@onw Oj. More precisely, there exists
a unique isomorphism of formal schemes

Mr ~ QFXSpfOF SpfOE,

which is equivariant with respect to the fived identification J'(Qp) ~ SLa(F). In particular, M.,
is flat over Spf O, with semi-stable reduction.

The proof of this theorem uses the contracting functor which is a key technical novelty of this
paper and is based on the theory of displays. Let R be a p-adic ring, and let W(R) be its ring of
Witt vectors. A display over R is a finitely generated W (R)-module with additional structures,
namely a Frobenius morphism, a Hodge filtration and a divided Frobenius morphism. A display
will be denoted by P and the underlying W (R)-module by P. Under suitable hypotheses, the
category of formal p-divisible groups over R is equivalent to the category of milpotent displays
over R. Let R be an Og-algebra which we regard as a Op-algebra via ¢y. The contracting
functor is the composition of two functors. The first functor associates to a triple (X, ¢, A) as
above over R a new tuple (X', ¢/, \), where X’ is a p-divisible group of height 4d and dimension
2 and where / is an Og-action such that its restriction to O is strict, i.e., the induced action
on Lie X’ coincides with the action via O — R. This functor is defined on the level of displays,
i.e., we construct from the display P of X the display P’ of X’. The third entry X\’ is a bilinear
form of displays

P’ x P — Lg, (1.3.2)
where L is the display of a Lubin-Tate group associated to the local field F'. The bilinear form
is given by a bilinear form of W (R)-modules P’ x P’ — Lp which satisfies additional
conditions. We call ) a polarization with values in the Lubin-Tate group or a polarization in the
sense of Faltings, comp. [I1I]. Note that because of the values for the height and the dimension
of X', there cannot exist a polarization in the usual sense on X’.

The second functor is the Ahsendorf functor Ao, z, r from [I]. This functor associates to
a display with strict Op-action a display over the ring of relative Witt vectors Wo .. (R). The
Ahsendorf functor is the analogue for displays of the Drinfeld functor which associates to a
Cartier module of a p-divisible group with strict Op-action its relative Cartier module, cf. [9]
§2]. We give here a new construction of the Ahsendorf functor which is more elementary and uses
as an intermediate step the Lubin-Tate frames as in Mihatsch [22]. However, we make a special
choice for these frames, cf. Definition [3.3.8] Then the Ahsendorf functor becomes compatible
with polarizations, as stated in the following Theorem.

Theorem 1.3.2. Let R be an Op-algebra such that p is nilpotent in R. The Ahsendorf functor
is a functor

W(R)-displays ) — ( Wonr (R)—displays).

mOF/Z"’R : ( with strict Op-action

It induces an equivalence of categories
2 _( nilpotent W(R)-displays
Or/Zp: B =\ with strict Op-action

Let Py and Py be W (R)-displays over R with a strict Op-action. We denote by Py, and Pa,
their images by the Ahsendorf functor Ao, /z, r- Then there is a natural homomorphism between
groups of bilinear forms of displays,

BﬂOF—displays(Pl X 7)2; £R> — BﬂWOF (R)-displays (Pl,a X 7)2,a7 WOF (R) (ﬂ-ef/pf))'

If the dual (P1.a)" of P1,a and Pa are nilpotent Wo,. (R)-displays, then this homomorphism is
an isomorphism.

) — (nilpotent Wo, (R)-displays).

Here the ring Wo,. (R) with its Frobenius F’ and Verschiebung V’ is regarded as a display.
For a unit € € Wo,,(R)* we obtain a twisted display Wo,.(R)(g) by replacing F’ by eF’ and V'
by V’e~!. The underlying module of this display remains Wo,. (R). We apply this construction
to the image of the unit 7%/ /p/ € O in Wo, (R)*.

Let us return to Theorem [L3] Tt is more honest to formulate this theorem as follows. We
fix an extension @gg: Op — Op of po: O — Opg. Let M be the relative RZ-space over
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Spf O from [17]. It parametrizes tuples (X', /', X', p’), where X' is a strict formal O p-module of
relative height 4 and dimension 2, and where ¢/ is an Og-action on X, and where )\ is a relative
polarization compatible with ¢/, which is principal if K/F is ramified and almost principal if K/F
is unramified. Also, p’ is a framing of height zero with the framing object (X', %, , A%,) which
is obtained from (X, tx, Ax) by the contracting functor. Then the contracting functor defines a
morphism

M, — M XSpfOi Spf OE (133)

Using Theorem we prove that this is an isomorphism of formal schemes over SpfO.
Moreover, we prove that X’ is the p-divisible group of a special formal O p-module in the sense of
[9). Therefore, by Drinfeld’s local theorem [9], the right hand side of has an interpretation
in terms of the Drinfeld halfplane Qp. This is the main result of [17], for which we give a new
proof, after it was already reproved by Kirch [I4]. Theorem follows.

Let us now put the local results of this paper in perspective. We address in our special case
the general problem of identifying a basic Rapoport-Zink space associated to the pair (G, {u})
with a twist of the basic Rapoport-Zink space associated to the pair (G, {¢'}), where p’ differs
from p by a central character, cf. the Introduction of [28]. This problem is also addressed by
Scholze in [29, Chap. 23], in both the case considered here and in the fake Drinfeld case of [28].
As mentioned above, Scholze’s proof uses in an essential way our formulation of the local moduli
problem, via the theory of local models (and hence implicitly the linear algebra lemma [28, Lem.
4.9]). One of the main reasons that we are successful in constructing the contracting functor in
the case treated here is that here we are able to develop a good understanding of the Kottwitz
condition (KC,), even in unequal characteristic. Our failure to do the same in the fake Drinfeld
case is the essential reason that in [28] we only succeeded in defining the contracting functor
in the special fiber. The contracting functor is an expression of the exceptional isomorphism
between the quasi-split special unitary group in two variables and the special linear group in
two variables. We restricted ourselves here to the case of curves; it would have been possible to
prove a higher-dimensional version where the uniformizing space g, is replaced by a product
of such spaces, comp. [I8] and [27], §6].

1.4. Layout of the paper. We now explain the lay-out of the paper. The whole paper, with
the exception of section [7} is devoted to the local theory. In section [2] we explain in detail the
definition of the formal moduli spaces of (polarized) p-divisible formal groups, including the
Kottwitz conditions relevant here and the Eisenstein conditions; in particular, Subsection [2.6]
contains the detailed statements of our main local results. Section[3summarizes the relevant facts
on relative Dieudonné theory and relative display theory. The most important fact proved in this
section is the relation established by the Ahsendorf functor between the Lubin-Tate display and
the relative multiplicative display. In section[d we first consider the relation between the Kottwitz
condition and the Eisenstein condition; this is used in the rest of the section to construct the
contracting functor. More precisely, we first consider the first step in its construction which we
call the pre-contracting functor, cf. above. After this, we complete the second step in the case of
a special generalized CM-type. In the final subsection of section [d] we consider the second step
in the case of a banal generalized CM-type. Section [5]|is devoted to an alternative proof of the
main result of [I7], based on the theory of displays. In section@ we prove the main local results,
namely Theorem [.3.I] and its banal counterpart. In the appendix, section 8] we give the correct
version of the sign factor of [I8] by defining the adjusted invariant of a CM-triple of generalized
CM-type r of even rank n, and investigate its behaviour under the contracting functor. Section
[7] deduces the global results from the local theory.

1.5. Acknowledgements. We are grateful to P. Scholze for very helpful discussions. In par-
ticular, he helped us locate the mistake in the definition of the invariant of a CM-triple (we had
discovered a discrepancy caused by this mistake in 2014, but it took us 10 months to locate the
error (e-mail from P. Scholze of 5 Oct. 2015)). We also thank the anonymous referee of [24]
whose report gave us the idea of defining the p-adic étale sheaf in Corollary

We also acknowledge the hospitality of the MSRI during the fall of 2014 when the work on
this paper was begun.
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1.6. Notation. e If R and R’ are Z,-algebras, we often write R ® R’ for R ®z, R’. Also, we
often write X ® 4 B for X Xgpec 4 Spec B.

o If I is a finite extension of Q,, we write F for the completion of a maximal unramified extension,
and F* for the maximal subfield unramified over Q,. We write d = ef, where d = [F' : Q,] and
f=[F":Qp] and e = [F : F']. We denote by Op, resp. Opt, resp. O the rings of integers.

e Let V be an C/R-anti-hermitian vector space. The signature of V' is (a, b) if the anti-hermitian
form is equivalent to diag(i(“), i(b))7 where i is the imaginary unit.

o Let F be a finite extension of Q, and let K/F be a quadratic extension. Let V be a K-vector
space, equipped with an alternating Q-bilinear form ¢: V x V' — Q satisfying (1.2.1). Let A
be a Og-lattice in V. Then the dual Og-lattice is AV = {z € V | ¢(z,y) € Z,, for all y € A}.
The lattice A is called self-dual if A = AV; it is called almost self-dual if A is contained in AV
with colength one.

o If O is a discrete valuation ring with uniformizer =, we write Nilp,, for the category of O-
algebras R such that = is locally on Spec R nilpotent. Similarly, we denote by (Sch/ Spf O) the
category of O-schemes such that 7Og is a locally nilpotent ideal sheaf.

e Given modules M and N over aring R, we write M C" N to indicate that M is an R-submodule
of N of finite colength r.

Warning. It is customary to denote a finite extension of @, and the Frobenius by the same
symbol F'. This should not lead to confusions.

2. MAIN LOCAL STATEMENTS

In this section we formulate our main results in the local theory. We fix a prime number p
and an algebraic closure @p of Qp. Let F be a finite field extension of Q,, with residue class
field kp. We set d = [F : Qp], f = [kr : F,] and define e through d = ef. We let K/F be an
étale algebra of degree 2. We denote the non-trivial automorphism of Gal(K/F) by a — a.

In the case where K/F is a ramified extension of local fields (ramified case) we choose a prime
element II € Ok such that II = —II. Then 7 = —II? is a prime element of F. In the case where
K /F is unramified extension of local fields (unramified case) or K = F' x F' (split case) we choose
a prime element m € F' and we set 1I = 7.

Let ® = ®x = Homg,-a1g(K, @p) be the set of algebra homomorphisms.

2.1. Special and banal local CM-types. Let r be a generalized local CM-type of rank 2
(relative to K/F) in the sense of [I8, section 5], i.e., a function

r:®— Zso, O Ty, (2.1.1)

such that r, + 1z = 2 for all ¢ € ®. Here @(a) = ¢(a), where a — @ is the non-trivial
automorphism of K over F. The corresponding reflex field £ = E(r) is the subfield of @p fixed
by

Gal(@p/E) ={re Gal(@p/(@p) | 77 =1y, Yo}

Let Og be the ring of integers of E. o
When we fix an embedding ¢ : F' — Q,,, we denote by o, %, the two extensions of ¢q to
K (by abuse of notation).

Definition 2.1.1. A local CM-type r of rank 2 is called special relative to the choice of embed-
ding @g : FF — Q, if K/F is a field extension and

Too =15, = 1, and r, € {0,2},  for all p € @\ {0, Do}

It is called banal non-split if K/F is a field extension and r, € {0,2}, for all ¢ € ®. It is called
banal splitif K ~ F & F and r, € {0,2}, for all ¢ € ®.

From now on, we will assume r to be either special (relative to a fixed choice of ¢g) or banal
(non-split or split). We will consider p-divisible groups X with an action of Ok over Og-schemes
S. We will want to impose certain conditions on the induced action of Ok on Lie X.



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 11

2.2. The Kottwitz and the Eisenstein conditions. Let S be an Og-scheme, and let £ be
a locally free Og-module, equipped with an action

t:Og — Endp, L.

of OK.
We say that (£, ) satisfies the Kottwitz condition (KC,.) relative to r if the identity of poly-
nomials with coefficients in Og holds

char(T, v(a)|L) = z(H (T — ¢(a))™), forallae Ok, (2.2.1)
peD

where i : O — Og is the structure homomorphism (compare [28]).

We denote by F* C F the maximal subextension which is unramified over Q,. If K is the
field we use the same notation for K, and in the split case K = F x F we set K! = F!' x F't. We
set ¥ = Ux = Homg,-a14(K*,Q,). We call ¢ € ¥ banal if r, € {0,2} for each ¢ € ® such that
@ | . If this is not the case we call ¢ special. We use the notation

Oy ={p €| gy = v}, Ve (2.2.2)

We denote by E’ be the compositum of E with the normal closure of the image of K in Qp
under any embedding 1 € U. We remark that this normal closure is isomorphic to K* via any
1 € . In particular E’/FE is an unramified extension of local fields.

Let S be an Og-scheme. Let o : S — Spec Ogs be a morphism of Og-schemes. Then «
gives rise to an isomorphism of Ok ®z, Os algebras

Okt @z, Og = @w@ Os, (2.2.3)
where the action of Okt on the ¥-th factor is via ¥. Hence for a locally free Og-module £ with
action by Ok, we obtain a decomposition into locally free Og-modules,

= . 2.24
=P v D (2.2.4)
If (L, 1) satisfies the Kottwitz condition we obtain from (2.2.1]) applied to a € O+ that

rank £y = Z Ty (2.2.5)
pEDy

We say that (£, ¢) satisfies the rank condition (RC,), if is satisfied for all ¢b. The rank con-
dition does not depend on the a chosen above because a second o’ differs from a by an automor-
phism of E’ over E if S is connected. If there is no o we use base change Spec Ops Xspec 055 — S

to define the condition (RC,.). This agrees with the old definition if « exists.
We consider a pair (£,:¢) that satisfies (RC,.). Then we will define the Eisenstein condition
(EC,) (this definition is analogous to [28] section 2], but different). We introduce the notation

Aw:{sﬁ:K_)@p|§0‘Kt:'l/}, and r, = 2}

= (2.2.6)
By ={¢: K — Q, | ¢|x+ =1, and r, = 0}.
We note that under the action of the non-trivial automorphism of K/F,
A, =By, (2.2.7)
Also, let ay, = |Ay| and by, = |By|.
With this notation we may rewrite the rank condition (RC,.)
rank £y = 2ay + €y, (2.2.8)

where
0, if ¢ is banal

€y = { 1, if 1 is special and K/F is unramified
2, if 4 is special and K/F is ramified.
In the case where K/F is ramified we have K' = F'| [K : K'] = 2e, and for each ¢ € ¥

ely =¢|.
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Therefore a,, = by, and the rank condition reads, in the ramified case,
rank £, = 2e,

regardless of whether r is banal or not.
Consider the Eisenstein polynomial E(T) of II in Ok:[T]. We consider the image E,(T) of
E(T) in Q,[T] under #, for ¢ € ¥. In Q,[T] this has a decomposition into linear factors,

Ey(T) = [] (T — (). (2.2.9)
peEDy

We define

Ea,(T) = [[ (T - o), Ep, (1) = [ - o). (2.2.10)
pEAy pEBy

The action of Gal(Q, /E’) stabilizes the corresponding subsets in the index set on the right hand
sides of (2.2.9)) and (2.2.10]). Therefore all three polynomials lie in Og/[T].

If r is special we fix an embedding ¢ : K — @p such that r,, = 1. We denote by g
the restriction of g to K*. In the ramified case we have ¢y = vy and in the unramified case
Yo # to.

We define S, by the following factorization in Og/ [T,

Ey(T) = Sy(T) - Ea,(T) - Ep, (T). (2.2.11)
Hence
1, if 1 is banal
S, (T) = (T — @o(IN)(T — Pp(I1)), if ¢ = 1)y and K/F is ramified
v ) T o (IT), if 1» = 1o and K/F is unramified
T — 3, (10), if 1 = 1, and K/F is unramified.

Now using the structure morphism Op: — Og, each of the three factors in (2.2.11)), when
evaluated on II, defines an endomorphism of the Og-module £;. These endomorphisms are
denoted by Ea,, (¢(IT)|Ly), resp. Ep,, (¢(IT)[Ly), resp. Sy (e(IT)[Ly).

We say that (L, ) satisfies the Fisenstein conditions if (RC,) is fulfilled and if for each

(Sy Ea,) (D) [ Ly) =0,
4—[K':FY) (2.2.12)
A (EBa,I)] Ly)) =0.

In the case where v is banal the first condition says
Ea, (¢(IT)[£y) = 0, for all ¢y € . (2.2.13)

and the second condition follows from the first.

The Eisenstein conditions do not depend on the Og-morphism « : S — Spec Og/. Indeed,
if S is connected, any other choice of a differs by an automorphism p € Gal(E’/E). In the
decomposition Ly is then replaced by £,y and E,; is replaced by p(E,) = E,,;. Here the
last identity holds by the definition of the reflex field E. Therefore changing « does not change the
Eisenstein conditions (EC,.). If there exists no «, we use base change Spec Og Xgpecoy S — S
to define the condition (EC,). The same arguments apply to the condition (KC,).

We first note the following statement.

Proposition 2.2.1. Let S be an Og-scheme and L a locally free Og-module with an Ok -action
t: O — Endop, (L).
(i) The Eisenstein conditions (EC,.) are independent of the uniformizer II.

(ii) When K/Q, is unramified, the Eisenstein conditions (EC,) are implied by the Kottwitz
condition (KC,.). The same conclusion holds if F = Q, and K/F' is ramified.

(iii) When S is an E-scheme, the Fisenstein conditions (EC,) hold automatically.
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Proof. Let us prove (i). Let II' be another uniformizer. It is enough to show that the elements
of Ok ®0K‘,w OE/,

Es,(II®1), Eq, (I'®1), resp.
Sy(II® NE4, (II®1), Sy(I' ® E4, (I ® 1),

differ by a unit in Ox ®o,, 4 Op. Indeed, let E' be the normalization of E’ in Q,. Since
Ok ®0,.,0 O — Ok ®0,., 4 Of is a flat extension of local rings, we can replace E’ by E'.
By the definitions (2.2.10) and (2.2.11)), it suffices to show that the elements I ® 1 — 1 ® ¢(II)
and I' ® 1 — 1 ® p(I') differ by a unit in Ok ®o, .,y Op'. But by [25, Lem. 6.11] the elements
Nel-1@Dand II'®1 -1 I of O ®o,., Ok differ by a unit, whence the assertion.

Now we prove (ii). Let us only treat the case where r is special; the banal case is similar.
When K = K* is unramified over Q,, then E(T) = T — 7 is a linear polynomial. Furthermore,
Ay has at most one element for 1) ¢ {tg, 1y}, and Ay, = A% = 0. Let ¢ & {¢0, Yo} If Ay =0,
then £, = (0) and the Eisenstein condition relative to the index 1 is empty; if A, has one
element, the Eisenstein condition relative to the index v is just equivalent to the definition of
the 1-th eigenspace in the decomposition . Something analogous applies to the indices
o, o. The case when F = Q,, is handled in the same way.

Finally we prove (iii). Let K be the normal closure of K in @p. It suffices to prove the

assertion after replacing S by its base change S Xgpec £ Spec K. Then we have a decomposition

Ok ®z, Os = @ Os.

ped
Correspondingly, we have £ = ®L,, and the endomorphism ¢(II) is diagonal with respect to this
decomposition, with entries ¢(IT)id., . It is easy to see that (KC,) is equivalent to the condition

rank L, =r1,, Vo€ . (2.2.14)

The Eisenstein conditions (EC,.) involve endomorphisms of £ which are products of endomor-
phisms of the form (:(II)|z, — ¢(ID)idz, ) ©yrp idg ,. From this, the conditions follow triv-
ially. O

Let us make the Eisenstein conditions more explicit in the case where r is special. For this,
we distinguish between the case when K/F is ramified and the case when K/F is unramified.
Let S be an Op/-scheme and £ be a locally free Og-module satisfying (RC,).

e K/F ramified. In this case, we have K! = F* and ¢ = 1 for all 1) € ¥. Hence, (2.2.7) implies

in this case
if
ay=by=1{ " i+ # Yo (2.2.15)
e—1, if ¢ =1y.
We have
Sy (T) = (T — @o(IN) (T — o (I1)).
The Eisenstein conditions become in this case
(SVJO : EA'¢U)(L(H)|£¢O> =0,
3
A (Eay, ((ID)|Ly,)) =0, (2.2.16)
EAw(L(H)‘£w> =0, for all ¢ # 1.

o K/F unramified. In this case, [K' : F*] = 2, and v # ¢ for all 1) € U. Furthermore, ay = by
and

Z ay =e(f—1), ay, + ay, =e—1L (2.2.17)
wE‘I’\{wO,Eo}

In this case, the Eisenstein conditions become
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(S% ) EA%)(L(W)IE%) =0,

A (Ea,, (1) Ly,)) =0,
(S3, - Eay, ) ((m)|L5,) =0, (2.2.18)
/\ (EAEO (L(Tr)|£E0)) =0,
Ea, (((m)|Ly) =0, for all ¢ # v, 4.

2.3. Local CM-pairs and CM-triples. Let S be an Og-scheme such that p is locally nilpotent
i.e. a scheme over Spf Og. A local CM-pair of type r is a pair (X, ) such that X is a p-divisible
group of height 4d and dimension 2d and ¢ is an Zj,-algebra homomorphism

t:0g — End X

such that the rank condition (RC,) is satisfied for the induced action of O on Lie X. In the
split case O = O X O we require moreover that in the induced decomposition X = X; x Xo
each factor is a p-divisible group of height 2d.

Later we will introduce displays P, and these have a Lie algebra Lie P, cf. Definition [3.1.4]
Therefore, we can also speak of local CM-pairs (P, ) of type r, where P is a display over S, cf.
section [3

Let S = Speck be a perfect field of characteristic p which is endowed with an Og/-algebra
structure. In this case, a display in the same thing as a Dieudonné module P = (P, F, V'), where
P is a finitely generated free module over the ring of Witt vectors W (k). If P is the Dieudonné
module of X, there is a canonical isomorphism of k-vector spaces Lie X = P/V P.

Via ¢+ we regard P as a Og ®z, W (k)-module. The homomorphisms

w :0Ogt — Ogr — k, (2.3.1)
1 € W lift uniquely to homomorphisms

Y O — W(k). (2.3.2)
We obtain a ring isomorphism
Ok @z, W(k) = ] Ox @, ; W(k).
pev
This induces a decomposition
P=®ycuPy. (2.3.3)
More explicitly

Py ={z € P|ua)r =P(a)z, fora € O}
Let us denote by o the Frobenius automorphism of W (k). The operators F and V on P
induce o-linear maps
F: Pw — Pm[,, V. Pm[, — P¢. (234)

Here o1 denotes the composite of (2.3.1)) with the absolute Frobenius of k.

Lemma 2.3.1. Let (P i) be local CM-pair of type r over a perfect field k. Then P is a free
Ok ®z, W (k)-module of rank 2.

Proof. Since F'V = p it follows that
rankOK@OKtJLW(k) Pib = rank0K®OKtm/_)W(k) P(”[,. (235)

Since rankyy () P = 4d, and by the extra condition in the split case, this implies that the common
rank of (2.3.5) is 2. This proves the Lemma. O

To each local CM-pair (X,:) we define the conjugate dual (XV,."). Here XV is the dual
p-divisible group of X but we change the action dual to ¢ by the conjugation of K/F, i.e.,
(a) = 1¥(a). We will denote the conjugate dual simply by X".
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Lemma 2.3.2. The conjugate dual of a CM-pair (X, 1) of type r is again a local CM-pair of
type r. If (X,1) satisfies the Kottwitz condition (KC,.), resp., the Eisenstein conditions (EC,.),
then so does its conjugate dual.

Proof. For the first assertion, we may assume that we are over an algebraically closed field. We
use the Dieudonné module P. We set

PY = Homyy (P, W (k)).
We use the canonical pairing
(,):PxPY — W(k). (2.3.6)
The operators F' and V on the dual Dieudonné module PV are defined by the equations
(Va,VaY) = po ({z,z")), reP z’epP
o((Vz,z2V)) = (z,Fz").

One of these equations implies the other. It follows that VP/pP C P/pP and VPV /pPY C
PV /pPY are orthogonal complements with respect to the non-degenerate pairing of k-vector
spaces,

P/pP x PY/pPY — k.
If we use the action ¢", we write for the decomposition
PY = @ycuP) = P
Then Py, and Pu/}\2 are for 1 # 1y orthogonal with respect to and
(,):Pyx P$ — W (k). (2.3.7)

is a perfect pairing. The k-vector spaces V Py, /pPy and VPG% / pP£ are orthogonal complements
with respect to the induced non-degenerate k-bilinear form

Pw/ppw X Pé\/ppé\ — k.

Let us assume that K/F is unramified or split. In this case Lemma [2.3.1]implies rankyy gy Py =
2e and by (2.3.7) rankyy () Plf)\ = 2e. Since P satisfies (RC,.) we find by the orthogonality above

ranky, Pg/VPgAJ) = 2e —ranky Py, /V P,y = 2e — Zr@ = 2(2 —Ty) = Zr¢.
ely el el

This shows that the conjugate dual satisfies (RC,.). The case K/F ramified is similiar.

For the proof of the assertion concerning (KC,.), we refer to Proposition For the proof
of the assertion concerning (EC, ), we refer to Corollary [{.2.8]in the case when K/F is unramified
or split, resp., Corollary when K/F is ramified. O

The notion of a local CM-triple of type r over S was introduced in [I§]. This is a triple
(X,t,A), where (X,:) is a local CM-pair of type 7 and A : X — XV is an anti-symmetric
isogeny (also called a polarization) such that the corresponding Rosati involution induces the
non-trivial automorphism on K/F. In particular A induces a morphism of local CM-pairs

A (X ) — (XM,

In the present paper, we will also say that (X, ¢, A) is a polarized local CM-pair (of type r). We
call the polarized local CM-pair (X, ¢, ) principal if Ker A = 0; we call it almost principal if
Ker A C X[i(7)] and Ker A has order p?/. We will distinguish these two cases by attaching the
integer h = 0 to the principal case, and h = 1 to the almost principal case, i.e., height A = 2fh.
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2.4. The invariant of a local CM-triple. Let K/F be a field extension. We recall from [I§]
the definition of the invariant of a CM-triple, in a slightly more general context.

Let k be an algebraically closed field of characteristic p and let W (k) be the ring of Witt
vectors. We set W (k)g = W(k) ® Q. Let (M, F,V) be a Dieudonné module of height 4d and
dimension 2d which is endowed with a Z,-algebra homomorphism

t: K — End’(M, F,V).

We set Mg = M ® Q. We assume that M is endowed with a non degenerate alternating bilinear
form

ﬂ : M@ X MQ — W(k)@
Let us denote by o the Frobenius automorphism of W (k). We require the following properties:
B(Vz,Vy) =po ' (B(z,y)), x,y€ Mg
Blua)z, y) = B(z, (a)y), ac€K.
We will associate to such a set of data (M,:,3) an invariant inv(M,:,3) € {£1}. We set

U = HOme_Alg(Kt, W(k})@)
The ring O ®z, W (k) decomposes

K@z, Wk) =[Koq,, 5 Wk (2.4.1)
P
If £ = (&) is an element of (2.4.1). Then we set
ord ggw (k) § = ord, Nmg g, € = Y _ordn &y € Z. (2.4.2)
P

The Frobenius homomorphism o acts via the second factor on K ®z, W (k). The o-conjugacy
class of an element ¢ € (K ® W (k))* is uniquely determined by ordggw (k) &-

We view Mg as a K ®z, W(k)-module and suppress the notation ¢. This is a free module of
rank 2. We define an anti-hermitian form s = s,

s Mg x Mg — K @z, W(k),
on the K ®z, W(k)-module Mg by the formula
Trr/q, (as(z,y)) = plax,y), =,y € Mg, a € K@ W(k). (2.4.3)
Then s satisfies
x(Va,Vy) = po~t (x(x,y)). (2.4.4)

We write A2Mg := /\3(®W(k) Mg for the exterior product as a K ®z, W (k)-module. This is
a free K ®z, W(k)-module of rank 1. According to (2.4.1) we have decompositions

Mgy = @w Mg,y
2

N Mg = @w ( A Mg,y)-

K®pt ,Wao(k)
We choose an isomorphism A2Mg = K ®z, W (k). Then we can write
AV (2) = yo ().
We have
OrdK®W(k) /\2V = OI'dp NmK/Qp det K®ZPW(k)(V|MQ)
= ordy, detyy () (V| Mg) = dim M = 2d.

Therefore we find ord ggw (x) ¥ = 2d. Since ordggw () p = 2d, the elements p,y € K ®z, W (k)
are in the same o-conjugacy class by the remark after (2.4.2). We conclude that there is a
generator x € A>Mg such that

A2V (x) = px. (2.4.5)
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Note that the last equation is equivalent with A2F(x) = pz. Any other generator with this
property has the form ux, where u € K*. We consider the hermitian form

h = A?x: A2Mg x A°Mg — K @ W (k).

One deduces that h(z, z) is an element of FF C K®@W (k) which is # 0 because f is non-degenerate
by assumption. We denote by

OK/F(M,L7B)EFX/NIHK/FKX (246)

the class of h(z,x). This class is called the discriminant of (M, t, ) and is independent of the
choice of x.

Let a € F. Then asx is again an anti-hermitian form which satisfies . We can replace
s by as in the definition of without changing the discriminant. We denote by

inv(M,¢, ) € {£1} (2.4.7)

the image of 95/ (M, ¢, B) by the canonical isomorphism F*/Nmy,p K* ~ {£1}.

Let r be a local CM-type of rank 2. Let E be the reflex field. Let Op — k an algebra
structure of the algebraically closed field k. Let (X, ¢, \) be a local triple of CM-type r over k.
Let (M, ¢, 3) be the associated Dieudonné module with its polarization §. Then we set

inv(X, ¢, A) :=inv(M, ¢, B).

For CM-triples of CM-type r, we use also the adjusted invariant inv" (X, ¢, \) = inv" (M, ¢, 5), cf.
section B2l In the case at hand we have
(—=1)4Yinv(M, 1, B), for r special,
v (M1, ) = (2.4.8)
(=1)4inv(M, ¢, B), for r banal.

2.5. Uniqueness of framing objects. In this subsection, we discuss the existence and unique-
ness of framing objects that are used in the formulation of the formal moduli problems. The
proofs of these statements are given later in the paper.

Let 7 be a generalized local CM-type of rank 2 for K/F. Let k be an algebraic closure of the
residue field kg of Op. Consider CM-triples (X, ¢, \) over k which satisfy (KC,) and (EC,.).

(i) Assume that v is special. If K/F is ramified, then a local CM-triple of type r over k as above
such that the polarization is principal and with r-adjusted invariant —1 is isoclinic. When K/F
is unramified, then a local CM-triple of type r over k as above such that the polarization is almost
principal has r-adjusted invariant —1 and is isoclinic. In either case, any two such CM-triples
are isogenous by a Ok -linear quasi-isogeny of height zero that preserves the polarizations.

Furthermore, the group of O -linear self-isogenies of such a local CM-triple, preserving the
polarization, can be identified with the unitary group of the split K/F-hermitian space C of
dimension 2.

The assertions concerning slopes follow from Corollary [£:3.3] The uniqueness assertion is in
the ramified case the content of Proposition [5.2.12] and in the unramified case of Proposition
5.3.60 The last part of the assertion follows from the fact that the contraction functor is an
equivalence of categories.

(i), a) Let r be banal non-split. Any local CM-triple of type v over k as above is isoclinic.
The group of O -linear self-isogenies of such a local CM-triple, preserving the polarization, can
be identified with the unitary group of a K/F-hermitian space C of dimension 2. When K/F is
unramified and the polarization is principal, then the hermitian space C is split and the r-adjusted
invariant is 1; when K/F is ramified and the polarization is principal, then the hermitian space
C' is non-split and the r-adjusted invariant is —1; when K/F is unramified and the polarization
is almost principal, then the hermitian space C' is non-split and the r-adjusted invariant is —1.
The case K/F ramified and almost principal polarization does not occur. Any two CM-triples
with the same r-adjusted invariant are isogenous by a Ok -linear quasi-isogeny of height zero that
preserves the polarizations.

The assertions concerning slopes follow from Corollary [£.3-3] The uniqueness assertion is the
content of Proposition [4.5.14] Similar arguments apply to the banal split case.
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(ii), b) Let r be banal split. Then the p-divisible group underlying a local CM-triple of type r
is the direct product of two isoclinic p-divisible groups of slope A, resp. 1 — X\, where \ depends
only on r. Any two local CM-triples of type r over k are isogenous by a O -linear quasi-isogeny
of height zero that preserves the polarizations. The group of Ok -linear self-isogenies of such a
local CM-triple, preserving the polarization, can be identified with Resp/q,(GL2).

Here is a chart for the various possibilities.

type r K/F inv" polarization type C

special  ramified -1 principal split
special unramified ~—1 almost principal split
banal ramified —1 principal non-split
banal  unramified 1 principal split
banal  unramified —1 almost principal non-split
banal split 1 principal GLy/F

TABLE 1. Framing objects

Remark 2.5.1. The statement (i) above generalizes [I8, Prop. 5.4]. However, the proof of
the uniqueness assertion given there is incomplete. Note that for a local CM-type of the first
kind in the sense of loc. cit. we have imposed F' = Q,,; therefore the condition in loc. cit. that
e = inv(X,:,\) = —1 implies that the associated hermitian space (C, k) is split (in this case the
r-adjusted invariant coincides with the invariant).

Remark 2.5.2. The statement (i) is closely related to the fact that B(G,{u}) has only one
element, cf. [16], §6. Here G = Resg/q,(GU) is the linear algebraic group over Q) associated to
the group of unitary similitudes of the non-split hermitian space of dimension 2 over K, and {u}
is the conjugacy class of cocharacters with component (1,0) for ¢y and central component for
@ # po. In fact, it seems that the essential contents of the calculations in section [8.3]is to show
that the Frobenius element of a local CM-triple of type r with r-adjusted invariant —1 over k
defines an element in B(G, p).

2.6. Formal moduli spaces. In this subsection we are going to define RZ-spaces of formal
local CM-triples, and formulate our main results about them. We fix K/F as before.

First let r be special, so that K/F is a field extension. We fix a local CM-triple (X, tx, Ax) of
type r over kg as in (i) of subsection (a framing object). We assume that if K/F is ramified,
then Ax is principal and that, if K/F' is unramified, then Ax is almost principal. Then, in either
case, the r-adjusted invariant equals —1. We identify kg with the residue class field of O, the
ring of integers in the completion of the maximal unramified extension of E. Let (Sch/Og) be
the category of O j-schemes S such that the ideal sheaf 7Og is locally nilpotent.

Definition 2.6.1. We set h = 0 if K/F is ramified, and h = 1 if K/F is unramified.
We define a functor Mg, g, on (Sch/Op). A point of Mg, g, (S) consists of an isomorphism
class of the following data:

(1) Two local CM-pairs (Xo,tp), (X1,t1) of CM-type r over S which satisfy the Eisenstein
conditions (EC,) relative to a fixed uniformizer = of F' and the Kottwitz condition (KC,).

(2) Two isogenies of p-divisible Ox-modules
Xo— X1 — Xo,

which have both height 2fh and such that the composite is ¢o(m)* idx, .

(3) An isomorphism of p-divisible Og-modules

x: Xy i)XOA.
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We require that the composite \: Xg — X; — X} is a polarization of Xy, i.e., this map
is anti-symmetric, and that this polarization is principal when K/F is ramified, and almost
principal when K/F is unramiﬁedﬂ
(4) A quasi-isogeny of height zero of p-divisible O g-modules

px : Xo x5 S — X Xspecin S,
Tlch tha‘i the pullback quasi-isogeny p*(Ax) differs from Ay . g by a scalar in F'*, locally on
S. Here S = S ®o, kp. We call px a framing.

We denote the data above simply by (X, ¢, A, p). Another datum (X', X', p') defines the same
point of Mg/ p,(S) iff there are Og-isomorphisms X = X} and X; = X/ which commute
with the data (2) and (4) above. This implies that the isomorphism X, — X} respects the
polarizations up to a factor in OFf.

To ease the notation we write M, = Mg ,p,. If R is a p-adic O-algebra we set M,.(R) =
lim M,.(Spec R/p™R).

It follows by the methods of [27] that M, is representable by a formal scheme which is locally
formally of finite type over Spf Op. Let J be the algebraic group over Q, of unitary K-linear
quasi-automorphisms of (X tx, Ax) which preserve the polarization up to a scalar in Q- Let J 1
denote the derived group of J. Then J*(Q,) acts on the functor M, by changing the framing. It
follows from (i) in subsection that J' can be identified with Resp/q, (SU), where SU denotes
the quasi-split special unitary group in two variables over F. Note that SU is isomorphic to
SLy/F.

The first main result in the local case can now be stated as follows.

Theorem 2.6.2. Let r be special. Then the functor M ,r,. is represented by ﬁp@on%OE.
More precisely, there exists a unique isomorphism of formal schemes

Mg /pr = Qr®0,,0,05,

which is equivariant with respect to a fized identification J'(Q,) ~ SLo(F). In particular,
M p,r is flat over Spf Oy with semi-stable reduction.

Now let r be banal. Fix a local CM-triple (X, tx, Ax) over k as in (ii) a) or (ii) b) in subsection
We write the height of Ax as 2fh, where h € {0,1}. We assume that h = 0 when r is banal
split, or when r is banal and K/F is a ramified field extension. Recall from from (ii) a) in
subsection that, when r is non-split, there is a hermitian space C' = C(X,x, Ax) attached
to (X, tx, A\x). By Proposition the framing object (X, ux, Ax) is uniquely defined up to
isogeny by the r-adjusted invariant inv" (X, tx, Ax) = inv(C) € {£1} (see Proposition for
this last identity). To make our statements uniform, we set inv" (X, tx, Ax) = 1 in the banal split
case.

We may now define a variant for banal r of the functor Mg g, of Definition m Since
the functor depends not only on K/F but also on inv" (X, x, Ax), we denote this functor by
Mg pyre, where inv' (X, 1x, Ax) = e. When r is banal split, we have ¢ = 1; when r is banal
non-split and K/F is unramified, then e = (—1)®, cf. Proposition

Let S € (Sch/Op). A point of Mg p,.(S) consists of an isomorphism class of exactly the
same data as in Definition R.6.11

Theorem 2.6.3. Let 7 be banal, and let ¢ € {£1}. The formal scheme Mg . is isomorphic
to (Spf Op) x (J(Qp)°/Cqp), where J(Qp)° denotes the subgroup of elements of J(Qp) which
preserve the polarization up to a scalar in Z, . More precisely, there exists a unique isomorphism
of formal schemes

MK/F,T,E = (Spf OE) X (J(Q;D)O/Cﬁ)v
which is equivariant for the action of J(Q,)°. In particular, Mg g . is formally étale over
Spf OE

3It can be proved that, when K/F is unramified, the fact that Ker A C Xo[r] follows automatically from the
assumption that deg A = p2f, c¢f. Proposition We impose the condition Ker A\ C Xg[x] in order to make
transparent that the moduli problem M, is of the kind considered in 27.
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Here, when r is non-split, J(Q,)° can be identified with the group of K -linear automorphisms
of C = C(X, ux, Ax) preserving the hermitian form up to a factor in Oy, and Cyy is the stabilizer
in J(Qp)° of a lattice M in C which is self-dual when h = 0 and almost self-dual when h = 1.
When r is split, then J(Q,)° can be identified with the group of automorphisms of the two-
dimensional standard F-vector space of dimension 2 with determinant in OF , and Cyy is the
stabilizer in J(Qp)° of the standard lattice M.

In the later part of the paper, we write simply J(Q,)°/Cyy for the formal scheme (Spf O ) x
(J(Qp)°/Cyp) over Spf O.

3. BACKGROUND ON DiISPLAY THEORY

In this section, K/Q, is an arbitrary finite field extension with ring of integers O = Ok,
and Nilp, will denote the category of O-algebras R such that p is nilpotent in R. We recall
the classification of strict formal p-divisible O-modules over R € Nilp, proved in [I]. A main
ingredient is the Ahsendorf functor, which we present in a new form which is better suited for
our applications.

3.1. Displays. We fix a prime element m € O. We denote by ¢ the number of elements in the
residue class field k of Og.

Definition 3.1.1. ([I, Def. 3.1], [20], [34]) Let R be an O-algebra. A frame F for R consists of
the following data:
(1) An O-algebra S and a surjective O-algebra homomorphism S — R. We denote the kernel
by I.
(2) An O-algebra endomorphism o : S — S.
(3) A o-linear map of S-modules 6 : [ — S.
The following conditions are required.
(i) I+ pS is contained in the radical of S.
(ii) o(s) = s? mod 7S for all s € S.
(iii) 6(7) generates S as an S-module.
We will denote a frame by F = (5,1, R,0,6) and we will sometimes make the identification
S/I =R.
/A morphism of O-frames a: F = (S,I,R,0,6) — F' = (8, I',R,0',¢") is an O-algebra
homomorphism a: S — S’ such that a(I) C I’ and such that
' (a(a)) = a(é(a)), ac€l.
The last equation implies that
o' (a(s)) = a(a(s)), seS.

Let F = (5,1, R,0,5) be an O-frame. Then there exists a unique element 6 € S in the radical
of S such that
o(a) =06(a), forallael, (3.1.1)

cf. [IL Lem. 3.2]. In the frames below we have § = 7.
Example 3.1.2. Let R be a p-adic O-algebra. Then the relative Witt ring Wo (R) with respect
to the chosen uniformizer m € O is a p-adic O-algebra. The relative Witt polynomials

WO, = Xgn + WX{IH?I + 71'2Xgn72 +...+ W”leZ_l + 7" X,

define O-algebra homomorphisms wo ,, : Wo(R) — R. We denote by F' and V the Frobenius
and the Verschiebung acting on Wo(R), cf. [9]. In the case where k = R is a perfect field, the
ring Wo (k) is the complete discrete valuation with residue class field & which is unramified over
0.

The relative Witt frame for R is the O-frame defined as

Wo (R) - (WO (R)’ VWo (R)a R, o, U) (312)
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Here 0 = F : Wo(R) — Wo(R) is the Frobenius endomorphism written as o(¢) = ¢, and
a(Ve) = ¢, for € € Wo(R). We use also the notation F:= ¢ and In(R) = VWo(R). If K = Q,
and m = p, we obtain the classical ring of Witt vectors W(R) = Wz, (R). We write W(R) for
the Z,-frame Wz, (R).

Example 3.1.3. Let S — R be a surjective homomorphism of p-adic O-algebras. We assume
that the kernel a is endowed with divided powers relative to O ([I], 1.2.2). They make sense out
of the expression "a?/7". We also call this an O-pd-thickening. We denote by a;»] the ideal a
considered as an Wo(S)-module via restriction of scalars relative to wo ,, : Wo(S) — S. The
divided powers give rise to divided Witt polynomials Wo . They are homomorphisms of Wo (5)-
modules wo ,, : Wo(a) — a;pn) such that 7"wo , = wo . They give rise to an isomorphism
of Wo(S)-modules

H V'Vo’n . Wo(a) L) H a[Fn],

n>0 n>0

cf. [, 1.2.2. The inverse image in Wo(a) of an element [a,0,0,...] from the right hand side
is called the logarithmic Teichmiiller representative of a € a. The logarithmic Teichmiiller
representatives of elements of a form an ideal a C W (S). The ideal J = a® I (S) is the kernel
of the composition

Wo(S) 228 s — R,
Then F : Io(S) — Wo(S) extends uniquely to a F-linear homomorphism F:J — Wo(S)
such that F'(a) = 0. We define the relative Witt frame for S — R as
Wo(S/R) = (Wo(S),J, R, F, F). (3.1.3)
This is an O-frame. Later we use the more precise notation
Io(S/R) = J = Wo(a) + Io(S5)-

Definition 3.1.4 ([I], Def. 3.3). Let F = (5,1, R,0,6) be an O-frame. An F-display P =
(P,Q, F, F) consists of the following data: a finitely generated projective S-module P, a sub-
module @ C P, and two o-linear maps
F:P—P F:Q—P

The following conditions are required.

(i) IP C Q.

(ii) The factor module P/Q is a finitely generated projective R-module.
(iii) The following relation holds for a € I and = € P,

F(az) = 6(a)F(x).
(iv) F(Q) generates P as an S-module.

(v) The projective R-module Lie P = P/Q lifts to a finitely generated projective S-module. It
is called the Lie algebra of P.

If the rank of Lie P is constant, we call it the dimension of P. If the S-module P is of constant
rank, we call it the height of P. If we want to be precise, we say JF-height.

F-displays form a category in the obvious way. In the case O = Z, and F = W(R) for a
p-adic ring R, we speak simply of a display over R. Displays for general frames F were originally
called F-windows, cf. [IL Def. 3.3]. We note that for the O-frames Wo(R), the condition (v) of
Definition is automatically satisfied, cf. [33, Lem. 2].

Example 3.1.5. For each O-frame F = (S, 1, R, 0,5) we have the multiplicative F-display
Pm = Pm,r =(S,1,0,5).
Example 3.1.6. Let P be an F-display. Let ¢ € S be a unit. The display
P(e) = (P,Q,eF,cF).
is called the twist of P by e.
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Recall the element 6 from (3.1.1). The conditions in Definition imply that

F(y) =0F(y), yeQ. (3.1.4)
We can always find a direct sum decomposition P = T @ L such that @ = IT @ L. Such a
decomposition is called a normal decomposition of P. The o-linear homomorphism
d=FreF,:TeL—P (3.1.5)
is a o-linear isomorphism, i.e., corresponds to the linearization isomorphism,
FPoF" (SR,5T)® (S ®ps L) — P. (3.1.6)

Conversely, an arbitrary o-linear isomorphism (3.1.5)) defines an F-display in the obvious way.
For each display P there is a homomorphism of S-modules ([I, Def. 3.3])

Vi:P— S®,5P (3.1.7)
which is uniquely determined by
VisFy)=s®y, VHFz)=0®z, ze€P, yecQ, scs.

We have
Vio F* = 0idsg, .p, F'oV'=0idp.
Any morphism of O-frames o: F — F’ defines a base change functor a, from the category

of F-displays to the category of F'-displays as follows, cf. [I, Def. 3.8]. Let P be an F-display.
Then we define o, (P) =P' = (P, Q’, F', F') as follows:

P'=5®sP, Q=Ker(S®sP— R®p(P/Q), FF=d'@F:P — P, (3.18)

and ' =0’ @ F: Q' — P'.
If P is given in terms of a normal decomposition (3.1.5), we obtain P’ from the o’-linear
extension of P,

(S ®0sT) D (S"®s L) — P.

Example 3.1.7. The base change of the multiplicative display for the frame F under a: F —
F' is the multiplicative display for F.

If R is a perfect ring of characteristic p with an O-algebra structure, the category of Wo (R)-
displays is equivalent with the more classical category of Dieudonné modules. We describe this
equivalence in its natural generality.

Definition 3.1.8. (a) A perfect O-frame is an O-frame F = (S,I, R,0,5) such that 0 : S — S
is bijective.

If #=(S,I,R,0,0) is a perfect O-frame, then there is an element u € I, such that o(u) = 1.
Then o(u) = 6 is the element from (3.1.1). Furthermore, ¢ : I — S is bijective, I = Su and

the elements u and # are non zero divisors.
(b) A Dieudonné module (M, F,V) for the perfect O-frame F consists of a finitely generated
projective S-module M and two additive maps F' : M — M,V : M — M such that the
following conditions are satisfied.

(i) F(sx) = o(s)F(z), V(sx)=0'(s)V(z), x€ P, scS.

(71) FoV =0idpy, VoF =uidy.
(#i7) The R-module M/V M is projective and lifts to a finitely generated projective S-module.

If R is a perfect O-algebra, then F = Wo(R) is a perfect O-frame and we have u = V1 =

T =20.

Proposition 3.1.9. Let F = (S,I,R,0,0) be a perfect O-frame. Let u,6 € S as defined above.
Then the category of Dieudonné modules for F is equivalent to the category of F-displays.
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Proof. Let (M, F,V) be a Dieudonné module. Since u and # are not zero divisors, the maps
F:M— M and V: M — M are injective. Therefore we can define a display (P, Q, F, F') by
setting

P=M,Q=VM, F=F, F=V"1.
Conversely, let (P, Q, F, F) be a display. We set (M, F') := (P, F'). We have the bijective map

v:S®,sP— P, v(s®z):=0c '(s).

Then we define V = v o V*. More explicitly, we have

V(sE(y) =0 ' (s)y, y€Q, s€S.
This implies that V(P) = Q. Moreover, we obtain

FV(sFy) = F(o~ ' (s)y) = sF(y) = §sFy

VF(z) =V (F(uz)) = ux.
Therefore (M, F, V) is a Dieudonné module. O

In our basic example F = Wo(R) for a perfect O-algebra R, we can replace the condition
(iii) above by the weaker condition that M/V M is a projective R-module. We note that for this
frame FF oV =midy, Vo F = midyy.

We refer to [II, Def. 3.3] or [35] for the definition of a nilpotent F-display. If R is a perfect O-
algebra, a Wo (R)-display is nilpotent iff for the corresponding Dieudonné module (M, F, V') the
endomorphism V of M/mwM is nilpotent. For an arbitrary O-algebra R such that 7 is nilpotent
in R, a Wo(R)-display P is nilpotent iff for any homomorphism of O-algebras to a perfect field
R — k, the base change of P by the morphism of frames Wo(R) — Wo (k) is nilpotent.

Definition 3.1.10. Let R be an O-algebra. Let X be a p-divisible group over R endowed with
a Zp-algebra homomorphism ¢ : O — End X. We call the action ¢ strict if the induced action
on Lie X coincides with the O-action on this R-module given by restriction of scalars O — R.
We say that (X, ¢) is a strict p-divisible O-module.

The following main result of [I] was known before for O = Z, [33], [21].
Theorem 3.1.11 ([I], Thm. 1.1). Let R € Nilp,. There is an equivalence of categories
(nilpotent Wo (R)—displays) — (stm'ct formal p-divisible O-modules over R)
which is functorial in R.

The theorem extends to p-adic R if we require the properties ”"nilpotent” and ”formal” only
after base change to R/pR.

A nilpotent Wo(R)-display gives rise to a crystal, as follows. Let S — R be a O-pd-
thickening, cf. Example We assume that p is nilpotent in S. The ring homomorphism
Wo(S) — Wo(R) defines a morphism of O-frames

Wo(S/R) — Wo(R).

Theorem 3.1.12 ([20], [33]). Let S — R be an O-pd-thickening such that p is nilpotent in S.
The base change functor

(nilpotent Wo(S/ R)-displays) — (nilpotent Wo (R)-displays)
is an equivalence of categories. [l
Remark 3.1.13. In the case O = Z,, Lau [19] has defined a functor
(p-divisible groups over R) — (W(S/R)-displays) (3.1.9)

which gives a quasi-inverse of the functor in Theorem [3.1.12] when restricted to formal p-divisible
groups. In particular this functor associates to an arbitrary p-divisible group over R a display.
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Let P be a nilpotent Wo (R)-display. Let P be the unique Wo(S/R)-display associated to P
by Theorem [3.1.12] Then we set

Dp(S) = P/Io(S)P. (3.1.10)

This is a finitely generated projective S-module. It is a crystal in the following sense. If S — R

is a another O-pd-thickening such that p in nilpotent in S’ and S — S is a morphism of O-pd-
thickenings, then there is a canonical isomorphism

S ®g Dp(S') = Dp(S).

This crystal corresponds to the Grothendieck-Messing crystal of a p-divisible group via Theorem
From Theorem one obtains the Grothendieck-Messing criterion for displays in the
following formulation.

Corollary 3.1.14. Let P be a nilpotent Wo (R)-display. Let S — R be an O-pd-thickening.
Each Wo(S)-display P which lifts P defines a lifting Fil :== Q/Io(S)P C Dp(S) of the Hodge
filtration Fil := Q/Io(R)P C Dp(R).

For a fized O-pd-thickening S — R, consider the category of pairs (P,P:ﬂ), where P is a
nilpotent display and Fil ¢ Dp(S) is a lifting of the Hodge filtration associated to P. The functor
which maps a pair (79,75) to the pair (’P,ﬁ) is an equivalence of categories. ([l

The following fact is well-known, but we give a proof.

Lemma 3.1.15. Let R be a p-adic O-algebra. Let P be a Wo(R)-display. Let O be a discrete
valuation ring which is a finite extension of O. Let

O — End P,

be an O-algebra homomorphism. Then P is a locally on Spec R a free O Qo Wo(R)-module.
Let S — R be an O-pd-thickening such that p is nilpotent in S. We assume that P is
nilpotent. Then Dp(S) is locally on Spec S a free O ®z, S-module.

Proof. We start with the case where S = R = k is a perfect field which contains the residue
class field of O. Let O be the maximal unramified extension of O contained in O. Let o be the
Frobenius automorphism of O! relative to O. To each O-algebra homomorphism 9 : O — k
there is a unique Frobenius equivariant O-algebra homomorphism

¥ : O — Wo(k)

which induces ¢ when composed with wo ¢ : Wo (k) — k. This follows from the remark after
the definition of Wp(R), cf. Example The decomposition

O @0 Wo(k) =[O ®a: 5 Wolk)
W

induces a decomposition
P = EBwa.

Each Py is a free module over the discrete valuation ring 0 @6t Wo(k). The Frobenius
F: P — P induces maps Py, — Py,. This shows that all Py, have the same rank as Wo(k)-
modules. This proves the case where R = k is a perfect field containing the residue class field of
0.

Now let k£ be an arbitrary field of characteristic p. It suffices to show that P @, ) k is a
free O ®o k-module. By base change a: k —» k this follows from the previous case because
P ®wo k) k= a.(P) @k is a free O ®0 k-module.

If R is a local ring with residue class field of characteristic p we conclude by Nakayama’s lemma
that P @y, r) R is a free O ®o R-module. The generalization to arbitrary R is immediate. This
proves the first assertion of the Lemma.

If P is nilpotent, the crystal Dp is defined. The case Dp(R) = P/Io(R)P was proved above.
For arbitrary S — R we can apply again Nakayama’s lemma. O
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Remark 3.1.16. Let R be a ring such that p is nilpotent in R. Let X be a p-divisible group
over R with a ring homomorphism
O — End X.

Let S — R be a nilpotent pd-thickening. Then the value of the Grothendieck-Messing crystal
Dx (S) is locally on Spec S a free O ®z, S-module. This can be shown by the same arguments
as above.

Finally we discuss isogenies of Wp (R)-displays, where R is an O-algebra such that p is nilpo-
tent in R. We assume moreover that Spec R is connected. Let a : P; — P2 be a morphism
of displays of the same height and dimension, cf. the remark after Definition Locally on
Spec R the W (R)-modules P; and P, are free of the same rank. We may choose a basis in each
of these modules and write det & € W (R). This is locally defined up to a unit in Wo(R). More
invariantly one can write exterior powers.

Definition 3.1.17. A morphism of Wy (R)-displays of the same height and dimension « :
P1 — P is called an isogeny if det e # 0.

Proposition 3.1.18 ([35], Prop. 17.6.2.). Let R be an O-algebra such that p is nilpotent in R
and such that Spec R is connected. Let o : Py — Po be an isogeny of Wo(R)-displays. Then
there exists a natural number h € Zx>q such that locally on Spec R
deta =", €€ Wo(R)*.
O

We call h the O-height of a, and write h = height, o. If O = Z,,, we write simply height o.
An abbreviation for the Proposition is:

height, oo = ord,; det .

Proposition 3.1.19 ([35], Prop. 17.6.4.). Assume that the ideal of nilpotent elements in R is
nilpotent and that Spec R is connected. Let o : P1 — Py be an isogeny of O-height h. Then
there exists locally on Spec R a morphism of Wo (R)-displays [ : Po — Py such that
Boa=71"idp,, aof=7"idp,.
O

Proposition 3.1.20. With the assumptions of Proposition leta: X1 — X5 bea
morphism of strict formal p-divisible O-modules over R. Let « : Py — Py be the induced
morphism of the associated Wo (R)-displays, cf. Theorem . The morphism a is an isogeny
of height h if and only if o is an isogeny of height h.

Proof. This can be reduced to the case of a perfect field R = k where it is well-known by
Dieudonné theory. O

Let R be an O-algebra and let a: X; — X3 be a morphism of strict formal p-divisible O-
modules. By Theorem there is an associated morphism « : P; — Py of Wo (R)-displays.
We set

height, @ = heighty «,  height X7 = heightyy, (g P1- (3.1.11)
The last height was defined after Definition[3.1.4] It is equal to the O-height of the endomorphism
of P; given by multiplication by m. We also write
height, P1 = height (7[P1) = heightyy, (z) P1.

3.2. Bilinear forms of displays. Let F = (5,1, R,0,5) be an O-frame and let § € S be the
element from (3.1.1)).
Definition 3.2.1. Let Py, P2, P be F-displays. A bilinear form of F-displays

B:P1 XxPy— P

is a bilinear form of S-modules
,BZP1XP2—>P (321)
with the following properties:
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(i) The restriction of 8 to Q1 X Q2 takes values in Q.
(ii) For y; € Q1 and y2 € Qq,
FB(y1,y2) = B(Fuyr, Faya).
We will denote the O-module of all bilinear forms by
Bil(Py x Pa, P).

Lemma 3.2.2. The following equations hold

FB(x1,y2) = B(Fray, Faya), T € P1, y2 € Qo,

FB(y1,m2) = B(Fuyr, Faws),  y1 € Qu, m2 € P,

OFB(x1,x2) = B(Frx1, Foxs), x1 € P1, 15 € Ps.

Proof. We omit the verification which is, for classical displays, contained in [33]. O

Let R be a perfect O-algebra and let F = Wp(R). Then we may equivalently consider
Dieudonné modules (P, F, V) and (P;, F;, V;) for i = 1,2, cf. Proposition[3.1.9] We can reformu-
late the Definition [3.2.1] as follows: A bilinear form of Dieudonné modules is a bilinear form of
Wo(R)-modules 8 : Py x P, — P such that

B(Vizy, Vawa) =V B(z1, 22). (3.2.2)

Proposition 3.2.3. Let 8 : Py x Po — P be a bilinear form of F-displays. Let o : F — F'
be a morphism of frames. Denote by Pj, Ph, and P’ the displays obtained by base change with
respect to a. Because P] = S' ®g P;, and P = 5" ®g P, there is an induced S’-bilinear form
B’ : Pl x Py — P'. This is a bilinear form of F'-displays

Py x Py — P
Proof. We omit the straightforward verification. O
Let P = (RQ,F, F) be an F-display. We are going to define the dual F-display PV =
(PY,QY,FY,FV). For an S-module M, we define M* = Homg(M, S). We set PV := P*, and
Q" ={yeP"|Y(Q) I}
We note that we have a natural perfect pairing
P/IP x PV/IPY — R.

We deduce that QY /IPV is the orthogonal complement of Q/IP and is therefore a direct sum-
mand of P/IP. We claim that there are o-linear maps
FV:PY — PV, FV:QY— P
which are uniquely determined by the following conditions. We denote by <, >: P x PV — S
the natural perfect pairing. Then we require for x € P, y € Q,¢ € PV, ¢ € QV:
<Py, FY(¢) > =0(<y,¢>), <F(x),FY(9)>=00(<z,¢>), (323)
<E(y),FY() > =06(<y,b>), <F@), V@) >=0(<wz,p>). -

Since F'is a o-linear surjection, the maps F¥ and FV are uniquely determined by these identities.
To verify the existence of these maps, we consider a normal decomposition,

P=ToL.

Let LY C PV be the orthogonal complement of L and TV C PV the orthogonal complement of
T. Hence there are canonical isomorphisms

LV =T* TV=[L*
We obtain the normal decomposition
PY=T"qoL", QV=IT"oL.
For ¢ € LY = T*, we set
FY()(F(0) =0, FY@)(F(t) =o(p(t), €L, teT.
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This definition makes sense because of the linearization isomorphism (3.1.6)). Finally, we define
FY(¢) for ¢ € TV = L* by the equations

FY(@)(F() = o(4(0), FY($)(F(t)) =0.
One verifies that, with these definitions, the identities (3.2.3|) are satisfied. It follows from the
symmetry of the equations (3.2.3)) that we have a natural isomorphism

P = (PY)".
By the equations (3.2.3) we have a natural bilinear form of displays
PxPY — Ppn (3.2.4)

with values in the multiplicative display P,, = Pm, r. If P’ is another F-display, the bilinear
form (3.2.4) induces an isomorphism

Homz_displays(P’s PY) — Bil(P' x P, Py,). (3.2.5)

We deduce a variant of the Grothendieck-Messing criterion. Let P and P’ be Wo (R)-displays
such that PV and P’ are nilpotent. Let S — R be a O-pd-thickening in Nilp,, cf. Example
3.1.3] We denote by PY, and P/, the associated Wo(S/R)-displays, which exist by Theorem
3.1.12] We define P,o = (P,))Y, where the last ¥ denotes the dual in the category of W (S/R)-

rel

displays. We set Dp(S) = Pra1/I(S)Prel. Then we obtain a crystal which is dual to the crystal
Dpv (S), cf. (3.1.10). This crystal agrees with Dp(S) defined earlier, if P is nilpotent. It follows
form (3.2.5) that each bilinear from

ﬁ : 7)/ X P — Pm,Wo(R) (326)
induces a bilinear form
Brel : Prep X Prel — Prnwo (s/R)
and, in particular, a S-bilinear form
Bcrys : Dp/ (S) X DP(S) — S. (327)
Proposition 3.2.4. Let R € Nilp, and let S — R be an O-pd-thickening z'n~NilpO.~ Let
P and P’ be Wo(R)-displays and assume that PV and P’ are nilpotent. Let P and P’ be
— —~/
liftings which correspond to liftings of the Hodge filtrations Fil C Dp(S) and Fil C Dp/(S),
cf. Corollary (3.1.14. Then a bilinear form B : P' X P — Ppowe(r) lifts to a bilinear form
B : 751 X ﬁ — Pm,Wo(S) Zﬁ
ﬁcrys(F/‘\i/l/a ﬁ) = 0.
O

Proof. This is a consequence of Corollary [3.1.14] and ([3.2.5)). O

We go back to an arbitrary O-frame F and add a remark on the map V¥, cf. (3.1.7). If P
is an S-module we set P(©) = § ®e,s P. If P is projective and finitely generated, the perfect
pairing < , > induces a perfect pairing

<, >y P x (P —8
(51® 3,50 ®¢) —s1520(¢(z)).

Let P be an F-display and let PV be the dual display. The maps (FY)# and V* are dual in the
following sense

< VﬁI, s® (rb >(0):< xZ, (Fv)ﬁ(s o2 ¢) > .
Definition 3.2.5. A polarization of an F-display P is a bilinear form
B:PXxXP— Pnr

such that the underlying bilinear form P x P — S is alternating and its determinant is non-zero.

If F =Wo(R), the height of 3 is the height of the associated isogeny P — PV (cf. Propo-
sition [3.1.18). We write height, 8 for the height of 3. Then we have heighty, 3 = ord, det 3 in
the notation of Proposition The polarization is called principal if height,(5) = 0.
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Remark 3.2.6. Let X be a strict formal p-divisible O-module over R € Nilp,. Let P be the
Wo (R)-display of X in the sense of Theorem If the dual display PV is nilpotent, it
corresponds to a strict formal p-divisible O-module XV, called the O-dual of X. In this case, a
polarization is given by an anti-symmetric O-module homomorphism X — XV,

3.3. The Ahsendorf functor. We will give here an alternative definition of the Ahsendorf
functor of [1] which is better suited to our purposes. One step of this definition is contained in
the Appendix of [22]. We use a Lubin-Tate frame introduced by Mihatsch in loc. cit., but for us
it will be important to make a specific choice, cf. Definition [3.3.8

Let Q, C £ C K be a subfield. We denote by o the ring of integers in €. We fix a prime
element w € 0. If R is an o-algebra we denote by W,(R) the Witt vectors relative to o and .
The Frobenius and the Verschiebung will be denoted by f and v. We set [K : €] = ef where e is
the ramification index and f is the inertia index. Beginning with section [d we will only consider
the case where £ = Q.

For an O-algebra R we have the Drinfeld homomorphism

1: Wo(R) — Wo(R), (3.3.1)
cf. [9, Prop. 1.2]. It is functorial in R and satisfies wo , (1(€)) = Wo, n(§), for & € Wy (R). This

implies the following properties:

71

u(") = (), () == V(") (i) =, (3.32)

for £ € W,(R), u € R. The last equation says that the Teichmiiller representative [u] € W, (R),
is mapped by p to the Teichmiiller representative [u] € W (R).
We have p(I,(R)) C Io(R). Therefore we may rewrite the second equation of (3.3.2)) as

w f—15
Flum) = —p(T ), n € L(R). (3.3.3)
The following definition extends Definition [3.1.10] to the relative case.

Definition 3.3.1. Let F = (S,I,R,0,5) be an o-frame, where R is a p-adic O-algebra. Let
P = (PQ,F, F) be an F-display. A strict O-action on P is a homomorphism of o-algebras
O — End P such that the induced action on the R-module P/Q coincides with the O-module
structure on P/Q obtained by restriction of scalars O — R.

For a p-adic O-algebra R we will define a functor
[ We(R)-displays .
Aofo.r ( with strict O-action - (WO(R)_dISPlayS')' (3.3.4)

We call this functor the Ahsendorf functor. The image of a W,(R)-display P as in Definition
will be denoted by P, = A0 /0,r(P). The main theorem on the Ahsendorf functor is:

Theorem 3.3.2. Let R be an O-algebra such that p is nilpotent in R. The Ahsendorf functor
induces an equivalence of categories

2A _( mnilpotent W, (R)-displays
O/l =\ with strict O-action

Furthermore, the Ahsendorf functor canonically associates to a bilinear form

B:P xP'—P (3.3.5)

) — (m’lpotent WO(R)-displays).

of Wo(R)-displays with a strict O-actions such that 8 is also O-bilinear, a bilinear form of
Wo(R)-displays
P.x P! — P,.

Proof. The first statement is the main result of [1]. The second statement is shown in Proposition
3.3, 1) (|

Remark 3.3.3. By Theorem [3.3.2] we obtain a functor
(strict formal p-divisible O-modules over R) — (WO(R)—displays), (3.3.6)
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which is defined as follows. By [19], [35] there is a functor from the first category to the category
of W(R)-displays with a strict O-action. Composing this with 25,z r we obtain (3.3.6). In
particular this gives a quasi-inverse functor to the functor of Theorem [3.1.11]

We will now define the Ahsendorf functor. We denote by K C K the maximal subextension
which is unramified over £. Let O be the ring of integers of K*. We consider the Witt vectors
Wo:(R) with respect to the prime element @ € O!. The Frobenius resp. the Verschiebung
acting on Wo:(R) will be denoted by F’ and V'. We will define 2/, g as the composite of two
functors

2 [ W,(R) — displays . Wor (R) — displays
O'/e. -\ with strict O-action with strict O-action

A ~( Wor(R) — displays
O/O%R =\ with strict O-action

We begin with the definition of 2ot /o g-

(3.3.7)
— (Wo (R) — displays).

Lemma 3.3.4. Let S be an O-algebra which has no w-torsion. Let 7 : S — S be a O-algebra
homomorphism such that
7(s) = s? (mod 7).
Let ug,u1, ..., Up,... €S. Then there exists £ € Wo(S) such that wo n(§) = uy, for all n iff
T(Up—1) =u, modx"S, for n>1.

The element £ is uniquely determined.

Proof. The proof is up to obvious changes identical with the proof for the classical case O = Z,,
cf. 2 IX, §1, 2, Lemme 2]. O

We denote by o € Gal(K*/€) the Frobenius automorphism. By Lemma there is a
homomorphism A : O — W,(0"), defined by w, ,(A(a)) = 0™(a) for a € O' and all n. We
obtain a ring homomorphism

21 O 25 W, (0') — Wo(R). (3.3.8)

We introduce the Ahsendorf frame with respect to the unramified extension O!/o for a p-adic
Ot-algebra R,
As(R) = (Wo(R), Lo(R), R, 1/, 171 (3.3.9)
This is an O'-frame via .
Let P = (P,Q, F, F') be a W,(R)-display with a strict O-action. We set

P, ={z € P|ia)x = »(c"(a))z, fora € O}, mecZ/fZ.
The W, (R)-module P decomposes as
P = ®pmez) 12.Pm- (3.3.10)
There is a similiar decomposition for . The maps F and F of P are graded of degree one,
F:P, —Ppni1, F:Qmn— Pni1.
If the action ¢ is strict, we have @, = P, for m # 0. Then we define the A,(R)-display Pya:
Pia=Py, Qua=Qo, Fu=F"'F F,=F/ (3.3.11)
It is clear that O acts strictly on Pya,.
It follows from that p: W,(R) — Wo:(R) induces a morphism of O'-frames
i As(R) — Wot(R). (3.3.12)

By base change we obtain from P, a Wo:(R)-display Py = pi4x(Pua). The strict action of O
on Py, induces a strict action of O on Py because the tangent space remains unchanged by this
base change.

Definition 3.3.5. The Ahsendorf functor 2l: /, g is the functor which associates to a W, (R)-
display P with a strict O-action the Wp (R)-display Py defined above.
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The Ahsendorf functor is compatible with bilinear forms as follows. Let 8 : P’ x P” — P
as in (3.3.5). Because 3 is Of-bilinear, 3 induces for each m € Z/fZ a pairing

B:PlL x P! —s Py,
and P/ and P;’ are orthogonal for i # j. For y' € Q and y” € Qg we find
BUENTY  (F") ") = FIB(Y  y").
Therefore the restriction of 3,
Bua : Py x P — Py
induces a bilinear form of A, (R)-displays
Pla X Pl — Pua.
Applying Proposition we obtain a bilinear form in the category of Wy (R)-displays,
Be: Pl x Pl — P (3.3.13)

Now we define (o0t r. First we introduce the Lubin-Tate frame. We choose a finite normal
extension L of K* which contains K. We set ® = Homp 5, (K, L). Let 9o : K — L be the
identical embedding.

Let Ex € O'[T] be the Eisenstein polynomial of m € O over O'. In Op[T] it decomposes as

Ex(T) = [[ (T = ¢()).
pe®
We set
ExoT)= [] (T-¢r)€0LlT]
pEP,p#po
One sees easily that Ex ¢ € O[T]. We lift these polynomials via w to the ring of Witt vectors,

Ex(T) =1 eq(T — [p(n)]) € Wor (ON)[T],
Bico(T) = [yeo,pm (T — [#(r)]) € Wor (O)[T].
The Frobenius F’ and the Verschiebung V' act via the second factor on O ®ot Wot(R). We set
F'= (V) 1:0®0: Ioi(R) — O @0t Wore (R).
Proposition 3.3.6. The element
(Bx(r © 1)) € 0 0o Wor(0')

(3.3.14)

is a unit of the form
(g ®1)5, §€0®0: Wot(O) (3.3.15)
such that § — (1 ® 1) lies in the kernel of
O ®0t Woi (0") — O @0t Wor (k),
and hence in the radical of O @ot Wor(OY).

Proof. The element is defined because id @ wor ¢ : O ®ot Wor (O) — O maps EK(TF ®1) to 0.
In the following computation we pass to O ®ot Wt (Or). We find from the definitions:

FExre1)="(J](ro1-1 o)

ped
1 L (3.3.16)
=—J[@e1-1&lpmn == " s
“ ped w =0

Here we denote by s; the elementary symmetric polynomial of degree ¢ evaluated at the e
arguments [p()]. By definition so = 1. We claim that for i > 0 the elements ¥'s; € Wo:(OY)
are divisible by w. Clearly wot o(s;) is divisible by 7. On the other hand, wo o(s;) € O" and
therefore is divisible by . We find expressions in Wo: (O?),

si = [we) + V&, e €Ol & € Woi(OY).
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Therefore F's; = [@4][c]] + w¢ is divisible by w. Indeed, using Lemma one shows as in
the proof of [33, Lem. 28] that w divides [w?].
Now we may write the last term of (3.3.16) as

/

e - Y
_ 1 €e—1 [
—® +;7r ® —

’
Fsi

Finally, lies for ¢ > 0 in the kernel of Wt (O') — Woe (k). Indeed, the elements [p(m)] €
Wot(Oy,) are mapped to zero in Woe (k) and therefore a fortiori the symmetric functions s;.
We conclude that s; and then s; become zero in Wot (k) for i > 0. Because w is not a zero

divisor in Woe (k) the elements % are then also in the kernel. O
We write in the ring W (0),
7—[n]= Ve. (3.3.17)
One checks that e € Wp(0O) is a unit. If we apply F to the last equation, we obtain
m — [n9] = 7e. (3.3.18)
In particular [79] is divisible by .

Lemma 3.3.7. The image of the element ( F,EK(W ® 1))_1 - F'Br o(r ®1) under the Drinfeld
homomorphism

7 0] Xot Wot(O) — Wo(O)
equals e~ (w /).

Proof. It is enough to show the same assertion for O ® ot Wot(Or) — Wo(Opr). The image of
F'Eg(r®1) by the last map is ™! [, (7 —[p(7)?]). Here we used that  is not a zero divisor
in the participating rings. Our assertion is equivalent with the equation

o I - lemMeZ = [T (= le(m)).

PFPo
But this is a consequence of (3.3.18)). O
The free Wo:(R)-module O ®ot Woe(R) has the basis
191, 7®1-1®[x],...,7" @1 -1 [7]™,..., 7' @1 -1& [r]°" . (3.3.19)

To ease the notation, here [rr] denotes the Teichmiiller representative of the image of 7 by the
morphism O — R. Let

J = Ker (O ®or Wor(R) — R),

where the map is induced by wqg : Wpt(R) — R. The ideal J is contained in the radical
of O ®pt Wot(R). As a Woe(R)-module, J is the direct sum of O ®¢p Io(R) and the direct
summand generated by the last e — 1 elements of (3.3.19). In particular we obtain

T =0®0ot Iot(R)+ (r®1—-1® [7])(0 @0t Wor(R)). (3.3.20)
We define maps oy; : O ®ot Wot(R) — O @0t Wot(R), o1t : T — O ®0t Wot(R) by
me= e = ("B U (Bron). §€0®0 Woi(R), ne .
The map 61 : J — O @t Wt (R) is oji-linear. Then we obtain
Mrel-10r]) =( Ex) ™ F(Eg)=1. (3.3.21)
Definition 3.3.8. (comp. [22] Def. 2.7]) The Lubin-Tate frame for O is the O-frame
Fie(R) := (O @0t Wor(R), T, R, o1, O1t,)-



32 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK

This is indeed an O-frame: the only thing we need to check is
g =¢" (mod (@ 1)0 ®or Wor (R)),
and this follows because a = a? mod = for a € O and F'n = n? mod w@ for n € Wor (R).
We remark that by
(r@l-1@r) Mp= "1, neJ.

Now we start with a Wo:(R)-display P with a strict O-action. The last condition can be
reformulated as

JP CQ. (3.3.22)
We refer to [II, Prop. 2.26] for the proof of the following lemma.

Lemma 3.3.9. Let P be a Wot(R)-module with an action of O, i.e., a homomorphism of O-
algebras
O — Endwot(R) P.

Assume that locally on Spec R the Woi(R)-module P is free. Then P is locally on SpecR a
finitely generated free O ®ot Wot (R)-module. O

Lemma 3.3.10. Let P be a Wot(R)-display with a strict O-action. Let x € P. By
(r®1—-1®[7])x € Q. The following equation holds,

Fr=("Ex(rel) " TExorol) F((rel-10 1))
Proof. From the definition of the polynomials Ex and ]::‘;K,o, we find since pg(7) = 7,
Ex(r®1) =Ego(r®1) - (r@1-1® [1]).

Therefore o o

= P(Exor@1)F(r®1—1® [r))z).
Because Ex (m®1) € OQpr Iot(R), we obtain
FEx(r®)z) = ¥ (Ex(r®1))Fz.
We conclude by Lemma [3.3.6 O

We now associate to the Wo: (R)-display P = (P, Q, F, F') with a strict O-action a Fj-display
P = (Plt,Qlt,Flt,Flt)o We set Py = P, Q1w = Q, Fiy = F', and
Fi(z)=F(r®1-1®[x)z), ze€P. (3.3.23)
Proposition 3.3.11. Py is an Fi(R)-display.

Proof. The only thing we have not checked is the equation

Fy(nz) = ““nFyz, neJ. (3.3.24)
We begin with the case n = Vlf. We apply Lemma [3.3.10
Fu(ne) = F(V'¢x) = ¢F(2) = €( FEx) ™ PEgo-F(n®1 18 [1))2). (3.3.25)

By definition
= (TER) T B V) = (TER) T (Bro)t

Using the definition (3.3.23), we can write the right hand side of (3.3.25) as “1*nF(z), hence
we are done in this case.

Next we consider the case where n = (7 ® 1 — 1 ® [7])§. Then we find
Fie(ne) = F((r © 1 - 1@ [])éx) = "¢R(a).

But by (3.3.21)) we have % ((r ®1—1® [r])¢) = F'¢. Therefore in this case (3.3.24) is true as
well. O
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We use the same symbol e € Wo(R)* for the image of the element £ € W (0)* defined by
(13.3.17)). We define the frame

W5(R) = (Wo(R), Io(R), F,e L F). (3.3.26)

We note that the categories of displays over Wo(R) and W§(R) are canonically isomorphic.
Indeed, if P = (P,Q, F, F) is a Wo (R)-display, then P = (P, Q,cF, F)isa W§ (R)-display.

Recall that we denote the Frobenius and the Verschiebung acting on Wo:(R) by F’ and V.
We consider the Drinfeld homomorphism i : Wor (R) — Wo(R), cf. (3.3.1)). This is a functorial
ring homomorphism such that w/, (u(£)) = w,,(£) which has the following properties

p(7O = Tue), w(V'9=="Yu(©, n(a))=al, forack. (3.3.27)
The Drinfeld homomorphism extends to a ring homomorphism
w00t Wot(R) — Wo(R) (3.3.28)
which we denote by the same letter.
Proposition 3.3.12. The Drinfeld homomorphism induces a morphism of O-frames
p: Fi(R) — Wo(R).
Proof. We have to check that the image of J C O ®ot Wot(R) by p is contained in Io(R). This

is immediate because u(m ® 1 —1® [r]) = 7 — [r] = Ve. It remains to prove the equations for
£ e 0O®ot Wot(R) and n e J,
p( 7€) = Tu(§),  p( M) =7t Fuly). (3.3.29)

The first equation follows from (3.3.27). To prove the second equation, it is enough to consider
the following two cases separately: n = V/§ andn = (7r®1—1®[n])¢. In the first case we have

o= (FBR) T (B V') = (P BT T Eko)E
Applying Lemma we obtain
p( M) = e Hw/m)p(E).
On the other hand, we have by
e (V') =7 F(w/m) Vule) = 7N (w/mule),

as desired.
Now we consider the case n = (7 ® 1 — 1 ® [x])§. We have

p(rel-1@[a])E) = (r — [thu€) = Veu(&) = V(e "u(€)).
We obtain
e Pu(n) = T u(©).
On the other hand, we find by (3.3.21]) and (3.3.27)
u(rn) = u( 7€) = Fu(©),
as desired. 0

Starting now with a Wet(R)-display P = (P, Q, F, F) with a strict O-action, we have the
associated Fii(R)-display Py = (Py, Qi, Fit, Fit), cf. Proposition 3.3.11l After taking the base
change by the morphism of frames of Proposition [3.3.12) we obtain a Wg (R)-display P; =
(P2,Q%, Fe, F2). Then P, = (P5,Q%, e F2, F¥) is an Wo(R)-display.

a

Definition 3.3.13. The Ahsendorf functor 2o 0: r is the functor which associates to the
Wor (R)-display P with a strict O-action the Wp (R)-display P, defined above.
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From the construction we obtain that
P,=Wp (R) ®O®OtW0t (R) P, (3.3.30)
and that @, is the kernel of the natural map

Wo(R) ®og Wy (r) P — P/Q.
We note that the canonical map P — P, induces a map @ — Q..

Proposition 3.3.14. Let P be a Wor (R)-display with a strict action of O. Let Py = o 0t r(P)
be its image by the Ahsendorf functor. The following diagram is commutative

| |

Qa e Pa
Fa
Proof. This follows from the definition of Py, before Proposition [3.3.11fand the definition of base
change (via the morphism of Proposition [3.3.12)). (I

We note that this diagram determines the map F, uniquely. Indeed, consider the following
equation in P, under the identification (3.3.30)),

Ver=10 (r®1-1Q [])z.
Applying F,, we obtain from the diagram that
eF,(1®x) =10 F(r®1 -1 [1])z).

This shows that F), is uniquely determined. Because the image of @ and Io(R)P, generate @,
as a Wo(R)-module, the map F, is then also uniquely determined.

We return to the notation that P is an o-display with a strict O-action. Applying the functors
2ot /o,r and Ap /ot g, We obtain first Py and then P,. We find by our definitions that, with the
notation of ,

P, =Wo(R) ®( ) Py =Wo(R) ®( (3.3.31)

0@t Wo(R) 0®,W,(R)) P.

We note that Py = (O ®0o¢ .. Wo(R)) ®og,w, (r) P-

We already noted that the Ahsendorf functor ¢/, g is compatible with bilinear forms.
Similar remarks are also valid for the Ahsendorf functor 2o ot r: first one checks that the
functor P +— Py is compatible with bilinear forms of displays, and then applies Proposition
for the compatibility of base change with bilinear forms. Taken together with , we
obtain the following property of the Ahsendorf functor 2o/, -

Proposition 3.3.15. Consider a bilinear form of W,(R)-displays,
B:P xP"—P,
which is also O-bilinear. Then the bilinear form 3 : P’ x P — P induces by (3.3.31) a Wo(R)-
bilinear form B, : P. x P! — P,. The bilinear form f, is a bilinear form of Wo(R)-displays,
Ba: Pl X Pl — Pa.
O
Remark 3.3.16. In the case where R = k is a perfect field, the description of the Ahsendorf
functor is very simple. We consider the functor 2o,z , which is relevant for us. As a prime
element of Z, we choose p. The element € € Wy (k) is 1. As above, we denote by f, resp. v, the
Frobenius, resp. the Verschiebung, of the ring of Witt vectors W (k). In this case the morphism
(3-3.12) of frames p : Aoz, 1 — Wor(k), and the morphism of frames i : Fis (k) — Wo(k)
of Proposition [3.3.12] are isomorphisms. Therefore we identify Wo (k) with the frame
(0O @0t W(k), 70 @0t W(k), k5, § 77 1). (3.3.32)
This is a perfect frame with u = 6 = 7, cf. Definition |3.1.8
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Let (P, F, V) be a W(k)-Dieudonné module with a strict O-action. We have the decomposition
P =&, Py, cf. (3.3.10). The summand Py is an O ®o¢« W (k)-module. Since the action of O is
strict, we find

7TPOCQO:VfP0.
Therefore we can define
Vo=V F,=Vr:P — P, (3.3.33)

Then (P, Fa, Va) is a Dieudonné module for the frame (3.3.32). It is the image of (P, F,V) by
the Ahsendorf functor 2oz, -

Proposition 3.3.17. Let R € Nilpy. We assume that Spec R is connected. Let P be a W(R)-
display with a strict O-action, and let Py be the image by the Ahsendorf functor oz, 1. Then

height P = [O : Z,] height, Pa.
The right hand side denotes the height of the Wo (R)-display P, in the sense of Definition .

Let a : Py — Pa be an isogeny of W(R)-displays with strict O-action, and let oy @ P1q —
Pa,q be the image by the Ahsendorf functor. Then

height o = [O" : Z,] height, aa.

Let R =k be a perfect field. Let \y < ... < Ay, be the slopes of P. Then the slopes of P, are
(O : Zpl\1, ..., [O : Zp)\p. The display P with its strict O-action is isogenous to a direct sum
of displays with a strict O-action &, P(N\;) such that P(N;) is isoclinic of slope X;.

Proof. Tt suffices to consider the case where R = k is a perfect field. Then it is a consequence of
the description of the Ahsendorf functor given above, cf. (3.3.33)). O

In the end of this subsection, we relate explicitly the deformation theory of a display with
a strict O-action and its image by the Ahsendorf functor. Let S — R be an epimorphism
of O-algebras which are p-adic. We assume that the kernel a of this epimorphism is endowed
with divided powers « relative to 0. Then v induces also divided powers 7; on a relative to OF.
Indeed, let ¢, be the number of elements in the residue class field of 0. Then we set

(a) =~(a)a® % ="/, aca (3.3.34)
By setting va(a) = v (a)(w/7), we obtain divided powers 7, relative to O on a.

a
Let P = (P,Q, F, F) be a W,(S/R)-display with a strict action
t:0 — EndP.

The definition of strictness is literally the same as Definition Since (S — R,7,) is an
O-pd-thickening, the O-frame Wy (S/R) is defined, cf. Example The Ahsendorf functor

generalizes to a relative Ahsendorf functor

W, (S/R) — displays )

Ao/0.5/R : ( with strict O-action — (WO(S/R) B dlsplays). (3.3.35)

The construction is the same but uses some additional arguments, which we will indicate now.
We define the relative Ahsendorf frame for S — R,
Aa(S/R) = (Wo(8). L(S/R), R,§ 1), (3.3.36)

where f : I,(S/R) — W,(S) is defined as in Example This is an O'-frame by the
homomorphism 3 : Of — W, (S).
From the O'-action on the W,(S)-module P we obtain a decomposition, comp (3.3.10)),

P =&necz/52Pm, Q= Omez/rzQm- (3.3.37)
We obtain an A, (S/R)-display Pua = (Puas Quas Fua, Fua) by the formulas (3.3.11)).

Lemma 3.3.18. The Drinfeld homomorphism p : W,o(S) — W (S) induces a morphism of
frames

Ao(S/R) —s Woi(S/R). (3.3.38)
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Proof. We have to prove the formula

F () = u( "), n € L(S/R).

For n € I,(S), this is (3.3.3). Therefore the formula follows if we show that p : W,(S) —
Wot (S) maps logarithmic Teichmiiller representatives of elements in a to logarithmic Teichmdiller
representatives. Let W, , be the divided Witt polynomials defined by v and let wo: , be the
divided Witt polynomials defined by ;. It follows from the definition of the Drinfeld homomor-

phism (3.3.1)) that
Worn(u(€)) = @0 10 (€), € € Wo(a). (3.3.39)
This is verified by reducing to a universal case where a is without p-torsion. If now & = a € W,(a)

is a logarithmic Teichmiiller representative, the right hand side of (3.3.39)) is 0 for n # 0, and is a
for n = 0. This shows that u(a) is the logarithmic Teichmiiller representative of @ in Woe(a). O

Applying now base change to Py, relative to (3.3.38)), we obtain a W (S/R)-display Py with
a strict O-action. The assignment P +— P; defines the functor

2 ~( W,s(S/R) — displays . Wot (S/R) — displays
O'/0,S/R -\ with strict O-action with strict O-action ’

Next we define the functor

2A ~{ Wot(S/R) — displays
O/O%S5/R =\ with strict O-action

We begin with the definition of the relative Lubin-Tate frame Fi;(S/R). We start with the frame
Wor(S/R) = (Woe(S), Ip: (S/R), F', F'). Recall that Io:(S/R) = a® Ip:(S), where the ideal &
consists of the logarithmic Teichmiiller representatives a of elements a € a, with respect to the
divided powers ~;. We have by definition £’ (a) = 0. Tensoring with O®¢o+, we obtain

F': O®0t Wot(S) — O @0t Wor(S),
F': O®0t Iot(S/R) — O @0t Woe(S).
We define an ideal in O ®gt Wt (.S),
T(S/R) = 0 @0 Tor(S/R) + (1 &1~ 18 [1))(0 8ot Wor(S).  (3.341)
For an element n € J(S/R) we find
Exo(r®1)n € O ®0: Io:(S/R).
Indeed, the factor ring O @t Wot(S)/0 @0t Iot(S/R) = O ®o+ R is annihilated by Ex (7 ® 1).
As before in the definition of the Lubin-Tate frame, we define maps o1y : O ®gt Wt (S) —
O @0t Woi(S) and 614 : J(S/R) — O ®ot Wi (S) by
e =g = PBrme )™ T Bro(r e ),

with £ € O ®ot Woe(S), n € J(S/R). The justification of the following definition is analogous
to the justification of Definition [3.3.8| of the Lubin-Tate frame.

) — (WO(S/R) = displays). (3.3.40)

Definition 3.3.19. The O-frame
Fit(S/R) := (0 @0t Wpe(S), T(S/R), o1, o1t)

is called the relative Lubin-Tate frame corresponding to the epimorphism of O-algebras S — R
and the divided powers «; relative to O on the kernel a.

Lemma 3.3.20. The Drinfeld homomorphism
0ot Woe(S) — Wo(S)
defines a morphism of O-frames
Fie(S/R) — W5 (S/R). (3.3.42)
The last frame is defined by .
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Proof. One can argue exactly as in the proof of Proposition [3.3.12] but we need that
p: Wor(a) — Wo(a)

maps logarithmic Teichmiiller representatives a € W« (a) with respect to the Of-divided powers
vt to logarithmic Teichmiiller representatives @ € Wo(a) with respect to the O-divided powers
~a- This is a consequence of the following relation of divided Witt polynomials,

Wou((@) = () Worn(@), a€Wora).

Again we may restrict to the p-torsionfree case, where this formula follows immediately from the

definition of p, cf. (3.3.1). O

Let P; be a Wo (S/R)-display with a strict O-action. Then the R-module P;/Q; is annihilated
by m®1—1® [r]. As in Proposition [3.3.11} we define F}; : P — P by

Fy(z)=F((r®1-1®[x))z), ze€P.
We set Py = P,, Qiy = Qt, Fix = F;. Then we obtain a Fi:(S/R)-display Py, = (P, Qut, Fi, Flt)
If we apply the base change by , we obtain a W (S/R)-display P = (PZ,Q%, F2, F¥).
The assignement Py — P, = (P°,Q%,e 'F,FF) is the desired relative Ahsendorf functor
Ao/0t,5/R-
Proposition 3.3.21. Let P be a W,(S/R)-display with a strict O-action. Let P, be the

Wo(S/R)-display associated to it by the relative Ahsendorf functor Ao /e s/r. Then there is
a canonical isomorphism

P./16(S)P, =2 S ®0g,s (P/1,(S)P). (3.3.43)
Proof. This is an immediate consequence of O

With the notation P = P,, of , we may write
P,/I6(S)Py = Pua/Io(S)Poa+ (m®1 —1& [7]) Pya- (3.3.44)

To see this, one uses that 7® 1 —1® 7 generates the kernel of the canonical map O ®o:t O — O
as an ideal. We see that P,/Io(S)P, is the biggest quotient of Py, /I,(S)Pua such that the action
via ¢ and via the structure homomorphism O — S agree.

Let R be an O-algebra R such that 7 is nilpotent in R. Let P be a W, (R)-display with strict
O-action. We assume that P is nilpotent. Then P, is also nilpotent. Then there is a crystal
Dp on the category of o-pd-thickenings and a crystal Dp, on the category of O-pd-thickenings
associated to these displays.

Corollary 3.3.22. Let P be a nilpotent W, (R)-display with a strict O-action. Then the image
P. by the Ahsendorf functor is a nilpotent Wo (R)-display. Let S — R be a surjective map
of O-algebras which are p-adic. Assume that the kernel a of this epimorphism is endowed with
divided powers v relative to 0. Let v, be the corresponding O-divided powers on a. There is a
canonical isomorphism

Dp, (S,7) = S @0s,s) Dp(S,7).

Proof. Indeed, Dp(S) is computed from a W, (S/R)-display P which lifts P and which is unique
up to isqmorphism. But then the relative Ahsendorf functor applied to P gives a Wo(S/R)-
display P, which lifts P,. We conclude by Proposition |3.3.21 O

Corollary 3.3.23. With the notation of Corollary the Ahsendorf functor Ao/, s defines
a bijection between the liftings of P to a W, (S)-display with a strict O-action and the liftings of
Pa to a Wo(S)-display.

Proof. We show that each lifting of P, is in the essential image of ™o/, 5. A lifting P, of P,
corresponds, by Grothendieck-Messing for nilpotent displays, to a direct summand U, C Dp_(S).
Let U C Dp be the preimage of U, by the natural epimorphism Dp — Dp, . Then U defines a
lifting of P which is mapped by the Ahsendorf functor to P,. O

It is straightforward to deduce from the last Corollary Ahsendorf’s Theorem [3.3.2] for an
artinian local ring with perfect residue class field, i.e., we reproved a special case of [I].
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3.4. The Lubin-Tate display. Let K be a finite extension of Q,. Let K* C K be the maximal
subextension which is unramified over Q,. We denote by O' C O the rings of integers and by x
the common residue class field. We fix a prime element m € O. Let L be a normal extension of
Q, which contains K. We set L' = K*. Let ® = Homg,-a14(K, L) and ¥ = Homg,-a1g(K", L).
We denote by ¢ € ® and ¢y € ¥ the identical embeddings. We denote by ®,, the preimage of
1 by the restriction map ® — W¥. We define

Ey(T) = [] (T - () € O],
PEDy

Clearly this polynomial has coefficients in Or: C Op. Let E € O[T be the Eisenstein polynomial
of 7 in the extension K/K*. Then Ey, is the image of E by v in Or+[T]. We consider the surjective
O¢p-algebra homomorphismus
OL[T) — O ®otq Or,
which maps T' to 7 ® 1. Then Ey(r ® 1) = 0.
We lift the polynomials E, to the Witt ring

Ey(T) = [] (T~ [p(m)]) € W(OL)[T].

PpEDy
We consider the decomposition
O Sz, Ot = H 0 Qot 4 Ope.
Ppew
Let o € Gal(K'/Q,) be the Frobenius automorphism. We have the morphism \ : O* — W(O?)
from (3.3.8). We define ¢ as the composite
b0t 2 won MY worn).
Then we obtain the decomposition
O @z, W(Or) = [ O®@¢: 5 W(OL). (3.4.1)
Pew

Let E,(7®1) be the image of E,, by the homomorphism W (Or:)[T] — O®ge 5 W(Opt) which
maps T to 7 ® 1. Since Ey (7 ® 1) = 0, we conclude that

Ew(ﬂ' ® 1) (S O ®Ot,zz I(OLt) (342)
For an arbitrary Op:-algebra R, the decomposition (3.4.1)) induces
O @z, W(R) = [[ 0@ 4 W(R). (3.4.3)
Pew

The Frobenius and the Verschiebung act on the left hand side via the second factor, and this
induces on the right hand side the maps

F:0 Dot W(R) — O ®Ot,% W(R)

a®é& — a® F¢
(3.4.4)
a®& — a® V¢
We note that 1o = 9 o 0. We will write £ =V~1:0 ot 5 I(R) — O @, e W(R).

Proposition 3.4.1. The element FE¢(7T ®1) € 0O®,, 7o W(Or¢) is a unit of the form

FEy(r®1) = (% ©1)5, §€0®y, 7 W(OL), (3.4.5)

where 6 —1®1 is in the kernel of O®,, 1%VV(OU) —0®
lies in the radical of O ®, 7 W(Ort).

Ot,%W(“L‘)- In particular, 6 —1®1

Proof. The proof is the same as that of Proposition [3.3.6 (|
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The polynomial E,, has the decomposition
Ewo (T> = (T - ﬂ-) : Ewo,U(T)'
These polynomials have coefficients in K C L. Recall that ¢o(7) = 7. We set

EyoT)= ] (T-[e(m)]) € W(OL)T).
PEDy, P70
This polynomial lies in W(O)[T] C W(Op)[T]. We set
P=0 Rz, W(0) = DypewO ®Ot,w~ W (O). (3.4.6)

We denote by Qy, C O ®g: 5, W(O) the kernel of the map
0 ®g: 5, W(0) 2% 0 @t 4, O ™% 0. (3.4.7)
Lemma 3.4.2.
Quo ={z € 0®0. j, W(O) | Eyyo(m @ )z € 0 @4, ;. 1(0)}

Proof. Let Q, be the kernel of the second map of (3.4.7). Then we can reformulate our assertion
as

Qwo = {:L' €0 Kot 1y 0] | Ewojo(ﬂ ® 1)1’ = 0}
We write
O ®0t,p, O = (O'[T]/Eqy, (T)O'[T]) @015, O = O[T]/Eq, (T)O[T].
We see that Qy, = (T — m)O[T/Ey, (T)O[T] which coincides with Ey, o(T)O[T]/Ey,(T)O[T).
(I

We let F' and V' act via the second factor on O ®z, W(O) and therefore on the right hand
side of (3.4.6)) by the formulas (3.4.4]).

Definition 3.4.3. The Lubin-Tate display is the W(O)-display £ = (Pz,Qr, Fr, F,c), defined
as follows. Let Pz = O ®z, W(O). Then P; = ©yPy  with Py, = O ®ot W(O). Set
Qy = Py ¢ for ¢ # ¢y and Qy, C Py, ¢ as above, and define

Qr = PyevQy C Pr.

The maps F and F are defined as the direct sum of the following maps for all 1. For ¢ # 1
we define

Fr: 000 gW(O0) — 084, 5 W(0), Fr: 084 ;W(O0) — 08, 5 W(O).
z — F(By(r® 1)), y — F(Ey(r21)y)
For ¢y we define
Fr: O®p g, W(0) — 0®y = W(O), Fr: Qu, — O0&p ;= W(O).
z —  F(Bo(r @ 1)a), y —  F(E(ral)y)

The action of O by multiplication via the first factor on O ®z, W (O) defines a strict O-action
on L. If R is a p-adic O-algebra we denote by Lp the base change of £ via the morphism of
frames W(O) — W(R).

The tuple (Pz,Qr, Fr, Fy) is indeed a W(O)-display. The only non-trivial point is that F
is surjective. But this follows from Proposition [3.4.1

We will now apply the Ahsendorf functor 2o,z o to the Lubin-Tate display £. We use the

previous section in the case 0 = Z,, and @ = p. We set ¥; = ¢go’ : O' — O, where 1) is the
identity. We have the decomposition

Pr = GBZ;OIPCJZH? Pry, =0 Dot 4, W(0).

We denote the Frobenius on W(O) by F'. In the last section we have associated to £ an A(O)-
display P, for the O'-frame

Az, (0) = A(O) = (W(0),1(0), F/,FI~'F).
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By definition Pua = Pr g, Qua = @z 0, and Fuo = Fg More explicitely, for y € Qua,

-1

Fualy) = "By, (n©1) "By, (o). T By (o) T (By(r @ 1)y).
We set
n= "By, (r01) By, ,rol)..... TR, (rol) T R, (r@1).

Then we may write

Fualy) =n( " By (e 1) 7 (By(r @ 1)y). (34.8)
To Py we apply base change with respect to the Drinfeld morphism p : A(O) — Weo:(O). We
obtain the Wo: (O)-display Py, where

P, =0 ®0r Wot(0)

and where Q) is the kernel of the homomorphism O ®o: Wp:(O) — O induced by Wor 0, cf.

3.4.7). The polynomials Ewo and 1:]1/,0’0 are mapped by p to the polynomials Ex and Egk o of
3.3.14)). We denote by nj; the image of n by u. Therefore we obtain

B(y) =n (T EBx(r01) " F(EBro(rel)y), yeQ

By Proposition [3.3.11} we associate to Py a Fi¢(O)-display Py;. In terms of the Lubin-Tate frame
(comp. Definition [3.3.8]), we may rewrite the last equation as

Flt(y) =moi(y), YyE€Qi=Qw=J.

Proposition 3.4.4. The Ahsendorf functor Aoz, 0 maps the Lubin-Tate display L to a Wo (0)-
display which is canonically isomorphic to Py, w0 (e /pl), i.e., the twist of the multiplicative
display by 7/ /p/ € O € Wo(O), cf. Evample|3.1.0,

Proof. Let Py, ¢ be the multiplicative Fi; (O)-display. The above identities show that the display
L is equal to the Fi,(O)-display Pp, (ny). Applying to this display the base change by the
Drinfeld morphism of frames, cf. Proposition we obtain essentially (i.e., neglecting &)
the image of £ by the Ahsendorf functor. By Proposition the image of the element n by
the map O ®y, 5, W(0) — O ®0ot g, W(k) = O is 7/ /p/. This implies that the image of
ny; € O ®ot Woi(0) in O @pr Wor (k) is 7€ /pf. By the following Lemma there is a uniquely
determined unit ¢ € O ®p: Wo:(0O) such that {ny = (7¢f /pf @ 1) Fff. This gives a canonical
isomorphism Py, (n1;) — Ppie(7¢/ /p? @ 1). The base change with respect to a morphism of
frames maps the multiplicative display to the multiplicative display, cf. Example[3.1.7] Therefore
the last display is mapped by the base change of Proposition to the W§,(O)-display

(Wo(0),10(0), F,e ' F) (¢ /pf @ 1).

Here we denote by F the Frobenius acting on Wy (O) and by F the inverse of the Verschiebung.

The element ¢ is defined by ([3.3.17)).
Therefore the definition of the Ahsendorf functor gives Py, v, (0)(e™ (7% /pf ® 1)) as the

image of £. The image of ¢ by the homomorphism Wy(0O) — Wy (k) is 1. A variant of the
next Lemma shows that there is a unique ¢ € Wo(O) such that F¢¢ = e. This shows that the
last display is canonically isomorphic to P, w, (0) (m¢f /pf @ 1). |

Lemma 3.4.5. Let o € O @t Wi (O) be a unit whose image in O @or Wor (k) is 1. Then
there exists a unique unit & € O ®pt Wt (O) whose image in O @t Woe (k) is 1 and such that

Fle gl —a.

Proof. One proves this by induction on n for O ®g: Wt (O/7™0). Alternatively one can use
Grothendieck-Messing for frames due to Lau and show that the multiplicative display of Fi; (k)
has no nontrivial deformation with respect to F;(0) — Fit (k). O

Remark 3.4.6. Let k a perfect field which is an extension of k. We regard it as an O-algebra
via the residue class map O — k. Then we can describe the Dieudonné module (Pg, , Fr,, Ve, )
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of L, as follows. Let Yo : O = W (k) — W (k) be the canonical map. The set ¥ consists of the
maps 1Ppo’ where o is the Frobenius of the extension O /Z,. We have

Pr, =0z, W(k) =[] O®0: 5 W(k).

Ppew
The Frobenius and the Verschiebung
ey
(@] Qo 4 W(k) &— O R0t jo W (k) (3.4.9)
Ve,
are defined as follows:
Fro(wy) =7 Py, Ve (@yo) = 0/7) " ape,  for # do,
-1
FLk (ajll)o) = 7Te_1 wam Vﬁk (xw00> = (p/ﬂ-e_l) F Lopgo-

The upper left index F' denotes the action of the Frobenius via the second factor on O ®z, W (k).
This description follows easily because Ey(T) = T¢, and therefore Ey(r ® 1) = 7€ @ 1 €
O ®ge 5 W(k) and Ey, o(m®1) = =1 @ 1. Moreover, we have @, = 7O ot 5 W(k).
We have identified the frame Wo (k) with
~1
(0 @0 g, W(K), 7O @00 g, W(k), k, I FIa™t).

By Remark |3.3.16] the Ahsendorf functor associates to the Dieudonné module (Pg,, Fr,,Vz,)
of L the Wo (k)-Dieudonné module

ef /
T pf L _phy, (3.4.10)

(O Dot 4o W(k), p7f Y

This is equal to the Dieudonné module of the twisted multiplicative display ’meo(k)(wef / pf ),
in agreement with Proposition

In the end of this subsection we discuss the Faltings dual of a display P = (P, Q, F, F ) with
a strict O-action over an O-algebra R. We begin with a recipe how to construct such P. We
consider the decomposition induced by (3.4.3)),

P=@yPy, Q= Quy, ® (BysryoPp)-
Let
Ty = Ker (O @4 5, W(R) — R), (3.4.11)

where the map is induced by the structure homomorphism O — R and the homomorphism
wy. Then

To =00 5, IR + (1 ©1 1@ [x])(0 Br g, W(R),
cf. (3.3.20). To find a normal decomposition P =T & L, we start with
Pyy =Ty & Lyy,  Quyg = JygType ® Ly,

We define ¢1y, + Typo — Pyoors
or,,(t) =F((r®1—1® [1])t).

Then we set T = Ty, C P and L = Ly, @ (Dyozyy Py). Let ¢r : L — P be the restriction of I
to L and let ¢r = ¢r,, . The restriction to Ly, is denoted by ¢r,, .

Lemma 3.4.7. The map
¢T D (bL T D L—P

is an F-linear O ®z, W(R)-module isomorphism, where the Frobenius F acts on O ®z, W(R)
via the second factor.
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Proof. For 1 # 1y the map Fw : Py — Py, is an F-linear isomorphism. Therefore it suffices
to show that the map

oT D ¢Lw0 : Ty ® Lyy — Pyyo (3.4.12)
is an F-linear isomorphism or, equivalently, an F-linear epimorphism. Since Py, is generated
by F(Qwo) it suffices to show that the following elements are in the image of the linearization

of :
F(0), F(rn@1-1®[x)t), F(Ynt), €€ Ly, teT,ne0®z W(R).
For the first two elements this is obvious. For the last element this follows from the formula
Fr=(FBypmol)) - FBrol) - F(rol-10[x])z), e Py, (3.4.13)
which is proved in the same way as Lemma [3.3.10 (]

We omit the proof of the following proposition.

Proposition 3.4.8. Let R be a p-adic O-algebra. Let Ty, Ly, be O®Ot71/;OW(R)—modules and let
Py forp # 1)y be O®Ot,1ﬂ W (R)-modules which are free locally on Spec R. Set Py, = Ty, @ Ly, -
Assume given F-linear isomorphisms

¢T¢0@¢L¢O :T¢0 @Ld)o —>P¢007 ¢1/1:P¢—>P1/107 f07"¢7'5¢0,

cf. for the meaning of F-linear.

Then there exists a unique display P = (P,Q, F, F) with a strict action of O over R such
that P = @y Py and Q = Jyp Ty ® (Dt Py) with T = Ty, and L = Lyy ® (ByryPy) and
such that ¢ = ¢r, : T — P and ¢, = ¢y, ® (Dyry,dy) : L —> P are given by the display
structure of P as in Lemma[3.]. ] O

Let P be a display with a strict action by O over R, as above. Then we set
PV = H0m0®zpw(R) (P, O ®Zp W(R)) = @de)v, where
Pwv = H0m0®ot”/;W(R)(P’l/J7 0 ®p: 5 W(R)).
We define
Qu, = {2 € P, | (Quo) € Jyo} C P, QY = QU & (Syzp, PY).

Let
< ) >can :PxPV—0 ®Zp W(R) (3414)

be the canonical perfect O ®z, W(R)-bilinear form. It induces pairings Py x Pwv — 0 ®pt
W(R). Under the perfect R-bilinear form

Pwo/‘]wopwo x PLZJ/J’lZJUP#)vg — (O ®Ot71’[; W(R))/on ~ R,
the R-submodules Qy,/Jy, Py, and QZO /e PXO are orthogonal complements.

Proposition 3.4.9. Let P be a display with a strict O-action over R. Let PV and QY as above.
Then there are unique F-linear homomorphisms of O ®z, W (R)-modules
FV:PY — PV, FV.:QV — PV
such that PV = (PV,QV,FV,FV) becomes a display and such that the bilinear form
defines a bilinear form of displays with a strict O-action,
() Yean : P xPY — L. (3.4.15)
We call PV the Faltings dual of P.
Proof. Tt follows from the definition that
(@Q,Q)ean C Q. C O &z, W(R).

We will define a display PV = (PV,QV, FV, FV). Then we will show that

(Fy, F¥ §)can = Fe(y, 9)ean ¥ €Q, 1€ QY. (3.4.16)
This will show that is a bilinear form of displays with an O-action. Since the pairing

(3.4.14) is perfect, the map 'V is uniquely determined by (3.4.16]).
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We begin by defining PV. We chose a normal decomposition
Pwo =Ty, ® me Qwo = onTwo & Lwo (3'4'17)

Let T)Y be the orthogonal complement of T, and let LY be the orthogonal complement of L
Yo ) Yo Yo
with respect to the perfect bilinear form

Py, X Py — O @0, W(R).
We consider the maps ¢, and ¢r, . We define maps
.V v .7V v
¢vau Two —>Pw00., ¢LXO . Lwo _>P’¢)00'
by the equations

<¢Two (t) + ¢Lwo (f), ¢T¢VO (£)>can = F]:on (77 ® 1) F<€a £>canv te Two,é € L¢o

<¢T¢0 (t) + ¢Lw0 (E)’ ¢ng (g»can = FEwo (7T ® 1) F<ta €>can7 te TQZ)7 é € Lz(y

This definition makes sense because ¢r,, ®¢r,, : TypoDLy, —> Py,o is an F-linear isomorphism.

(3.4.18)

For ¢ # ¢ the map F P, — Py, is an F-linear isomorphism. Therefore we can define
FV . PwV — Pwvg by the equation
(Fz, FV ) = TEy(r®1) F(2,)can, z€ Py, 2€ Py.
We now apply Proposition m to the modules T X) ,Lgo, and PwV for ¥ # 1, and to the
maps ngva ’(ZSLX , and ¢y = va for ¢ # 9. This concludes the definition of the display
0 bo X

PV = (Pv7 Qv7 Fv’ Fv)'

Now we verify (3.4.16|). Let ¢ # 1. If y € Py and g € Pwv, the right hand side is by definition

FETZJ (,/T & 1) : F(y7 g)can~

Therefore (3.4.16) holds in this case by the definition of F 5 . For ¥y we use the normal decompo-

sition (3.4.17)) and the induced normal decomposition QZO = Jy,T. zlzvo & LZO. Using the definition
(3.4.11) of Jy,, the identity (3.4.16)) becomes for the y-components a series of equations:

(1) (F((r®@1=1@ m)t), V0 can = Fe((r © 1 = 18 [x])t, ) can,
(2) (E(Ynt), F Bcan = F( Vit Dcans 1€ O @01 g, W(R),
(3) (FOLFY((r®@1 =10 [1])))ean = Fe(l, (m © 1= 1@ [7])E) can,
(4) (FLEY(Vni)ean = Fe (b, Vnt)can,

(5) (Ff FY0)can = 0,

(6) (E(JyoTyo)s FY (Jyg T, ))can = 0-

We compute the right hand side of equation (1):

RHS(1) =" Eo(r @ D)(r @1 —1® []) T(t, Dean = T By (1@ 1) F(t, ) can.-

Therefore equation (1) is exactly the second equation of (3.4.18]) for ¢ = 0. The equation (3)
follows in the same way.
We prove now the equation (2). For the right hand side we find:

RHS(2) = nF(t, {)can =10 "Eo(r @ 1) (¢, 0) can-
We compute the left hand side of (2) by applying to F( Vigt) = nFt:
(E(Vnt), FV Byean =1 "By (1@ 1) PEo(r @ 1){(F(r®1 — 1@ [7])t), FV {)can
=0 Ry (r®1) FEy(r ®1) FEy (1 ® 1) F(t, )ean-

Here the last equation follows from (1). This proves (2). In the same way we obtain (4) from
equation (3). The equation (5) follows from the second equation of (3.4.18]) for ¢t = 0.
Finally we prove equation (6). The special case

(F((ro1 =10 [m)t), FY(r ®1 -1 [7])i))ean = 0 (3.4.19)
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is exactly the first equation of for £ = 0. We have to show that the same holds if we
replace the first argument of the bilinear form in by F ( Vt) or the second argument by
EFY(Vnt). But this may be reduced to in the same way as in the proof of equation (2).
This finishes the proof of . O

Proposition 3.4.10. Let Py and Po be displays over R with a strict O-action. Then the natural
map

Homo_displays (P2, Py ) — Bilo_displays(P1 X P2, LR)
is an isomorphism. Here we consider bilinear forms of displays with a strict O-action which are
also O-bilinear.

Proof. We define the inverse map. Let § be an element from the right hand side. This is in
particular a O ® W(R)-bilinear form
ﬁ:PI X Py —)O@W(R)

On the other hand, we have the canonical perfect O @ W (R)-bilinear form (, )ean : P x PY —>
O®W (R). Since this is perfect, we can define a O®W (R)-module homomorphism « : Py — PV
by

B(x1,w2) = (x1, (T2))can-

We omit the straightforward verification that a defines a morphism of displays. O

Theorem 3.4.11. Let R be an O-algebra such that p is nilpotent in R. Let P1 and Po be displays
over R with a strict O-action. We denote by P15 and Pa 5 their images by the Ahsendorf functor

20/z, r- Proposition and Proposition define a homomorphism
BilO—displays(Pl X Pa, ['R) — BilWo(R)—displays (Pl,a X PQ,en Pm,Wo(R) (ﬂ'ej/pf))' (3420)
If the displays PY and P2 are nilpotent, the homomorphism is an isomorphism.
Equivalently, is an isomorphism if (P1.)" and Pa, are nilpotent Wo,. (R)-displays.

Proof. We apply (3.4.20) to P, = P} and the canonical bilinear form. We obtain a bilinear

form

Pl@ ® (Plv)a — ’Pm,Wo(O)(ﬂ—ef/pf),
which is perfect by Proposition [3.3.15] After twisting, we obtain also a perfect pairing of P; ,
and (PY )a((w% /p/)~1) with values in Py, v, (0). Therefore we have an identification with the
dual display

(Pra)” 2= (PY)a((x* /p)71).
By Theorem we have an isomorphism
HomO—displays(P27 7)1V) ;> HomWo(R)-displays (7)2,&’ (P]_v)d)
Here the left hand side agrees with the left hand side of (3.4.20) by Proposition |3.4.10, We have
seen that the right hand side is the same as
HomWo(R)—displays (PQ,av ,Pl/\,a(WEf/pf)) = BﬂWo(R)—displays (Pl,a X 7)2,3, Pm,Wo(R) (WEf/pf))'
The last isomorphism follows from (3.2.5)). d

Definition 3.4.12. Let R € Nilp, and let P be a display with a strict O-action. A relative
polarization of P with respect to O is a polarization of the Wp (R)-display P, obtained from P
by the Ahsendorf functor, cf. Definition |3.2.5

Let O be the completion of the maximal unramified extension of O. We consider Theorem
in the case of an O-algebra R. We denote by 7 € Gal(O/O) the Frobenius automorphism.
Since 7¢/p € O is a unit we find 5y € O* such that 7(no)ny ' = 7¢/p. By Lemma there
is a 7 — F-equivariant homomorphism O —s Wo(é) such that the composite with wq is the
identity.

Let R € Nilps. We denote by 1o, r the image of 7y by the homomorphism

O — Wo(0) — Wo(R).
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Then multiplication by 77(])0} r defines an isomorphism of Wo (R)-displays,

Prwo (R) (Wef/pf) — Pmwo(R)- (3.4.21)
Therefore we may write Theorem [3.4.11| without the twist (7¢/ /p7).

Corollary 3.4.13. Let R € Nilpy. Fiz ng € 0% with T(no)ng b = 7¢/p, which defines the
isomorphism . Let P be a display with a strict O-action over R such that P and PV are
nilpotent. Then a relative polarization on P with respect to O is the same thing as an isogeny
of displays with an O-action P — PV such that the induced bilinear form

PxP—Lgr
is alternating. O

In the situation of the corollary, P is the display of a formal p-divisible group X with a strict
O-action and PV is the display of a formal p-divisible group with a strict O-action which we
denote by XV. We call XV the Faltings dual of X. However, we do not relate our definition
to that of Faltings in [II], which operates directly in the realm of p-divisible groups. We can
consider a relative polarization as an isogeny of p-divisible groups with an O-action,

X — XV, (3.4.22)

4. THE CONTRACTING FUNCTOR

We return to the notation of section [2l In particular, throughout this section, K/F denotes
an etale extension of degree two of a p-adic field, and r denotes a generalized CM-type of rank
2.

Let E be the reflex field of r, and let E C @p be its normal closure. As in subsection

E' C E is the composite of E and the normal closure of K* in Q,.

4.1. The aim of this section.

Definition 4.1.1. Let S be a scheme over Spec Ogs such that p is locally nilpotent in Og. We
denoteﬁ by B, s the category of local CM-pairs of type r over S which satisfy the Eisenstein
conditions (EC,). If § = Spec R, we will also write B, r or simply Pr.

The category of local CM-pairs (P,¢) of type r in the sense of displays which satisfy the
Eisenstein conditions will be denoted by 93, g, resp., 03, r.

We will define a functor C;ﬂy r that associates to a CM-pair (P,t) € 3B, r a new display
(P',) over R with an action ¢ : O — EndP’. When r is special relative to po: F — @p,
cf. Definition then the restriction of ./ to O is strict with respect to Op 2% O —> R.
If 7 is banal, then P’ is étale. We will call the functor €;$ g the pre-contracting functor. Under
suitable hypotheses, the pre-contracting functor will be an equivalence of categories.

We will also describe what Qﬁ;ﬁ p does with polarizations, and define a functor Qﬁ’r"l’;?l on the

category ‘chg, defined as follows.

Definition 4.1.2. We denote by fﬁf)"; the category of polarized local CM-pairs (X, ¢, \) of type
r over S such that (X,:) satisfies the Eisenstein conditions (EC,). If S = Spec R, we also
write ‘szlz. We denote by D&Bi‘g the corresponding category of local CM-triples in the sense

of displays. Explicitly, 0 E;}; denotes the category of triples (P, ¢, 8) where (P,¢) € o3, r and
where 3: P x P — Py, yw(g) is a polarization such that

B(i(a)xy,x2) = B(x1,(a)x2), a € Ok, x1,z9 € P.
In the sequel, we will abbreviate the last condition into saying that 8 is anti-linear for the

Ok -action.

4The symbol B is to remind us that this is a category of local CM-pairs.
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In a second step, we will use the functors Cr R» Tesp. 67,’3517 to define contracting functors.
Here, we make a distinction between the case when 7 is special and the case when r is banal. In
the case when r is special, the image of the contracting functor is a Wp . (R)-display P., endowed
with an action ¢ of Ok such that P. is of height 4 and dimension 2 (and, in the polarized case,
with a polarization). When r is banal, the image is a p-adic étale sheaf G in Z,-flat modules of
rank 4d, endowed with an action of Ok (and with a polarization form in the polarized case).

4.2. The Kottwitz condition for CM-pairs. The Kottwitz condition (KC,) can be formu-
lated in terms of polynomial functions. Let £ be a locally free R-module equipped with an action
of Okg. If S is an R-algebra, we write Lg = L QR S.

Let us assume for a moment that R is endowed with an O z-algebra structure. For ¢ € ® =
Homg,-a1g(K, E) we consider the induced map

QDR:OKLOEHR.

Definition 4.2.1. We say that (£,:) satisfies the Kottwitz condition relative to r if for each
Oj-algebra S endowed with an Og-algebra homomorphism R — S

dets(a | Lg) = H ps(a)™, foralla € Ok ®z, S. (4.2.1)
ped

Let A = V(Ok) be the affine space over SpecZ,. The right hand side of this equation may
be considered as a polynomial function on Ap_. By base change to E, it is easily shown that
this function is defined on Ap,. We note that each factor of the right hand side of is a
linear polynomial function such that some coefficient is a unit in O . Therefore these factors are
non-zero divisors in I'(Ag, Oa4) for each S. Here we remark that a polynomial in S[U,...,U,]
is a non-zero divisor if one of its coefficients is a non-zero divisor in S.

Because the right hand side of is a polynomial function on Ao, the condition does
not depend on the Og-algebra structure on S. By a theorem of Amitsur, condition is
equivalent to the Kottw1tz condition (KC,) of (2.2.1)) (compare [28]).

For a Opgr-algebra S we have a decomposmon

Ok ®z, S =[] Ok ®0, 5 S (4.2.2)
Yew

Here g denotes the composite O+ N Opr — S. Let Ey  the image of the Eisenstein
polynomial E € O[T by the last homomorphism. We have a natural isomorphism

S[T)/EysS[T) — Ok @0, s S, Tr—H®1. (4.2.3)

Therefore we may regard an Ok ®o,, 45 S-module M as an S[T]-module. If U € S[T] and
x € M, we write Uz = U(Il ® 1)z. If Uy € Op/[T], with image U € S[T], then we write simply
Upxr =Uzx.
Returning to the R-module £ with action by O, the decomposition induces a decom-
position
Lg = @L‘S)w.

By considering, for given 1, an element a of whose components are zero for 1)’ # 1,
we obtain
dets(a| Lsyp) = H ¢s(a)'e, foralla € Ox ®o,., .y S- (4.2.4)
el
We call this condition (KCy ). The condition (KC,) holds iff the conditions (KC, ) hold for
each .

We will call ¢ banal with respect to r if r, € {0,2} for each plip. We call ¢ special with
respect to r if there exists [t such that r, = 1 and if for any other ¢'[¢) with r,» =1 we have
¢’ = @. We note that another ¢’ can only exist if ¢ = ).

We also use the conditions (ECy ). The meaning is clear from (2.2.16) and (2.2.18)) where
the two conditions (ECy, ,) and (ECy ) are taken together.
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We consider CM-pairs (X, ¢) of type 7 over R € Nilp, cf. section Thus X is a p-divisible
group of height 4d and dimension 2d and ¢ is a Z,-algebra homomorphism

t: 0 — End X

such the rank condition (RC,.) is satisfied. If we speak about the Kottwitz or Eisenstein condition
we refer to the induced action on Lie X. We use a similar terminology when we consider CM-
pairs (P,:) in the sense of displays. This means that P = (P,Q, F, F) is a W(R)-display of
height 4d and dimension 2d endowed with a ring homomorphism

t: 0 — End P,

such that the rank condition (RC,) is satisfied for the induced action on P/Q).

Display theory defines a functor from the category of CM-pairs (X, ¢) of type r to the category
of CM-pairs (P, ) of type r. We set Dp = P/IgP and Lp = P/Q. If P is the display of X, we
have the identifications

DPZD)((R), ﬁp:LieX.
Here Dx (R) is the Grothendieck-Messing crystal evaluated at R. For an R-algebra S, we will
write Dp s :=Dp ®r S and Lp g := Lp ®r S. If P is fixed, we write simply Dg and Lg. If S
is a Opr-algebra, gives a decomposition

Ds = @®ypecuDg y.

Proposition 4.2.2. Let v be banal with respect to r. Let (P, 1) be a CM-pair of type v over an
Og-algebra R.

Then the Eisenstein condition (ECy ) is satisfied iff Ea,Dy is the kernel of the canonical
map Dy, — Lp . Moreover (ECy, ;) implies the Kottwitz condition (KCy, ).

Here E 4, denotes the operator E4,, (L(H)) on the module in question, for a fixed choice of II,
cf. (2.2.12).

Proof. We reduce to the case where S is an R-algebra endowed with an O g-algebra structure.
Then E4,, ; € S[T] is defined as the image of E4,, by Oz[T] — S[T]. It acts on any Ox ®0,, 4

S-module by (4.2.3).

Via ¢, we view Dgs and Lg as O ®z, S-modules. We consider the canonical surjective map

»

Dg — ﬁs.
The decomposition (4.2.2) induces decompositions,
Dg = @wa, ES’ = EB#"ClP' (425)

We allowed us to omit the index S on the right hand side of these equations.

The Eisenstein condition (ECy ) for banal ¢ says that £y is annihilated by E4,,, cf. (2.2.13)).
Therefore it is clearly implied by the condition of the Proposition. If conversely (ECy ) holds,
we obtain a surjective map

D¢/EAwa — £¢. (426)
By Lemma [3.1.15] Dy, is locally on Spec S a free O ®o,, 4 S-module. It has rank 2 because
the height of P is 4d. We may assume that
Dy = (O ®0,. v 5)* = S[T]? /By SITT”.

We see that both sides of 1] are locally free S-modules of the same rank ry = >
Therefore this map is an isomorphism.
The condition (KCy ;) would follow from

dets(a | S[T)/Ba,S[T)) = [] #s(a), ac ST (4.2.7)
pEAy

olw "o

We have

Ey (1) = [[ @-¢s@@1), ¢sa)=a(psI®1)).
pEAyY

We obtain (4.2.7) from the following Lemma. O



48 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK
Lemma 4.2.3. Let R be a ring. Let
s
E(T)=][[(T-1L), MeR

=1
be a polynomial. A polynomial f(T) € R[T] defines by multiplication an endomorphism of the
free R-module R[T|/ER[T]. Then

detr(f(T) | R[T|/ER[T]) = H fL).

Proof. One can easily reduces the question to the case where R is a field of characteristic 0
such that E(T) is a product of different linear factors. For the reduction one starts with a ring
homomorphism

Z|X, Y] — R,

where for the first set of variables X = (X1,...,X;), X; is mapped to II; and where the second
set of variables Y is mapped to the coefficients of f.
If now R is a field and E is separable, we have a canonical isomorphism of R-modules

R[T])/ER[T] = @_,R.

T +— (Hi)i
Multiplication by f(T) on the left hand side acts on the right hand side on the i-th factor by
multiplication by f(II;). This implies the assertion. O

Corollary 4.2.4. Let r be banal. Let (P, 1) be a CM-pair of type r over an Og-algebra R. Then
the Eisenstein condition (EC,.) implies the Kottwitz condition (KC,.). O

We consider next the case where 9 is special. This means by definition that there is exactly
one pair {¢, ¢} such that |y and r, = r5 = 1. When K/F is ramified, we have E' = E and
when K/F is unramified, we have [E' : E] < 2.

Proposition 4.2.5. Let 1 be special with respect to r. Let R be a Og-algebra such that p is
nilpotent in R. Let (P,t) be a CM-pair of type r over R which satifies the Eisenstein condition
(ECy,r). Let S be a Opr-algebra which is endowed with an Og-algebra homomorphism R — S.
Then, with the notations of , the canonical map

]D)w/EAwa — ﬁw/EAWCw
is an isomorphism.
Proof. Clearly we may assume that S is a local ring with residue class field k. We postpone the
verification that the assertion holds for S = k (compare (4.3.17)) and (4.3.20) below).
We begin with the case K/F unramified. Then rankg Ly, = 7y = 2a,, + 1. Let
f : Ew — £¢, (428)

be the S-module homomorphism given by multiplication with E4,,. From the case of a field, we
deduce that dimy, £/ f(L) ®s k = 2ay. By (ECy ) we have

2
Nf=0,

cf. (2.2.18). Therefore we can apply Lemma 4.9 of [28] with s = 1. This says that £y /f(Ly) is
a free S-module of rank 2a,. Therefore the canonical map of the proposition is a surjection of
free S-modules of the same rank, and hence an isomorphism.

The argument in the case K/F ramified is similiar. In this case, we have rankg Ly = ry =
2a, + 2 = 2e. The dimension dimy, L/ f(Ly) ®s k = 2ay, as before. In this case the condition
(ECy,r) says

3
Nf=0,

cf. (2.2.16)). Therefore we may apply Lemma 4.9 loc.cit. with s = 2. We conclude as before. [
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Proposition 4.2.6. Let r be special and K/F unramified. Let R be a Og-algebra such that p is
nilpotent in R. Let (P,t) be a CM-pair of type r over R which satifies the Eisenstein condition
(EC,.). Then the condition (KC,) is also satisfied.

Proof. We consider an algebra S as in the last proposition. We keep the notation of (4.2.5). We
need only to verify (KCy, ) since the Kottwitz condition is satisfied for ¢ banal by Proposition

We have to verify that
detg(a | Ly,) = ¢o.s(a) - H ¢s(a)’, a €Ok ®o,, .y, S- (4.2.9)
SaeAwo

Since Dy, is locally on S a free Ox ®o S-module of rank 2, we obtain from the isomorphism

of Proposition

Kt %o

dets(a ‘ [’wo/EAwO Ewu) = H cps(a)Q.
‘PeAwo
The proposition also shows that Ea, Ly, is a locally free S-module of rank 1. It follows from
the Eisenstein condition (2.2.18)) that this module is annihilated by (T' — ¢o,s(II ® 1)). Hence
an element a € Ox ®0,.,,py S = S[T]/Ey,S[T] acts on Ea,, Ly, as o s(a). In particular
detg(a | EA%EW) = o,s(a).
The formula (4.2.9)) follows. O

We reformulate the Eisenstein condition in the case where K/F is unramified.

Proposition 4.2.7. Let r be special and K/F unramified. Let o, g9 € D be the two embeddings
such that vy, = 15, = 1, and let g, resp. 1o, the embeddings induced by g, resp. @o. Let R
be a Ogr-algebra, and let (P, 1) be a CM-pair of type r over R. Let D = Dp(R). The CM-pair
(P, 1) satisfies the Eisenstein conditions iff the following conditions hold.

(1) If ¢ € U is banal, then the canonical map
Dy/Ea, Dy — Liey X
is an isomorphism.
(2) If ¥ € {30, %0}, then the canonical map
Dy/Ea,Dy — Liey, X/E4, Lie, X
is an isomorphism.

(8) The R-modules Ea,, Liey,, resp. EA% Liey, , are locally free of rank 1 and Ok acts on

them via
¢vo.r:0Ox — Op — R, resp. @or:O0x — Op — R.
Proof. This is a consequence of Proposition and the proof of Proposition O

We next consider what happens to the Eisenstein conditions when passing from a display to
its conjugate dual, cf. Lemma [2.3.2l We note that we already checked in loc. cit. that the
condition (RC,) is preserved. Recall that, if (P,¢) is a CM-pair, the conjugate dual (P, ") is
defined by

(P =PY, /a)=1(@)").

Corollary 4.2.8. Let K/F be unramified and let r be arbitrary or let K/F be split. Let (P, ) be
a CM-pair over an Og-algebra R such that p is nilpotent in R. If (P,.) satisfies the Fisenstein
condition (EC,), then the conjugate dual (P",.") also satisfies (EC,.).

Proof. We have a canonical isomorphism D" = Hompg (D, R). The resulting perfect pairing
(,):DxD"—R (4.2.10)
satisfies
(az,z) = (z,az), a€ Ok, x €D, & €D". (4.2.11)
This implies that for ¢y # 12 the modules Dy, and ]D)@2 are orthogonal and that for any 1 the

induced pairing
Dy x Dg — R (4.2.12)
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is perfect. Let D}b C Dy be the kernel of the map Dy, — Ly := Liey P and let Dg’l - D%

be defined in the same way. By definition of the dual display, D}p and ]D)z/g’1 are orthogonal
complements of each other with respect to (4.2.12)). We consider the case ¥ € {1, %}. Recall
that this is possible only in the non-split case. The Eisenstein condition for P says that we have
a split filtration of direct summands of Dy,

SyEa,Dy C Dy, C Ea, Dy, (4.2.13)
such that the factor modules are locally free of rank 1. We claim that the orthogonal complement
of B4, Dy is SuSEAaDQ Indeed, by (4.2.11)), we have

(Ea,z, ) =(x, Ep 7). (4.2.14)

This implies that E4, Dy, and S;EA 1LID)$ are orthogonal. Because (4.2.10) is perfect we obtain
a surjection of R-modules

Dy /Ea,Dy — HomR(Sﬂ;EAU;RDg, R). (4.2.15)

Recall that D is locally on Spec R a free Ox ®o,, 4 R-module of rank 2. It follows that both
sides of (4.2.15)) are locally free R-modules of the same rank 2a,, = 2e — 2a,; — 2. Therefore this
map is an isomorphism. This proves our claim about the orthogonal complement. By the same
argument, B Dg is the orthogonal complement of SyE 4, Dy.

We take the orthogonal complement of (4.2.13) and obtain the filtration

_ A A1 A
S¢EA¢DJ} C DJ) - EAmLDlZJ’

and conclude that the factor modules are locally free of rank 1.
Now let ¢ be banal. We have to prove that EAQ/)]D)@ C Dg’l. The right hand side is the
orthogonal complement of Dzli; =E,, Dy. Therefore we have to prove that

(Ea;z, Eq,2) =0, forzeDy, € D).
Using (4.2.14)), we find for the right hand side
<$, EBwEAw£> = <$, Ewi‘> =0.
(]

Before proving the analogue of Corollary in the case when K/F is ramified, we further
analyze in this case the Eisenstein conditions.

Proposition 4.2.9. Let r be special and K/F ramified. Let R be a Og-algebra such that p is

nilpotent in R. Let (P,.) be a CM-pair of type r over R. Since E' = E, the decomposition

is defined for S = R. Then the Fisenstein condition (ECy, ) holds iff the following

conditions are satisfied.

(1) The R-module Ea, Ly, C Ly, is a direct summand which is locally free of rank 2.

(2) The action of () on Ea, Ly, coincides with the action of po(7) € R, i.e., the action of
the image of m by the homomorphism Op % Op —> R.

Furthermore, a CM-pair (P,t) which satisfies (EC,.) also satisfies the Kottwitz condition
(KC,) if and only if

Trp(u(Il) | Ea,, Ly,) = 0. (4.2.16)

Proof. For the proof we may pass from R to an R-algebra S which is endowed with a O z-algebra

stucture. We continue with the notations of (4.2.5)). The first assertion of the proposition is then

an immediate consequence of Proposition [£:2.5] By Proposition [£:2.6] we need only to consider
(KCyy,r). The condition reads

dets(a | Ly,) =po.s(a) gos(a) [[ es@)? acOk®o. .S
SOGAIZ)U
In this case Ea, Ly, is a locally free S-module of rank 2. By Proposition [4.2.5} it is enough to
show

detg(a | Ea,, Lyy) = ¢o,s(a) - @o,s(a). (4.2.17)
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In this case, the Eisenstein condition says that

(T = po,s(TT@ D)(T = @o,s(TL@ 1)) = T + 4o (m) (4.2.18)
annihilates Ea, Ly, cf (2.2.16). Note that the action of T? on Ea,, Ly, is by definition the
action of ((TI?) = —u(7). Therefore the action of O on E4, Ly, via ¢ coincides with the action

via Op 2% Of — S. The polynomial is the characteristic polynomial of ((IT) acting
on the S-module E4, Ly,. This follows from the trace condition of the proposition. Therefore
the desired equation (4.2.17) is a consequence of Lemma below.

Conversely, assume that the Kottwitz condition holds. By Proposition [£.2.5] this implies

dets(a | Ea,, Ly,) - H vs(a)? = pos(a) - @osla)- H ps(a)?, a€Og®S.
APGAwO <P€Awo

We already remarked right after Definition that ¢g is a non-zero divisor in the ring of
polynomial functions. Therefore we conclude

detg(a | EAwo'Cwo) = o,s(a) - po,s(a), forallaec Ox®S.
This implies that the characteristic polynomial of «(II) acting on Ea, Ly, is the polynomial
(4.2.18]). Therefore the trace is 0. U

We state the needed Lemma without proof.

Lemma 4.2.10. Let S be a ring. Let L be a locally free S-module of rank 2. Let o : L — L be
an endomorphism with characteristic polynomial

dets(TidL — | L) = T2 — 81T + So.
Then for all A\, € S

dets(pidy — Aa) = p? — sy + 5922,
Assume that the characteristic polynomial splits

T2 — 51T+ s9 = (T - pl)(T — pg).
Consider L as S[T|-module, and let ¢; : S[T] — S be the S-algebra homomorphism such that
¢i(T) = p;. Then for each polynomial a € S[T)
dets(a | L) = ¢1(a) - ¢=2(a).
O

Remark 4.2.11. Let A C B be R-modules. Then we write A C B if the factor module B/A is
a finitely generated projective R-module of rank c.
~ Let (P,¢) as in Proposition such that (ECy, ) is satisfied. We write D = P/IpP. Let

Qy, the kernel of Dy, — Ly,. By Lemma [3.1.15, Dy, is a free Ox ®o R-module of rank
2. We obtain that

pwbo

2(e—1)
EAi/JQ ]D)w() - ]D)w() ‘
On the other hand, the condition (1) of Proposition says

_ 2 ~ 2(e-1)
Qwo - EA% Dwo + Qwo - Dwo'

This implies Qy, C E4 wo Do - Therefore we may reformulate the two conditions in Proposition
29 in one line:
2~ 2
SonApoDwo - Ql/Jo C EAwODﬂ)O' (4.2.19)

Corollary 4.2.12. Let K/F be ramified. Let (P,t) be a CM-pair over an Og-algebra R such
that p is nilpotent in R. If (X,1) satisfies the Eisenstein condition (EC,), then the conjugate
dual (P™, ") also satisfies (EC,.).

Proof. We use the notation of the last remark. The banal ¢ are treated as in the unramified case.
We need only to check that the conjugate dual satisfies (ECy, ). The orthogonal complement
of E4, Dy, in Hompg(Dy,, R) is Sy,Ea,, Hompg(Dy,, k), where in the last formula we use the
action via Y. We obtain the result by taking the orthogonal complement of . O
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To end this subsection, we check that the Kottwitz condition (KC,) is preserved under passage
to the conjugate dual.

Proposition 4.2.13. Let K/F,r be arbitrary. Let (P,.) be a CM-pair which satisfies (KC,.).
Then the conjugate dual (P", ") satisfies (KC,.).

Proof. We may assume that R is endowed with the structure of an Og-algebra. We use the
notation of the proof of Corollary In particular Dp g = D and Dps g = D", and we write
L and L” for the Lie algebras of P and P”. We have to show that for each R-algebra S and for
each v € U
detgs(a | Esw ngs )¢, foralla € Okx ®o,, yx S
Pl

To show this, we may replace P by its base change Pg. Therefore it is enough to consider the
case S = R. Since Dy, is locally on Spec R a free Ox ®o,, y, R-module of rank 2, we find

det(a | Dy) = H ¢r(a)?, fora € Ok ®o,. s R-
pEDy

Since Ly = Dy, /Dy, we find

det(a | ]Dl HSOR )27me) = H Pr(a)™.
@Y PEDy,

The perfect pairing induces a perfect palrlng
1

Therefore we obtain
det(a | L)) = det(a H vr(a
pEDy
Therefore (KCy ,.) for P implies (KCy ,.) for P". O

4.3. The pre-contracting functor. Let (P, ) be a CM-pair of type r over an Op-algebra R
such that p is nilpotent in R. We assume that (P,:) satisfies (EC,). In other words (P,:) €
P, g, cf. Definition We will define a functor that associates to (P,¢) a new display P’ of
the same height with an action
(O — EndP.

In the case where r is banal, the display P’ will be étale; in the case where r is special, the
restriction of the action ¢ to Op will be strict with respect to vo g : Op — Op — R. We will
call this functor the pre-contracting functor.

Let us first restrict our attention to the case where K/F is a field extension. The case
K = F x F will be treated separately because it needs different notations, see p. starting
before eq. . Each 1 : K — Q, induces a homomorphism

) W (%)

1 Ot — W(Og W(Op). (4.3.1)

For an Op/-algebra R we deduce a homomorphism w r : Ot — W(R) that is equivariant with
respect to the Frobenius homomorphisms on both sides. This induces decompositions

Ox:t ®z, W(R) & bew W(R), : |
4.3.2
Ok Rz, W(R) = H wt PR

Ok o W(R)
which lift the decomposition (4.2.2)). Let o € Gal(K*/Q,) be the Frobenius automorphism. The
operators F' and V act via W(R) on the right hand side of (4.3.2). On the left hand side this

induces maps

F
Ok ®¢,, 5n W(R) ? Ok ®o W(R),

KtvaOO'

cf. (3.4.4). Recall that

Ea, (1) = [[ (T = o) € Op 1),
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We lift this to a polynomial with coefficients in W (Op/) by taking the Teichmiiller representatives
of the roots,

Ea, (T)= [[ (T -lp)]) € W(Op)[T). (4.3.3)
PEAy

The image of this polynomial by the homomorphism W (Og/) — W (R) is denoted by EA%R(T).
If we reduce with respect to wo : W(Op/) — Opr, we obtain the polynomial E4,(T"). We note
that in the case where R is a kps-algebra, we have

Ea, r(T) =T"%. (4.3.4)
We consider the ring homomorphism
W(Og)[T] — W(R)[T] — Ok D0,
T—1I®1
We denote by E4, r(Il® 1) the image of E4, (T) under .

Let now (P,t) € 9B, r, where P = (P,Q, F, F) We obtain decompositions of the Ox ®z,
W(R)-modules P and @,

on WIR). (4.3.5)

P=&yculPy, Q=DperQy. (4.3.6)
For x € Py, we write
Ewa = EA#”R(H(X)l)x. (437)
On the left hand side we consider P, as a W(Op/)[T]-module via (4£.3.5).
We give first the recipe for the construction of P’ for any R € Nilpo,,. Then we will discuss
the case of a perfect field. This special case is then used to prove that P’ is indeed a display.

We begin with the case where r is banal (and K/F is a field extension). Let (P,¢) as above.
We define

P =auP),, Q =d4Q)
as follows: for all ¥ we set
P, = Qip = Py. (4.3.8)
By the Eisenstein condition (2.2.13)), we have EAw Py C Qy. Then we may define
F':Q),— P, F(z)=FEsz), z€P,

. ) . (4.3.9)
F': P, — Pyy, F'(z)=F(Ea,x), z€Py.

We define I’ : P’ — P’ and F':@Q — P’ as the direct sum of the maps above. We have to
prove that P’ = (P',Q’, F', F’) is a display. The only non-trivial property we have to check is
that F' : Py — Py, is an F-linear isomorphism. We postpone the verification, cf. p. below

(1-3.16).

We now define the pre-contracting functor in the case where r is special and K/F unramified.

In this case we have 1 # to. If 1 is banal, i.e., if ¥ ¢ {tg, 100}, we keep the definitions (4.3.8)
and (4.3.9). We set P), = Py, and we define @, as the kernel of the following map,

EA«/;(,,R

P&Jo = Pwo — Plbo/Ql/Jo —_— EAwO,R(PdJO/Qwo) - PTZ’O/QdJO' (4310)

It follows from Proposition m that Ea, p(Py,/Qy,) is locally free of rank 1 and is a direct
summand of Py, /Qy,. Therefore

P{ﬂo/Q;/Jo = EAwO,R(Pwo/Qwo) (4.3.11)
is locally free of rank 1 and, as remarked at the end of the proof of Proposition [£.2.6] an element
a € Og ®0,., 4, R acts on (4.3.11) by multiplication with (g r(a). This makes sense because
@0 : Og — Op factors through Ogr C Oz. We define

F P&)O — P1;100" F/(Jj) = F(EA’#UO Rﬂf),

o e (4.3.12)
F :Qwo ‘)Pﬂiod’ F(y) :F(EA"/)O,Ry).
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The last equation makes sense because, by definition, E 4 bor R Qiﬁo C Qy,- The definitions of the
modules P&?o’ Qiﬂo and the restrictions of F/ and F” to these modules are defined by interchanging
the roles of ¥y and 1)y. This completes the definition of
F':@yPy — @yPy, F':©4Q, — ©yPy. (4.3.13)
Again we postpone the verification that P’ is a display, cf. below (4.3.17). The tangent space
L' = P'/Q is a locally free R-module of rank 2. It has a decomposition
!t ’
E - Yo @ E _07
where an element a € Ok ®o,, 4, R acts on the first summand by multiplication with o, r(a)

and an element a € Ok ®¢ _, 4, 1 acts on the second summand by multiplication with ¢o,r(a).

Next we define the pre-contracting functor in the case where r is special and K/F ramified.
In this case we have 1y = 1)y. For banal 9, we keep the definitions (4.3.8) and (4.3.9). The
R-module B4, (Pyo/Qu,) C Py, /Qy, is a direct summand which is locally free of rank 2. We
set P, = Py, and we define @, as the kernel of . We define F’ and F’ by . Then
P /Qy, = EA%,R(P%/Q%) is locally free and we define as before P’ = (P’,Q’, F', F'), with
its Og-action /. It follows from Proposition m that the action of Op on E A,%,R(P% /Que)
via ¢ coincides with the action of via (g, i.e., the action via ¢/ on P’ is strict. That P’ is a display

is proved around (4.3.20)).

Now we consider the case where R = k is a perfect field in more detail. We know that Py is
a free module of rank 2 over the discrete valuation ring Og D0, 1 W (k). Therefore Py, /IIPy is

a k-vector space of dimension two. In the perfect field case, we have now also the operator V,
F Pw — Pd,g, V. Pdlff — P¢, V(ng) = Qﬂ" (4314)

We will see that in all cases the Eisenstein condition implies that V(Py,) C II** Py,. Therefore
we may define operators F’ and V':

F' =TI%F : Py — Py, V' =117V : Py, — Py. (4.3.15)

The Dieudonné module of the display P’ in the sense of Propositionwill then be (P, F', V).

We begin with the case when r is banal. Now E4, x(T) = T%¥ acts on P, as multiplication
by II*¢. By the Eisenstein condition , I1%v annihilates Py/Q. This implies I1%¢ Py, C
V(Pys). By the rank condition, the factor Py/V(Py,) has length 2a, as Og ®0,.1,8 W (k)-

module. Since the same is true for the factor module Py /II** P,, we obtain
% Py = V(Pys). (4.3.16)

Therefore F' = FII% = V1% . Py, — Py, is bijective. This shows that P’ is a display. We
set

F' = EB¢FH“¢, V' = @wn_aw‘/.
Then (P, F', V') is the Dieudonné module associated to P’.

We obtain from in the ramified case that VQwa = HQSwa = prw for all ¢ and in
the unramified case that V2/ P, = 7¢/ P;,. This implies that in both cases P is isoclinic of slope
1/2.

Now we can verify that P’ is a display for r banal, for an arbitrary Opgs-algebra R. Let
(P,1) € P, r. We must show that F' : P —; P is a Frobenius-linear isomorphism. We may
assume that P is a free W(R)-module. Let det " be the determinant of the matrix of F with
respect to any given basis of the W (R)-module P. We must verify that det F is a unit in W (R).
We have shown that, for each homomorphism R — k to a perfect field k, the image of det ' by
W(R) — W (k) is a unit in W (k). In particular wo(det F') € R has a nonzero image under any
homomorphism R —s k. But then wq(det F) is a unit in R, and this implies that det F' € W (R)
is a unit. This finishes in the banal case the proof that P’ is a display.

Next we consider the case when r is special and K/F unramified. By our conventions, IT = 7
is the prime element of F. Let R = k be a perfect field and let P = (P, F,V), regarded as
a Dieudonné module. If ¢y € W is banal, we find as above that V Py, = 7% P,. Now let
¥ € {to,vo}. Since 7@+ annihilates Liey, X by the Eisenstein condition , we obtain
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79w TP, C VPy,. We note that P, is a Ok ®0 0 b W (k)-module of rank 2. Therefore the
factor module of the last inclusion is, by the rank condition, a Ox ®, , W (k)-module of length
1 and is therefore annihilated by 7. This implies

Tt Py, C VP, C 7% Py,

In particular
Pw/ﬂ'uw Pw = Liew X/ﬂ'aw Liew X (4317)
is an isomorphism, as claimed in the beginning of the proof of Proposition £.2.5 By definition
(4.3.10) we have Qip =71~V Py,. The map F/' = 7™ F : QQ/J — Py, is therefore surjective.
Since we know this fact also for banal 1) we conclude that (P,Q’,F’,F’) is a display. The
associated Dieudonné module is (P, F’, V'), where
F, =n"Fy,: Py — Py,
R (4.3.18)
Vwc,:’ﬂ' wV¢gZng—)Pw.
Now we return to an arbitrary O-algebra R such that p is nilpotent in R. We note that the
definition of (P',Q’) commutes with arbitrary base change because @, /I(R)P,, is defined as
the kernel of an epimorphism of projective R-modules,

Pwo/I(R)Pwo — EAwO (Plﬁo/Qwo)'
We choose a normal decomposition of (P, Q’),
P=TalL,

together with the Frobenius-linear endomorphism ®' : P/ — P’ of the W (R)-module P’ such
that the restriction of ® to T’ is F’ and the restriction to L' is F”. We have to show that the
determinant of ® in a locally chosen basis is a unit. Since we know that this is true after any
base change R — k with k a perfect field, this follows as in the banal case.

We can determine the possible slopes of P when r is special and K/F unramified. Let
P = (P, F,V) over the perfect field k. By we have (V/)2f = n=(/=DV /. Let

Py = @&xN(})

be the decomposition into isoclinic components. Fix A = r/s. Then we find a W (k)-lattice
A C N()) such that VSA = p"A. From VA = p?/"A we obtain

(ﬂeffl(V/)Qf)sA _ pQTfA, i.e., (V/)2fsA _ ﬂ_fefSﬂ_SPQTfA'

We write the right hand side as p~*/p*/¢p?"fA. This shows that N(\) C P@ is an isoclinic
rational Dieudonné submodule of slope
—sf+(s/e)+2fr 11
=——4+—+A\
2fs T
Let us apply the Ahsendorf functor to P’. We obtain a Wo,. (k)-Dieudonné module (P, F¢, V¢)
of height 4 and dimension 2. The slopes of P. are by Proposition

1 1

d(A 2)+ 5" (4.3.19)
The action of Og ®o, Wo,(k) = Wo.(k) x Wo.(k) on P, defines a decomposition P, =
P.o ® P.1 such that Vo(FPep) C Pe1 and Vo(Pep) C FPei. The Wo, (k)-module P, o with
the semi-linear operator V.2 is of height 2 and dimension 2. Therefore the possible slopes of
(Pe0, V2) are with multiplicities (1,1) or (0,2). We conclude that the slopes of (P, V.) are with
multiplicities (1/2,1/2,1/2,1/2) or (0,0,1,1). From we find that in the first case all
slopes A of P are 1/2, while in the second case we obtain the two slopes A = 1/2 — 1/2d and

A=1/2+41/2d.
Now we consider the case where r is special and K/F is ramified. As in the last case, it is
enough to verify that P’ is a display when R = k is a perfect field. Recall that ay, = e for ¢
banal and that ay, = e — 1. As above we find V Py, = lI°P, for ¢ banal. By the Eisenstein
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condition (2.2.16)), Ly, is annihilated by II**t! and the k-vector space He_lﬂwo has dimension
at most 2. We consider the following filtration by subvector spaces,

Ly DLy, DLy, D ... DMLy, DL, =0.
We have dimy II™ Ly, /I L0 < 2 for all m > 0 since Ly, is a quotient of Py, , which is a free
Ok ®¢ , 4, W(k)-module of rank 2. Therefore we find
Kt %0
dimy, £y, = dimy Ly, /T Ly, + dimgp T71L,, < 2(e— 1) + 2 = 2e = dimy, Ly, -
We must have equality
dimy, ﬁwo/H671£w0 = 2(6 - 1), dimy H671£w0 = 2.
The first equation shows that the natural map
Py /T Py — Ly JTI Ly, (4.3.20)
is an isomorphism of vector spaces, as asserted in the beginning of the proof of Proposition [4:2.5
Finally we have by definition Q) =TI"**1Qy, = ¢tV Py, . Therefore
Fr =TV Ql — Pyyo
is bijective. We conclude that (P’,Q’, F’, F') is a display. The associated Dieudonné module is
(P, F', V"), where
V/:H_EVIng—>Pw, 1/}7é¢0
V/ =TI"T'V : Py — Py,
As in the unramified case we conclude for an arbitrary R € Nilpy _, that our definitions 1j

, give a display P’ = (P, Q', F', F").

In the case of a perfect field &, the slopes of P’ are computed in the same way as in the
unramified case. We have the equation (V/)7 = I~(¢/=DVf Let N(\) C Py be an isoclinic
component. We find a lattice A C N()\) such that VA = p"A. We obtain that

(V) A = TT-es11p™ A

(4.3.21)

Since I1%¢ and p differ by a unit, this implies that N()\) C P@ is isoclinic of slope

~(f/2) + (s/20) +rf _
sf

If we apply the Ahsendorf functor, we obtain an Wp . (k)-Dieudonné module (P, F,, V) with
slopes d(A — 1/2) + 1/2. If we consider the O ®0, Wo,(k)-module P. with the semi-linear
operator V. the possible slopes with multiplicity are (1, 1) or (0,2) because (P, V.) is of height 2
and dimension 2. If we regard (P, V) over Wp . (k), the heights are multiplied with 2 and then
the possible heights are (1/2,1/2,1/2,1/2) or (0,0,1,1). As in the unramified case we conclude
that P is either isoclinic of slope 1/2 or has exactly two slopes 1/2 — 1/2d and 1/2 4 1/2d.

Finally we consider the case where 7 is banal and K = F x F. We set © = Homg,-a1(F*, Q).
In this case o will denote the Frobenius automorphism in Gal(F*/F). If we compose 6 € © with
the first, resp. second, projection K* = F x F* — F*' we obtain 61,0, € V. Via the first, resp.
the second, projection, we obtain isomorphisms

“1/241/2d+ A= (A—1/2) +1/2d.

(OF X OF) ®(0,,x0m),0. Or' = OF ®0,,,0 Opr, i=1,2.

Ft>
This leads to the decomposition

Ok ®Op = H Ok ®0,.0.4 O = ( H OF ®0,,,0 Op') * ( H OF ®0,,,6 Opr). (4.3.22)
GEV o )

Assume that 1 € U factors through 8 € ©. We define ¢ as the composite

Okt = Opt X Opt EOJ'—) Opt — W(OFt) M} W(OE/) (4323)
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The first map is the projection to the first or second factor according to ). We denote by 6 the
composite of the last two arrows in (4.3.23]). We obtain the decomposition

Ok @2 W(Op) = [[ Ok ®0,, s W(Or)
pevw

:( [[0Fr®o,. s W(OE’)) X ( [Toreo,. s W(OE/)).
0co 6eo

(4.3.24)

On the right hand side, the first set of factors correspond to those ¢ which factor over the first
projection and the second set of factors correspond to those 1 which factor over the second
projection.

We consider a CM-pair (P, ) over R € Nilpy, , which satisfies the Eisenstein condition. By
(4.3.22)) we obtain a decomposition

P=P x P, = (@ Pig)® (EB Pay). (4.3.25)
0co [USS]

This decomposition corresponds to the decomposition into displays P = P; & Ps induced by the
OF x Op-action on P. By the definition of a CM-pair (at the beginning of subsection , the
displays P; and Py have both height 2d.

The maps F and F of the display P induce maps

F:Pg— Pigo, EF:Qip— Pigo. (4.3.26)

The polynomial EAw € W(Og/)[T] is defined as before, cf. (4.3.3). For i = 1,2 we define the
displays P! = (P!, Q}, F!, /) as follows

P/ =Q; =P, F/(x)=F(E4, ), F/(x)=F(E4 z), x€ Py

K2 2

Here, by the convention , EAe,i acts as the multiplication by EASWR(TF ®1) € OF ®0Ft,9~i
W(R). We set P’ = P;@P5. As in the unramified banal case, the verification that P’ is a display
reduces to the case of a perfect field. However, when R is a kp/-algebra, then EAei,R<7T ®1) =
7% ® 1. If R = k is a perfect field, we consider the Dieudonné module (P;, F;,V;) of P;. We
have

Vi(P;00) = T P, . (4.3.27)
We define
F!:WaeiFiZPi’g _>Pi’00'7 V

2 ?

A ZE Pioo — Pip.
Then (P;, F},V/) is the Dieudonné module of P;. Finally we determine the slopes of P. If we
iterate (4.3.27)) we find
VIip, = r2et p,. (4.3.28)
We set g; = Ze ap,. Then g1 + go = ef because ag, + ag, = e. We see that P; is isoclinic of
slope \; = g;/d and that A\; + Ao = 1.
We summarize the properties of our constructions.

Definition 4.3.1. Let R € Nilp,, ,. We define categories 3B p and *B;.  as follows.

(1) If r is banal, then 3  is the category of pairs (P’,:'), where P’ is an étale display (i.e.,
P’ = Q') of height 4d and where ¢’ is an Og-action. In the split case Ox = Of X OF, we
require in addition that in the induced decomposition P’ = P; & P) both factors have height
2d.

(2) If ris special and K/F is unramified, then the category dP;. 5 is the category of pairs (P’, '),
where P’ is a display of height 4d and dimension 2 with an action ¢/ : Ox — End P’ such
that the action of ¢/ restricted to Op is strict with respect to ¢o.r : Op Fo, Op — R and
such that Lie P’ = P’/Q’ is locally on Spec R a free Ox ®0; ¢, » R-module of rank 1.

(3) If 7 is special and K/F is ramified, then the category 093], p is the category of pairs (P',1'),
where P’ is a display of height 4d and dimension 2 with an action ¢/ : O — End P’ such
that the action of ¢’ restricted to Op is strict with respect to o g : OF £o, Org — R.
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The category &13;’ r is the category of formal p-divisible groups X’ with an Og-action ¢/ such
that the associated display (P’,¢') is an object of 0], p.

Let 7 be special. We call (P, ) supersingular if (P’,.") satisfies the nilpotence condition. We
denote the full subcategory of supersingular objects of 33, r by 0°B;°5.
Theorem 4.3.2. Let R € Nilpy, _, be such that the ideal of nilpotent elements in R is nilpotent.
The construction above defines the pre-contracting functOIﬂ

€ r: 0P r — 0P, R
which commutes with arbitrary base change with respect to R. Furthermore,
(i) if r is banal, the functor &, p is an equivalence of categories.
(ii) 4f r 4s special and the ring R is reduced, the functor (’:'T’R is an equivalence of categories.

(iil) if r is special and R is arbitrary, an r induces an equivalence of categories

€ g 0P — Wiﬁgpv
where the right hand side is the full subcategory of nilpotent displays.
Let v be special and K/F' be ramified. Let (P,t) € B, r and let (P',1) be its image by € p.
Then (P, 1) satisfies (KC,.) if and only if

Trr(/(I) | P'/Q") =0.

Before proving this, we state a Corollary which we already proved in the construction of an R

above.
Corollary 4.3.3. Let k € Nilpy , be a perfect field. Let P € 9B, and let P’ be its image by
the functor & p.
(1) Let v be banal and K/F a field extension. Then the display P is isoclinic of slope 1/2 and
P’ is étale.
(2) Let K/F be split (and then r is banal). Then P decomposes into P = Py & Pa, where Py
is isoclinic of slope A and Py is isoclinic of slope 1 — X. The number A depends only on r. The
display P’ is étale.
(3) Let r be special. Then P is either isoclinic of slope 1/2 (supersingular case) or it has the

two slopes 1/2 —1/2d and 1/2+1/2d with the same multiplicity. In the first case P’ is isoclinic
of slope 1/2d. In the second case it has the two slopes 0,1/d with the same multiplicity.

O

Proof. We still have to prove the claimed equivalences of categories. We begin with the case
where R is reduced.

Let us consider first the case where r is special and K/F unramified. It is enough to in-
vert the construction of the functor & p. For any 1, Py/I(R)Py is locally on Spec R a free

(O /POK) @pye p R-module of rank 2, cf. Lemma|3.1.15} Let P’ = (P’,Q’, F’, F’) be an object
of D‘B;:R. We define as follows an object P = (P, Q, F, F) of B, g such that P’ is the image of
P by the functor & . We set Py = P, for ¢ € ¥, and for ¢ ¢ {1, o} we set

Q¢ = Wawa + I(R)Pw (4329)
Since Py = Q!,, we have F'(I(R)P;) C W(R)F'Py C pPy,. By (£.3.29) we find F'(Qy) C
7 Pyo. Since p is not a zero divisor in W(R), the element @ € Ok acts injectively on Py, .
Therefore we may define

F =g Qyp — Ppoy, F=1""F':Qy — Py,
If 1 € {1)o, %0} we consider the split homomorphism of R-modules
7% : Py/I(R)P, — Py/I(R)Py. (4.3.30)
It is split because Py/I(R)Py is a free (O /pOk) ®ry » R-module. We set
Qp =1 Qy + I(R)Py.

5Later we will also have a contracting functor €, r, which explains our notation.
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If we apply F” to the last equation we obtain that F’(Qw) C 7% Py,. Indeed, because the action
of O on P’ is strict 7 annihilates P,,/Q;,. We conclude that F'(7Py) C F'(Q;,) = pF"(Qy) C
pPyo and therefore F'(Py) C n*~* P, C m* P,. This justifies the following definition:

Fi=n"%F. Qp — Ppoy, F =7 "F': Py, — Py,.

It is obvious that we obtain a display P = (P,Q, F, ). We need to verify that the condition
(EC,) is satisfied. We check the conditions (2) and (3) of Proposition [£.2.7] By definition of
P, g, the R-module P, /@', is annihilated by 7. The kernel of [4.3.30)) is 7~ @ P, and therefore
contained in Q;,/I(R)Py. The image of the last module by (4.3.30) is therefore a direct summand
of Py/I(R)Py. This image is Q/I(R)P,. Therefore condition (2) holds. Moreover, we obtain
an isomorphism

Py /@y — ©" Py + I(R)Py/Qy.
In particular, the last module is locally free of rank 1 and the action of 7 on this module coincides
with multiplication by @g(7) if 1 = vg, resp., by @o(n) if ¥ = 1)y. Hence condition (3) holds.

In the split case the same arguments hold but we need only the easy part because 1y and 1
don’t exist.

Next we consider the case where r is special and K/F ramified. Again we reverse the con-
struction of the functor €, . Let (P, Q’, F', F') be an object of P - We associate to it as
follows an object (P, Q, F, F) € B, r. Weset Py = Péj for all ¢ € W. Assume that ¢ # 1.
We have @, = P, because the action of Op: is strict. We set

Qy = HGPJJ + I(R)P{b.
It follows from Lemma [3.1.15| that Py /I(R)P, is locally on Spec R a free (Ox /pOk) @y i R-
module. Therefore P,/Qy is a locally free R-module. From F'Py, = pF'Py,, we find that
F"’Qw C HePl’pa. Since R is reduced, the map II¢ : Py, — II°Py, is bijective. Therefore we
may define
F =T °F'": Qy — Pyo.
It is clear that this map is a Frobenius-linear epimorphism. Next, we set
Py =Pl Qu =TI7'Q), + I(R)P,.

Since the action of O on P’ is strict, we find

et p), CcII°P), C Q. (4.3.31)

We consider the split homomorphism of R-modules,
n—": p, /I(R)P, — P, /I(R)P), . (4.3.32)
The kernel of this map is the image of II¢*!. Therefore the kernel is contained in Q;l)o /I(R)P&JO.

This implies that the image of @, /I(R)P,, under (4.3.32) is a direct summand of P, /I(R)P, .
Hence the cokernel Py, /Qy, is a locally free R-module. We apply F’ to (4.3.31) and obtain

°F'P), C F'Q}, =pF'Q), C pP),,-
Using this, we get
F'Qy, = F'(I°'Q), + I(R)P),)) cI°"'P), .+ F'P), CT*'P) .
It follows that the following definitions of maps Qy, — Py,, resp. Py, — Py,, make sense:
F=Q/IYHE, F=(1/17F.

Therefore we have defined P = (P,Q, F,F). It is clear that we obtain a display. We have to
verify the condition (EC,). Only (ECy, ) is not completely obvious. We prove the conditions
of Proposition By the R-module homomorphism (4.3.32]), P{bo /I(R)PJJO is mapped to
the direct summand (H‘g’lP,L0 +I(R)P,,))/I(R)P,, , and Qy, /I(R)P,, is mapped to the direct
summand Qy, /I (R)P), . We obtain an isomorphism

Pf,/fio/Qibo — (HPﬁlPdJo + I(R)Pwo)/Qwo'
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Therefore by the strictness of the Opg-action, the right hand side is a locally free R-module
of rank 2 and «(7) acts on the right hand side as ¢o(7). These are exactly the conditions of
Proposition The rank condition is now obvious for (P, Q, F, F).

Finally, in the case where r is banal, including the split case (and R is reduced), we can
reverse the functor € , using the arguments for banal ¢ given above.

Now we consider assertion (iii) of Theorem when R is not reduced. It follows from
Corollary (3) that P is isoclinic of slope 1/2 because P’ is nilpotent. Therefore we may apply
Grothendieck-Messing for displays Corollary We consider a surjective homomorphism
S — R of Ogr-algebras and assume that the kernel a is endowed with a divided power structure.

We define the category 0B, s/ as the full subcategory of the category of pairs (Py,¢1) where
Py is a W(S/R)-display, cf. Example and where

L]t OK — EndPl

is an action such that the base change (P, ¢) of such a pair by the morphism of frames W(S/R) —
W(R) lies in the category o3, gr. We also say that (P1,¢1) is a lift of (P, ¢) to a relative display.
By Theorem the lift (P1,¢1) is uniquely determined by (P, ¢) if P satisfies the nilpotence
condition.

In the same way we define the category dP; 4 /r- Then the functor ¢} g of Theorem m

extends to a functor
Q:'/r,S/R : DmT,S/R — D(’B;’,S/R’ (4333)
Indeed, the definition of € /R is essentially the same as that of @;7 r- We indicate it in the

case where K/F' is unramified or split. By the Ox-action, we have for the relative display P; a
decomposition,

Pr=®yP1y, @Q1=®yQ1y-

We are going to define a W(S/R)-display P} = (P|,Q},F|,F/). We set Pl = Py for all
1 € U. Since P; is a lifting of P, we have a natural isomorphism

Pray/Qray = Py/Qy. (4.3.34)

If ¢ ¢ {o,10}, we set Q14 = P, By the condition (EC,) for P we conclude that

EAw Py C Q1. Therefore we can define
F{: P, — Piy,, F{(z)=F(Ea,z), z€P, (4335)
F:Q)y — Py, Flz)=F(Esz), z€Q),. o

In the split case this decribes P} already completely. Now we consider the case 1 € {t, 0}
Then we define Q/Lw as the kernel of the map
Ea,
Pry — Py /Qp — Py/Qy.
This implies EAw Qll,w C Q1,4 Therefore we can define
F{:P,— P, Fl(z)=F(Bazx), z€P,,
Fll Q/l,ll) — P{,zpom Ff(?/) = FI(EAwy)a Yy e Q/l,w'

We then define P} = (P}, Q}, F}, F}), where P| = ©P], and Q7 = ©Q) . In the ramified case
the same definition holds with slight modifications.
The functor € /R defines a natural isomorphism

(4.3.36)

Dp(S) = Dy (S). (4.3.37)

This relates deformations of P and deformations of its image P’ under €, g since P and P’ are
nilpotent.

Let (P,t) € 0%, It has a unique lift P; € 0%, 5/r. The image P by the functor Q:;,S/R is
the unique lift of P’ to an object of O‘B’h S/R> cf. Theorem
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Let us fix P. Let M be the set of all isomorphism classes of deformations of (P, ¢) to an object
in 9, 5. Let M’ be the set of isomorphism classes of deformations of (P’,:’) to an object of
0P, g/~ We claim that the functor €, ¢ defines a bijection,

Lot M — M. (4.3.38)

We indicate this when K/F is unramified. Let Q C Dp(R) = P/I(R)P be the image of Q, i.e.,
the Hodge filtration. The set M is identified with the set of liftings of Q to a direct summand
Q1 C Dp(S) = P, /I(S)P, which is a O ®z, S-submodule and such that the factor module
satisfies the Eisenstein condition. The Og-action gives a decomposition Q; = 69@17¢. For
banal, we must have by Proposition [£.2.7] that

Ba,Dp(S)y = Quy. (4.3.39)

We note that the left hand side is a direct summand of Dp(S), as an S-module. This follows
from the fact that Py ,/I(S) Py, is a free module over S[T]|/E,S[T]. Therefore, there is exactly
one possibility to lift the 1)-component of the Hodge filtration. We consider now liftings of Qy
when 9 is not banal. In this case the Eisenstein condition implies that

SwEApr(S)w C Ql’w C EA¢DP(S)w~
By the freeness of Dp(.5), just mentioned, the multiplication by E. , gives an isomorphism

Ea, : Dp(8)y/SyDp(S)y = Ea,Dp(S)y/SyEa,Dp(S)y.

This shows that it is the same thing to lift Qy to a direct summand Q1,4 C Dp(S)y such
that the Eisenstein condition is satisfied or to lift Egi Qw to a direct summand Q/lw such that

Dp(S)y/ Q’lw is annihilated by S,. The last condition means that the action of O is strict
with respect to g, resp., @g. In other words,

Qll = Ql,wo ® Qlﬂ[’o ® (@wiwolﬁoDP(s)w)

is a lift of the Hodge filtration Q' C Dp/(R) = P/I(R)P to a Hodge filtration Q} C P1/I(S)Py
such that the action of Op is strict, i.e., the Hodge filtration Q defines a point of M’. This shows
that is bijective because the functor € ¢ maps the Hodge filtration Q1. to EZin,w
when ¢ is special by the definition (4.3.10). We leave the ramified case to the reader.

Finally we prove assertion (i) of Theorem i.e., we assume that r is banal. We begin
with the case where K/F' is a field extension. Then P is by Corollary (1) of slope 1/2. By
there is a unique way to lift the Hodge filtration and therefore the Grothendieck-Messing
criterion implies that there is a unique way to lift P to an object P; € 0B, 5/g. On the other
hand P’ is étale. Therefore it lifts obviously uniquely, and (i) follows. In the case where K/F is
split the same argument applies if P is local. If not, we consider the decomposition P = P, ®Pg
induced by Og = Op x Op. By Corollary [£.3.3](2), in each geometric point of Spec R one of the
factors of this decomposition is isoclinic of slope 0 and the other is isoclinic of slope 1. That P,
is étale means that the locally free module P, /@, is zero. This is true on an open and closed
subset of Spec R. Therefore we may assume without loss of generality that P, is étale. Then
P, has a unique lift and Pg has a unique lift by Grothendieck-Messing. Since P’ is étale it has
also a unique lift. This completes the proof in the split case. ([

Corollary 4.3.4. Let R € Nilpy _, be such that the ideal of milpotent elements in R is nilpotent.
We denote by B’ the full subcategory of objects of B, r whose displays lie in ¥PB°p. Let ‘Bg%m
be the full subcategory of P!  whose objects are formal p-divisible groups. Then €, , induces
an equivalence of categories 7 ,

!’
f
Q:Ir,R PR — BrR -
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4.4. The contracting functor in the case of a special CM-type. In this subsection, r will
denote a special CM-type. In this case, we will compose the functor C’T’ g with the Ahsendorf
functor.

Definition 4.4.1. Let r be special. Let R € Nilp,,. We denote by DERRH the category of
Wor (R)-displays P. endowed with a homomorphism of Opg-algebras

te : O — End P,

such that P. is of height 4 and dimension 2. In the case where K/F is unramified, we require
moreover that Lie P, is locally on Spec R a free Ox ®0,. R-module of rank 1.

We note that in the ramified case, the Ox ®¢, R-module Lie P, is in general not locally free
on Spec R.

Definition 4.4.2. Let r be special. Let R be a Opgs-algebra. We regard R as a Op-algebra via
wo,r:OF £ Op — R. The contracting functor

Q:T,R : OmnR — D%R
is the composition of CL’ r with the Ahsendorf functor 2o, /z, r-

Theorem 4.4.3. Let r be special. Let R € Nilpy_, be such that the ideal of nilpotent elements
of R is nilpotent. Then the functor €, r induces an equivalence of categories

Crp 0P, — IR
Here Di)‘{r};lp denotes the full subcategory of nilpotent displays in dRR.
Proof. This follows from Proposition and Theorem [3.3.2 O
Remark 4.4.4. Let R = k be a perfect field with an Op/-algebra structure. Then the construc-
tion of the functor &,  simplifies.

We begin with the unramified case. Let P = (P, F, V') € 93, viewed as a Dieudonné module.
The display P’ = (P, F', V') is described after (4.3.17). Applying the Ahsendorf functor to it,
we obtain the image P. = (P, F;, V;) of P by the functor €, ;. The Py of (3.3.33) is in our case
P = Py, © Py, and V. = (V") is the V,, of (3.3.33). We know that the restriction of V' to Py,
is

Vi=g= %V . Pl/,g — Pl/,.
We conclude that (V)7 : Py, — Py, is equal to 7~ 970 V/ where
g";o :adjo +a1§00+"'+adjoﬂf’1 (4'4.1)
= Qyoo—f T opyo—(F—1) + . F ot
In the same way (V') : P; — Py, is equal to 7790 V/ where
Gupo = Qo —|—a¢00 +...+a¢0(,f71. ( 2)

4.4.
From ({2.2.17) we obtain gy, + g5, = ef — 1. In summary, P. = Py, ® Py, as a Wo, (k) =
Op D04 0 W (k)-module, and V, is given by the matrix

0 n= 9wV f
( 9oyt 0 ) . (4.4.3)

Finally F¢ is determined by the equation F.V. = m. For instance, I : Py — Py, is equal to
(w950 /pfYFf. We obtain a Dieudonné module (P, Fe, V,) with respect to the perfect frame

Wor (k) = (OF ©¢_, 5, W(K),mOF @, 5 W(k),k, FI, FIz~1). (4.4.4)
In the ramified case we have P, = Py, as a module over Wo, (k) = Op ®0 0 W (k). If we
apply the Ahsendorf functor to P’, we obtain by
Ve=T"¢*v/.p,— P. (4.4.5)
F, is determined by the equation F.V, = 7, i.e., F. = —(II¢/*1/p/)F/. We obtain a Dieudonné
module (P, F¢,V;) for the frame (4.4.4)

6The symbol fR is to remind us that this is a category of relative displays.
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We next add polarizations to the picture. We set t(a) = Trp g, ¥~ a where ¢ is the different
of F/Q,.

Proposition 4.4.5. Let r be special. Let R € Nilp, . Let (P1,t1) and (Pz,t2) be objects of
OB, . Let (P1,11) and (Py,15) be their images by the functor € p. Assume given a bilinear
form of displays
B :P1 X Py — PR,

where Py, is the multiplicative display of W(R). Assume that 8 is anti-linear for the Ok -actions
1, Tesp. La, i.e,

B(r1(a)xy, o) = B(x1,12(@)x2), 21 € P1, 9 € Py, a € Ok. (4.4.6)
Define

B: Py x Py — Op @z, W(R)

by the equation

t(§5(x1,x2)) = B(€x1,22), x1 € Py, 23 € P, £ € Op ®z, W(R).
Then f3 is a Op-bilinear form of displays,
B:P| x Py — Lk,
where Lg is the Lubin-Tate display associated to the local field F' and the algebra structure

wo : Op — Opr — R, c¢f. Definition . Furthermore, B is anti-linear for the O -actions

L1, TESp. La.

Proof. To avoid a conflict with the present notations, we adapt some of the notation of section
to our situation. What was K in section is now F. We set L' = ¢o(F*) C E’. We write
the polynomials of that section as follows:

Epy(2) = II (Z = x(m)]) € W(Or)[Z].

X:F—>E~'7 X\Ft:w

We stress that here v denotes an embedding of F'* into E’, not as elsewhere in this section an
embedding of K* into E’. For ¢ = 1, we consider the decomposition Ep,y, (Z) = (Z — [po(m)]) -
Ero(Z) in W(po(F))[Z]. In particular all of these polynomials lie in W (Og:)[Z].

Let M be an Of ®0,., » W(R)-module. Then we write by our convention

Epym =Epy(r @ L)m,

where Ep (7 ®1) € Op ®0,..,» W(R) is the evaluation at 7 ® 1 in this W(Op:)-algebra.

We first consider the assertion of Proposition in the ramified case. We have the de-
composition P; = @, P, 4. By , we find B(Py y, Pay) = 0 for ¢ # ¢'. We consider the
restrictions of our bilinear forms

Bw :Pl,w X Pg,w — W(R)
By :Pry X Pyy — OF @0 i W(R).
Lemma 4.4.6. Let K/F be ramified. Then:

By (Ea,z1,Ea,12) = EpyBy(a1,22), Ty € Py, 22 € Pay, ¥ # o
Byo(Ba,, w1, Ba,, 12) = Epofy(z1,22), x1 € Pryg, T2 € Poy,-

Proof. We can restrict ourselves to the case where R is a O z-algebra. Then we obtain

By(T@1—1® [p(ID)))a1,22) = By (21, (I @1 — 1@ [p(I)])z2)
=By, T®1 - 1® [p(II)])22).

In the case were ¥ # 1y we deduce

BﬂJ(Ewala z2) = (—1)°By(21, EwaQ)-
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We find
Ep,(I@1) EyMel)= [ @el-1ep@)Ie1 -1 [p(I1)
PpEAy
=[] @e1-12 )Mo 1+ 1 [p(I)
PEAy
= [[ (ret+1@p@) = (1) Epy(r @ 1).
pEAyY

Therefore we obtain
By(Ea,z1,Ea,m2) = (—1)°By(x1,Ep, Ea,22) = By(21, Epy22)
= EF,IZJBlZJ(xla .’EQ),

which finishes the proof for v # 1. R . }

We turn now to the case 9. The polynomials EA%, EB%, and Eg are of degree e — 1. The
same computations yield for x; € Py 4, and z9 € P> 4,

Bwo (E/woxla $2) = (*1)67151110 (xlv EB% 1'2)7
Ep, MI®1)-Es, M@1)=(-1)""Epo(r®1).

The assertion for g follows as before. O

We continue with the proof of Proposition [4.4.5]in the ramified case. We begin by showing
that

Bu(Qi 4 Qo) C Qrou- (4.4.7)
This is trivial for ¢ # to. Let y1 € Q' ,,, and y2 € @5, . By Lemma the inclusion (4.4.7)

is equivalent with
Er o8y, (y1,92) € OF ®0,,, 4, I(R)
By Lemma [£.4.6] we find
EF,OB#)O (Y1, 92) = Bwo (EAQ/,O Y1, EA% Y2).
The elements u; = EAwo Y1, Tesp., Uy = EAwo Yo, lie, by the definition of Q’l’w07 in Q1,4,, resp.,
by the definition of le,wm in Q2,4,. But for arbitrary elements u; € Q1,4, and uz € Q2 y,, We
have B(u1,us2) € I(R). By the definition of 3,,, we find

TrF/F‘ 1971£B¢0 (Ul,UQ) = ﬂ(ﬁul,’tlg) € I(R),

for all £ € OF ®0,., 4, W(R). But this implies Buyo (u1,uz) € OF ®0 i 1o I(R), as desired.
Finally we have to check for y; € Q) , and y2 € Q5 ,, that

Bw(F/th/yz) = FﬁBw(ylayQ)
If ¢ # g we find for the left hand side

B (BB )y, FEa,)ye) = F(Erwbe(yr,v2) = Fe(By(y1,92)).

For 1y we obtain

By (F(EBa, )y, F(Ba, )y2) = 5 (EroBy, (n1,92)) = Fr(Buo (1, 12))-
This ends the proof of Proposition [£.4.5] in the ramified case.
Now we consider the unramified case. We consider the decomposition (4.3.2]). Let us denote
by ey the idempotents corresponding to this decomposition. The conjugation of K/F maps ey
to e;;. We consider the corresponding decompositions P; = &P, y, for i = 1,2. We obtain that

B(Pyy,, Pay,) = 0 for 1y # 41, and

B(Pry, Py 5) COp B0 1 b W(R).
We note that there are natural isomorphisms

Ok ®0Ktﬂ/~1 W(R) = Op ®0Ftﬂ¥; W(R) = Ok ® W(R). (4.4.8)

OKt,TNZJ
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Therefore 5 induces an Op D0 14 W (R)-bilinear form
5¢ : Pl,w X P2,1/; — OF ®0Ft71; W(R)

With the identification (4.4.8), we have E4 (1 © 1) = Ep,(r © 1) € Or ®,_, 5 W(R). The
analogue of Lemma [4.4.6]1s

Bw(EwalvEA,@fE2) =EpyBy(x1,22), @1 € Pry, 12 € Py, ¥ # Yo, %0,
By (Ea,z1,Ea,22) = EpoBy (21, 22), x1 € Py, 22 € Py, ¥ = o, Yo.

Here we recall again the notation introduced in the beginning of the proof: to be very precise,
the expression Ep,y should be written as Epy, .. These identities follow from the identities

- - [Epy. ¥ # o, Y0,
Ea,Bp, = {EF,Ou ¥ = 1o, Y.

(4.4.9)

We need to check }
Bu(Q1y,Qy.5) C Qi (4.4.10)
It suffices to consider the case ¥ = 1)g. By Lemma the inclusion (4.4.10) is equivalent with

EF,OBUJO (Y1,92) € OF ®0,., 4o I(R), y1 € Q/Lwo, Y2 € ng,djd

But, as in the ramified case, this is an immediate consequence of (4.4.9). Finally we have to
check that for y; € Q] , and ys € Q, 7

Bu(F'y1, F'ys) = FBy(y1, ya).
For this we can repeat the last two formulas in the proof of the ramified case. O

Let R € Nilpy,.. Let (P1,11) be an object of 99, . We denote by (Pf*,:f*) the conjugate
Faltings dual. It is defined from the Faltings dual exactly as the conjugate dual from the dual.

Corollary 4.4.7. Let r be special. Let R € NilpOE, be such that the ideal of nilpotent elements
of R is nilpotent. We regard R as an Op-algebra via po. Let (P,t) be an object of 3B, g and
let (P',1") € OB, i be its image under the pre-contracting functor &, . Then the image of the
conjugate dual (P", 1) under €, p is the Faltings dual (P2, ()A).

With the notation of Proposition assume that P{* and Py are in ¥PPp. Then the
canonical map

BﬂOK-anti-linear(Pl X PQ; Pm,R) — BilOK-anti-linear(P{ X ,Péu £R)

is bijective. Here these sets of bilinear forms Bil are meant as in Proposition [{.4.5.

Proof. We apply Proposition to the canonical bilinear form fean : P X P — Py, g and
obtain

Bean : P! x (P") — L.
By Proposition we obtain a morphism of displays
st (PN — (PHA. (4.4.11)
By definition, Bean is given by a perfect Op ® W (R)-bilinear form
Px P*— Op @ W(R).
(Recall that P* = Homyy gy (P, W (R)).) We obtain an isomorphism
P* = Homo,.ew (r)(P,Or @ W(R)).

But this says exactly that the map which s induces on the ” P-components” of the displays
(4.4.11)) is an isomorphism. It is elementary to see that a morphism of displays s : Py — Ps
which induces a W (R)-module isomorphism P; — P» is an isomorphism of displays.
Finally we prove the bijectivity of the last map in the corollary. The left hand side is, by
3.
Homogy,  (P1, (P2)").
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This group is, by (iii) of Theorem equal to
Homagy , (1, (P3)') 2 Homogy  (P1, (P2)*) 2 Bilo,c-anti-tinear(P1 X P3, Lr).

We now combine the last corollary with Theorem [3.4.11]

Theorem 4.4.8. Let r be special. Let R € Nilpy_, be such that the ideal of nilpotent elements
of R is nilpotent. Let (P1,t1) and (Pz,i2) be objects of 0B, r, with images (Py,t}) and (P}, i)
under the pre-contracting functor C;:R’ cf.  Proposition . Since the actions i restricted
to OF are strict with respect to po : Op — Op — R, the Ahsendorf functor Aoz, r
may be applied to them. For i = 1,2, let Pi. = Ao, z, r(Pi), i = 1,2, with its Op-algebra
homomorphism

lic - Og — EndWoF(R) Pi,c-

If P and Py are in OP"r, then the natural homomorphism
BﬂOK—anti—linear (Pl X P27 Pm,R) — BﬂOK—anti—linear (Pl,c X PQ,Ca Pm,WoF (R) (Tref/pf))

is a bijection.
The twist P wo . (R) (m¢f /pf) of the multiplicative display is defined in Example More
precisely, this is the twist by the image of (7¢f /p/) under the canonical map O — Wo,.(R).

Proof. This follows from Corollary [£.4.7] and Theorem [3.4.11 O

Remark 4.4.9. Let E C @p be the completion of the maximal unramified extension of the
reflex field E of . We extend ¢g : Op — O to an embedding ¢¢ : Oy — Op. We denote

by 7 € Gal(ﬁ‘ /F) the Frobenius automorphism. We apply the definition of 7y after Definition

T(mo)ng ' =7°/p, mo € OF. (4.4.12)
Let R € Nilpoé. Via ¢y we consider R as an O p-algebra. Therefore 7 g is defined, and

multiplication by 77(]; r, defines an isomorphism
Pm,WoF (R) (ﬂ-ef/pf) ; Pm,WoF(R)a (4413)
cf. (3.4.21). Therefore, if R € Nilpy , we can ignore the twist by (w¢/p) in Theorem W

We recall the definition of polarized CM-pairs ‘Bfﬁé, cf. Definition We also introduce
the analogous category of polarized objects of 0R g, as follows.

Definition 4.4.10. Let R € Nilp, .. We denote by DSR%OI the category of triples (P, tc, Bc)
where (P, i) € 98 R (cf. Definition [4.4.1]) and where

Be : Pe X Pe — Pm,WoF(R)
is a polarization which is anti-linear for the Og-action ¢c.

Let r be a special local CM-type with reflex field E. We regard an algebra R € NilpOE as an
O jz-algebra via ¢o. We now define the contracting functor for polarized CM-pairs,
P PP — IR (4.4.14)

Let (P,¢, ) € D‘BE%. We apply the contracting functor &, g to (P, ) and obtain (P, tc) € 0Rg,
cf. Definition By Theorem the polarization 8 : P x P — P, r induces an
alternating bilinear form

Be: Pe X Pe — P, (r) (77 /D7) (4.4.15)

If we combine this with the chosen isomorphism (4.4.13)), we obtain a polarization of the Wo . (R)-
display P,
ﬂc P X Pe —> Pm,WOF(R)'

. . ol
Then (Pe, te, Bc) is defined to be the image of (P, ¢, B) by the functor €%.
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Theorem 4.4.11. Let R € NilpoE be such that the ideal of nilpotent elements is nilpotent. The

. pol . . .
contracting functor Cr, g Induces an equivalence of categories

Qf_’% : 0‘43?}501 — Di)‘i?%ﬂp’pd.
Let (P, te, Be) the image of (P,t,8) under the functor fof}l%. Then

1
heighty,. 8. = } height 5,
cf. Definition|3.2.5.
Here the index ”ss” indicates the full subcategory of supersingular displays and the index

"nilp” the full subcategory of nilpotent displays.

Proof. We use the notation of Proposition [£.4.5] We have a commutative diagram

P ———— Homo,e, w(r) (P, Or ®z, W(R))

J/t*
[e3

HomW(R) (P, W(R))

Here the map & is induced by B and the map « is induced by . The vertical map is defined by
t.+(¢) =t o £ and is an isomorphism. The map « induces the isogeny P — PV associated to 3
and the map @& induces the isogeny P’ — (P’)?. Therefore these isogenies have the same height.
If we apply the Ahsendorf functor to the last isogeny we obtain the map P, — PV (w¢/ /p/)
which is associated to BC. By Proposition we obtain

~ 1
heighty,. 8. = heighty, . 3. = ? height 3.
O

Remark 4.4.12. Let us explain how the bijection between bilinear forms of Theorem [4.4.8
simplifies when R = k is a perfect field in Nilp,, . We take P = Ps.

We consider the Dieudonné module (P, F, V') of P. We consider 5 : P x P — W (k) as a bi-
linear form of Dieudonné modules. Here we mean by W (k) the Dieudonné module (W (k), F, V),

cf. (3.2.2). We define
B:PxP— Op ®z, W(k) (4.4.16)

as in Proposition We know that 3 induces a bilinear form of displays P x P —s L. In
terms of Dieudonné modules, this means that the following equation holds,

B(lel,vllb) = VLB(IL-TZ)- (4.4.17)

In terms of the decomposition (4.3.6)), the operator V' is given by (4.3.15)).
By (3.4.10), the Ahsendorf functor applied to L gives the Wo,, (k)-Dieudonné module
el pf

™t P ey
o F ). (4.4.18)

(OF ®O W(k)u

w0
The bilinear form § gives by restriction to P, = P ®0 0 W (k) C P the O ®0 4 W (k)-
bilinear form

Be: Pox P. — Op @, 5 W(k). (4.4.19)

Because this is obtained by applying the Ahsendorf functor to 1] f. is a bilinear form of
Wor (k)-Dieudonné modules if we equip the right hand side with the W . (k)-Dieudonné module
structure (4.4.18[). Therefore we obtain

. Fooos
Be(Vexr, Vera) = Wepf_l B Be(w1,m2), @129 € Pe. (4.4.20)

In the case where K/F is ramified, we have P, = Py, and
Ve = -ef+iy 7. Py, — Py,
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cf. (4.4.5). Note that (4.4.20) can be checked easily from these expressions.
In the case where K/F is unramified, we have P. = Py, © Py , and V. is the endomorphism

of P. = Py, ® Py, given by the matrix

0 79 VS
790V 0 ’

cf. (4.4.3). Before 1) we already remarked that B(Py,, Py,) = 0 = B(P@O,P@O). Again
(4.4.20)) can be checked directly on these descriptions of V..
Now we assume moreover that k is a Oy-algebra. We have the map (4.4.12)),

OF‘ — OF ®Optﬂzo W(k) = WOF(]{?)
W (k) of ng. We set

We consider the image 1ox € Or ®0,.,
Be =18 1 Be s Pex Pe — Op &4, 5 W(k). (4.4.21)
Then we find
I A3 f pf 75
ﬁc(vcxla ‘/0172) = Wo)kﬁc(vcxl, chz) =M,k ef—1 C(.’L‘l, xg)
f
p -, - —f
=l " g Belen, ) = 7 7 B, ),

since ng’k Fﬁf(no_j:) = 7¢f /pf. Indeed, the left hand side of the last identity is the image of

(o7~ (g 1)) =7/ /p?.
This shows that (. is a bilinear form of Wp,. (k)-Dieudonné modules, if we consider on
Or B0 ¢ 0 W (k) the Wo,. (k)-Dieudonné module structure which corresponds to P w,,, (R):

namely
(OF RD0,+ b0 W(k), Ff nF~7).

Remark 4.4.13. Let us discuss the height identity in Theorem in a more direct way. We
may assume that R is a perfect field. We may write the equation in the form

ord, detyy ()8 = ford, detw,, (k) Be. (4.4.22)

On the left hand side the determinant is taken with respect to an arbitrary basis of the W (k)-
module P. After we take ord,, the result is independent of the choice of the basis. The right
hand side of this equation does not change if we replace S, by the form B of 1) We
begin with the ramified case. The decomposition P = ©F,, is orthogonal with respect to 5. Let
By be the restriction to Py. Let ¢ be banal. The map II"*V : Py, — Py is a F~1linear
isomorphism. From the equation

By(I™Va, 1™ Vy) = By(V(n~%z),Vy) = Fﬁlﬂwa(ﬁ_epx,y)

we conclude that ord, detyy () By = ord, detyy (x) Byo. Therefore this value is independent of .
In particular we obtain

ord, detyy ) = ford, detyy (x) By, = fords detWoF(k) Be.
The last equation follows because
Be : Pyy X Py, — Wo, (k) = Op B0 0 10 W (K)
is obtained from S, by the equation
Trwe . (k) /w (k) (19_1(15(3(1}, Y)) = By, (az,y), x,y € Py,, a € Op 0,14 0 W (k),
and since the pairing

T, (k)W (0 araz) : (OF ¢, i W(K)) x (OF ®¢_, g, W(k)) — W (k)

is perfect. -
In the unramified case we write Yol = ). The modules Py, and P,, are orthogonal for
Y1 # Pa. We denote by By the restriction of 8 to Py x Pj. We define ord, det 8, by taking
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an arbitrary basis of Py and an arbitrary basis of Pj;. Assume that ¢ is banal; then 1 is also
banal. We obtain two F~!-linear isomorphisms
WV Pye — Py, m WV Py, — Py
We have
By (™ Va, n=%Vy) = By(r Va,Vy) = g (pr~Cx,y).
P ) Y b VY Yo \P Y
We conclude that ord, detw 8y = ord, detw By,. Because j is alternating, 8y, and f;, have
the same order of determinant. We conclude that h := ord, detw 8y is independent of ¢ € W.
We find ord, dety 8 = 2fh. The form . is obtained from the restriction Sy, by the equation

TroF®oFt,MOW(k)/W(k)(aﬁflgc(m,y)) = By, (az,y), € Py,, y€ Py, a € Op.
Therefore we obtain
2h = 2ord, detyw By, = ordy detoF®OF“%W(k) Be.

4.5. The contracting functor in the case of a banal CM-type. In the banal case we will
associate to an object of the category bﬁ’r’R (cf. Definition (4.3.1) an étale sheaf on Spec R. The
construction does not use the Ahsendorf functor 2o, /z,, which is not useful here.

Definition 4.5.1. Let R be a ring. An étale Frobenius module is a pair (M, ©), where M is a
finitely generated W (R)-module which is locally on Spec R free and where © : M — M is a
Frobenius linear isomorphism, i.e., © : ¢*(M) — M is an isomorphism.

The following proposition is a variant of a result of Drinfeld, comp. [10, Prop. 2.1]. It can also
be proved using the theory of displays. When R is an algebraically closed field, the proposition
is a theorem of Dieudonné.

Proposition 4.5.2. Let R be a ring such that p is nilpotent in R. There is a functor 2 from the
category of étale Frobenius modules over R to the category of locally constant p-adic étale sheaves
which are finitely generated and flat over Z,. The functor A is an equivalence of categories which
commutes with arbitrary base change. It is compatible with the tensor product of étale Frobenius
modules, resp., of p-adic étale sheaves.

Proof. We give a sketch of the proof which shows how this equivalence is constructed. By
B3, Lem. 42] it follows that the category of étale Frobenius modules over R and R/pR are
equivalent. Indeed, a Frobenius module lifts locally and by loc. cit. two liftings are canonically
isomorphic. Therefore we may assume pR = 0. Let (M, ©) be an étale Frobenius module. We
set M,, = Wy(R) ®w(r) M. Because pR = 0, the Frobenius F' on W (R) induces a Frobenius
F:W,(R) — W,(R). By base change we obtain a F-linear map ©,, : M,, — M,,. We define
a functor 2(,, on the category of R-algebras,

A, (S) = {z € Wi(S) ®w, (ry My | On,s(z) = 2}

One can show that 2, is representable by a finite étale scheme over Spec R. Clearly Z/p"Z =
W, (F,) acts on A,,. We define the associated p-adic sheaf

Aoy = lim, Ay

Let W be the étale sheaf of Witt vectors. We have W @z, 2A(y;,0) = M in the sense of étale
sheaves, where the action of © corresponds on the left hand side to the action of F' ® id.

Finally, we show the compatibility with tensor products. If (M’, ©) is a second étale Frobenius
module, we set (N,Z) = (M ®w gy M',0 ® ©'). We obtain a natural homomorphism

An,0) @z, o) — A=) (4.5.1)
To prove that this is an isomorphism, we may reduce by base change to the case where R is an
algebraically closed field. Then the assertion is clear by the theorem of Dieudonné. O

Definition 4.5.3. Let r be banal. Let R € Nilp, ,. Let Et(Ok)r be the category of locally
constant p-adic étale sheaves G' over Spec R which are Z,-flat with rankz, G = 4d and which are
equipped with an action

t:0g — Endg, G.
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The contracting functor is the functor
QT’RZ D?BT,R — Et(OK)R,

which is the composite of the pre-contracting functor QZ’T’ g of Theorem and the functor 2 of

Proposition [4.5.2 applied to the étale Frobenius module (P’, F’). The functor commutes with
arbitrary base change R — R'.

Theorem 4.5.4. Let r be banal. Let R € Nilpy_, be such that the ideal of nilpotent elements
of R is nilpotent. Then the contracting functor is an equivalence of categories,

Q:n]y D&Br,R — Et(OK)R.

Proof. Since the objects in D’B'T’ p are étale, this is simply a combination of Proposition W
and Proposition O

Remark 4.5.5. In the banal case there is a functor

g’Br,R — amr,R (452)

from p-divisible groups to displays which is an equivalence of categories. Indeed, in the case
when K/F is a field extension, the displays of objects in 933, g are by Corollary isoclinic
of constant slope 1/2 and therefore nilpotent. Therefore they are displays of formal p-divisble
groups, cf. Theorem In the split case O = O X O we have a corresponding decom-
position of a display P € 3B, r: P = P; @ P2. In the case where P is nilpotent we can argue as
before. If not, one of the summands is étale and the other is isoclinic of slope 1, cf. Corollary
[43333] But we have an equivalence between étale p-divisible groups over R and étale displays
over R, which is easily defined by the 2-functor. Therefore we conclude also in this case that

the equivalence (4.5.2)) exists.

We now add polarizations to the picture.
Lemma 4.5.6. Let r be banal. Let R € NilpOE,. Let (P1,t1) and (P2, t2) be in OB, r. Let
B : P1/1<R)P1 X PQ/I(R)PQ — R

be an R-bilinear form such that

B(u(a)zr, x2) = B(z1,12(@)z2), a€ Ok.
Then the restriction of B to Q1/I(R)Py x Q2/I(R)Py is zero.

Proof. We first consider the case where K/F is ramified. We consider P;,/I(R)P;, as an
Ok ®0,., v R-module for i = 1,2. Because of the isomorphism (4.2.6)), it suffices to show that

BEA,x1,Ex,22) =0, 21 € (P/I(R)P1)y, 32 € (P2/I(R)P2)y.

We consider E4, (IT® 1) € Ok ®o,,,4 Op'. The image of this element by the conjugation of
K/Fis (—=1)°Ep,(II®1), cf. the proof of Lemma m Therefore we find

B(EA,z1,Ea,22) = (-1)B(z1, Ep, Ea,z2) = (—1)°B(21, Eyas) = 0.

Now we assume that &/F' is unramified. Then the condition on ? implies that Py y, /I(R)P y,
and Ps y,/I(R)Ps,, are orthogonal with respect to 3 if 11 # 2. Again by the isomorphism

(4.2.6]), it suffices to show that

5(Ewa1’EA&$2) = 0, xr1 € (Pl/I(R)Pl)w, To € (PQ/I(R)PQ),J}
In this case the conjugation of K/F maps E4, to E By- Therefore the last equation follows from
Ep,(n®1E; (n®1)=E;(r®1) =0.

Exactly the same argument applies to the split case. O
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Lemma 4.5.7. In the situation of the last lemma, assume that R is a reduced ring. Let 5: Py X
P, — W(R) be a W(R)-bilinear form such that 8 is anti-linear for the Ox-actions 1, resp.
L2, and such that

B(Fix1, Faxs) = p ¥ B(z1,29), 21 € Py a9 € Pa.

Then B induces a bilinear form of displays
ﬂ : Pl X 732 —)Pm,R-
Proof. We must verify that 8(Q1,Q2) C I(R) and that

B(Fryr, Foye) = FBy1,y2),  v1 € Q1 y2 € Qo.

The inclusion is a consequence of Lemma To verify the last equation, we may multiply
it by p? because p is not a zero divisor in W (R). But then it follows from the assumptions on

B. 0

Definition 4.5.8. Let p € Or ®z, W(R) be a unit. We define Op(p) as the p-adic étale sheaf
associated by Proposition to the étale Frobenius module (Of ®z, W(R),©,), where

Opa®é)=p-(a® FE), acOp, E€W(R). (4.5.3)

When p = 1 we obtain the constant p-adic étale sheaf Op = Op(1).
Let p = 7¢/p. Let R € Nilpy , and let (Pi,ei) € P, g for i = 1,2. We will associate to a
bilinear form of displays

B:P1 X Py — Pm.r (4.5.4)

which is anti-linear for the Og-actions 1, resp. i, a bilinear form of p-adic étale sheaves which
is anti-linear for the Ok-actions on Cp, = €, g(P1), resp. Cp, = €, g(P2),

QZS : C’pl X C’p2 — OF(p). (455)

For the construction we may assume that R is a kps-algebra because étale sheaves are insensitive
to nilpotent elements.
Let first K/F be ramified. Then we find for 21 € P; and z5 € P that

5(1511/1'1, FQIIQ) = B(F"ll—[e:zzl, FQHSIQ) = Fﬂ(HeIl, Hel‘g)
. e (4.5.6)
= "B(n°m1,20) = Fﬁ(;ﬂ?h@)

We used the equation
Flll'l = Fll_[exl, (457)
which follows from (4.3.4) and (4.3.9). Recall the function t(a) = Tro, /z, ¥~ 'a, for a € Op,

where ¥ € Op is the different of F/Q,, cf. p. We define B : PL x P, — Op ®z, W(R) by
the equation

t(E4(a1,a2)) = B(Ex1,22), € € Op @z, W(R). (4.5.8)
Then 3 is a bilinear form of Op ®z, W(R)-modules. We conclude from q) that

e ~

BF'xy, F'xy) = % - FB(xy, o). (4.5.9)

Hence J is a bilinear form of Frobenius modules. Since the functor 2 of Proposition m
commutes with tensor products, it induces a bilinear form .

Now we consider the case where K/F is an unramified field extension. For each Op-algebra
R we have the decomposition

Ok ®z, W(R) = H Ok ®¢,, 5 W(R), (4.5.10)
Yew
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which is induced by (4.3.2). The conjugation of K/F acts on O ®z, W(R) via the first factor.
We denote this by 1 — 7. We denote by ¥'n the action of the Frobenius via the second factor.
On the right hand side of (4.5.10f) these actions become

Ok ®OKM’Z’ W(OE/) — Ok ®0Kt77zf7f W(OE/)

a®Rér— a®é,
(4.5.11)
Ok ®OKMZJ W(R) — Ok ®0Kt,m/3 W(R)

a@é— a® FE
Here o denotes the Frobenius automorphism of Gal(K*/Q,). Looking at the right hand side of

(4.5.10]), we define
Ty 1= (7'('%’ (9 1)¢€‘P € Ok ®Zp W(OE/) (4.5.12)

It follows that
Ty, =70 Q@ 1.
Let (P,¢) € P, r. We note that, since R is a rnp-algebra, the definition of (P’,t') = €, p(P,1)
in takes the form
F'(z) = F(m.z), F'(z)=F(n.x). (4.5.13)
Now let us start with a bilinear form
B:PLX Py — P

which is anti-linear for the Og-actions ¢y, resp. t2. We find
ﬂ(F{ﬂCl,Fg/wz) = 5(F17Tr$17F27Tr$2) = Fﬂ(ﬂ—rxlaﬂ—er)
_ e (4.5.14)
= FB(rawy,2) = Fﬁ(?fﬁhxz)-

As before, 8 defines the Op ®z, W (R)-bilinear form

B: Py X Py, — Op ®z, W(R),
which by (4.5.14)) satisfies

~ . . ’]Te
B(Fia1, Fyxe) = o FB(x1,22). (4.5.15)

Applying, as before, the A-functor to P’, we obtain the desired bilinear form ([4.5.5)).
Finally we consider the split case. In this case we consider in the decomposition (4.3.22)) the
element

Tp = Tp1 X Tpg = ((ﬂ"ml ® 1)969) X ((W““’? ® 1)969) (4.5.16)

of (4.3.22)). The conjugation acts on Ox ®z, W(Opr) via the first factor. On the right hand side
of (4.3.22), the conjugation just interchanges the two factors in parentheses. This shows that

.7 = m° ® 1. Now starting with a bilinear fornﬂ (4.5.4), the formulas (4.5.14), (4.5.15) from

the unramified case continue to hold, and this finishes the construction in the split case.

Proposition 4.5.9. Let r be banal. Let R € Nilpy_, be such that the ideal of nilpotent elements
of R is nilpotent. Let (P1,t1) and (Pa,t2) be objects of 9B, r. The construction above, which
associates to a bilinear form of displays a bilinear form of p-adic étale sheaves i
a bijection,

BﬂOK—anti—linear(Pl X P27 Pm,R) — BilOK—anti—linear(C’Pl X CszOF(,D))-

Proof. We reduce the question to the case where R is reduced. Indeed, let S — R be a pd-
thickening in the category Nilp, ,. Assume that (P;,¢;) € 3B, g for i = 1,2. It follows from
Proposition [3.2.4 and Lemma that any bilinear form

B:PirXPar— Punr

7One should not confuse the notation P1 and P2 with the decomposition (4.3.25)) which continues to exist,
e.g., Pr ="P1,1 ®Pi,.
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with the properties of (4.5.4) lifts uniquely to a bilinear form
B:P1x Py — Pm,S’-

Since bilinear forms of étale sheaves have the same property, we can assume that R is reduced.

We begin with the ramified case. For i = 1,2, let (P;,¢;) € 9B, g, which correspond to (P}, FZ’)
under the pre-contracting functor QI’T’ r» cf. Theorem [4:3.2] and to Cp, under the contraction
functor €, r. We start with a bilinear form of p-adic sheaves

- €

d):C'Pl XC'Pz —>OF(%)

with the properties of (4.5.5). We have to construct a bilinear form of displays (4.5.4) which
induces ¢. By Proposition ¢ comes from a bilinear form of étale Frobenius modules

B: P{ x Py — Op ®z, W(R)

which satisfies

~ . . ’]Te
B(Fiz1, Fyws) = " FB(ay,22). (4.5.17)

After applying t we obtain a bilinear form 8 which satisfies

€

B(F{xy, Fyy) = Fﬁ(%xl,xz). (4.5.18)

By (4.5.7) we may write

. . p
F; =pl; = F{—,
p i Tqe
because multiplication by p is injective on P;. We deduce from (4.5.18|)
. . e
B(Fix1, Foxs) = 5(F{%$17F2/%I2) = Fﬁ(%%ﬂ?h %362) =p "B(x1, 22).

By Lemma it follows that $ is a bilinear form of displays 8 : P; X P — P,,,. This proves
the ramified case.

Now let K/F be an unramified field extension. We begin with a bilinear form of p-adic étale
sheaves as before. This induces a bilinear form of étale Frobenius modules £ : P{xPj, —

Or ®z, W(R) which satisfies . Using ({.5.13)), we rewrite this as
B(F17r$1,F27TrCU2) = 7; FB($1,$2)~
We multiply this equation with p? and find for the left hand side
B(Fimywy, Fampws) = B( FmpFuiay, ProFoxs) = B( ¥ (7,7, ) iz, Fans) = n°B(Fray, Faxo).
If we compare this to the right hand side multiplied with p?, we obtain
B(le, Fyxzp) =p FB($17.’E2).

Setting now § = t o B, the assumptions of Lemma are satisfied. Therefore 5 induces a
bilinear form of displays g : P1 X Po — Pu,.
In the split case the argument is the same using the 7, which appeared in this context. [l

On Spec kg we can choose a trivialization of the twisted constant étale sheaf,
Op(7°/p) — Or, (4.5.19)

as follows. Choose n € O @z, W(kg) such that “nn~! = 7¢/p (this is equivalent to the choice
of ng in (4.4.12))). Then the multiplication by n

n:(Or ®z, W(kg), (7¢/p) ® F) — (Of ®@z, W(kEg), 1 ® F)

is an isomorphism of étale Frobenius modules, which induces (4.5.19]) under the 2(-functor into
Et(Ok)ry, cf. Proposition [£.5.2]
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Definition 4.5.10. Let R € NilpOE. Let Et(OK)%Ol be the category of p-adic étale sheaves
(G, 1) € Et(Ok)r, equipped with a Op-linear alternating form

¢:GxG— Op, (4.5.20)

which is anti-linear for the Og-action.

Using the trivialization (4.5.19)), and applying Proposition |4.5.9] we now obtain the contract-

ing functor with polarizations which is a functor from D‘Bf% to Et(Ox )%

Theorem 4.5.11. Let r be banal. Let R € Nilp O, be such that the ideal of nilpotent elements
in R is nilpotent. Then the contracting functor Q:ff}; is an equivalence of categories,

€% PPy — Et(Ox)% .
O

Remark 4.5.12. In the split case, let Cp = QZf%(P). Let P = Py x Py be the decomposition
induced by Ox = Op x Op. This induces a decomposition Cp = Cp1 X Cp 2, where Cp ; is
the étale sheaf associated to the Frobenius module (P;, F'r,;), ¢ = 1,2. Here the elements 7, ;

are defined in (4.5.16)). The subsheaves C'p ; of Cp are isotropic with respect to ¢ as in (4.5.20)),
and hence ¢ corresponds to an Op-bilinear form

¢ : Cp,l X C’p,g — Op.
Remark 4.5.13. Let k € Nilp,, , be an algebraically closed field. Let (P, 3) € D‘BE,OICI. We will

give a description of @f’oé (P,B) = (Cp,¢). We write P = (P, F, V) as a Dieudonné module. The
image of P under the contracting functor, a sheaf C'p on Speck, is simply an Og-module.
Assume that K/F is ramified. From the definition of the pre-contracting functor (cf. Theorem

and the A-functor we have
Cp={reP|V 'l = z}.
To describe this further, with its bilinear form of displays, we extend the bilinear form S to
B:PxP— Op@W(k),

cf. 1} The decomposition P = @®yecw Py is orthogonal with respect to /3’ and, by restriction,
we obtain for every

By : Py x Py — Op ®¢_, 5 W(k) C Op @ W(k).

Let xy, xip € Py. Since § is a polarization, we obtain
Byo (VM VI Ia)) = — F By (2y, ). (4.5.21)

The action of F' on the right hand side is defined by (4.5.11). Fix v, € W. The projection
T > Ty, is an isomorphism

e
p

Cp = {mwa € Py, ‘ V_fHef$¢a = xwa}. (4.5.22)
In particular, we see that Cp is indeed a free Ox-module of rank 2. For x,2’ € Cp we obtain
from (|4.5.21])
~ ’]Te ~
Byo (Tyor Ty) = " T By (wy, ).
Since 1, = 1,07, we obtain
7T€

f
et = (5) 7Bt

In the same way we may interpret the sheaf Op(7¢/p): the projection
Of ®Zp W(k) — OF ®Opt7w~a W(k)

defines an isomorphism
€

e T\ s
OF(?) = {a’d/’a 6 OF ®0Ft,'¢~)a W(k) | awa = (;) r awa}' (4523)
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For the last equation we may write nay, = F’ (nay,) (cf. (4.5.19) for n) or, equivalently,
nay, € Op. Therefore, using the expression (4.5.22) for Cp, the restriction of 5 to C'p multiplied
by n gives the desired bilinear form

(,25: Op X Cp — Op
(mwa71"/¢a) — n/Bwa (x¢a7xil)a)'

Now let K/F be unramified. In this case, in the decomposition P = @y Py, the summands
Py, and Py, are orthogonal, unless ¢; = 15. The Og-module Cp is, in this case, given by

(4.5.24)

Cp = {l‘ = ((,Ew) eP | V_lT('T.’L'w = $wg}7 (4525)
where we recall the element 7, from (4.5.12). After fixing 1,, we can write
Cp ={(wy,,7p,) € Py, © Py, | V*fﬂgx,pa =z, V*fﬂgx,ﬁa =Ty, (4.5.26)

where g = ay, +ay,0++ay, o1 and g =ay, +ag .+ - +ag, ,r-1. Using the expression
(4.5.26) for C'p, we may write
o: Cp XC’))—)OF(/))

N N (4.5.27)
(T, + g, Y +Yg,) = 180, (Tpes yg,) + 185, (T, Y)-
We have for arbitrary elements zy € Py and y,; € Py that
ef .

~ _ _ — 7'(' j ~

61/;(1/ fngw,v fﬂgwa) = p—f F ﬂw(xw,yd;).
If v =xy, + 25, and y = yy, +y;, in Cp the last formula becomes

ef
~ 71' f ~
Ba@gyw) = 75 7By (@, yy)-
By the formula (4.5.27)) for ¢ we obtain
f
o(z,y) = 7 oa,y).
This shows again that ¢(z,y) € Op, cf. (4.5.23).
Finally let K = F' x F. We use the notation of the last Remark. We obtain
Cp,={ze P |Vx=m,;x},
where we recall the element 7, ; from (4.5.15)). We have the decomposition
Cp = Cp, ® Cp,

If we fix p € © = Homg,-a15(F' t @p), the natural projection P; — P; g, defines an isomorphism

Cp, ={x € Pig, |VIz=n%z}, fori=1,2, (4.5.28)

where g; = >, ap,, cf. ({4.3.28). The bilinear form B induces by restriction

Beo + P1,0, X P29, = OF ®0Ft750 W(k‘)

In the notation of we obtain

¢:Cp, xCp, — ) Op,

(w1, 22) > 1B, (T1,T2).
This determines ¢ on C'p since the subspaces Cp, for i = 1,2 are isotropic, cf. Remark
Proposition 4.5.14. Let r be banal. Let k € Nilpy , be an algebraically closed field. Let
(P, 1, B) and (PT,u", 8T) be two objects in D‘ﬁff,’cl.
(i) If K/F is split, then there erists a quasi-isogeny

(P, B) = (PT,uF,81). (4.5.29)

(ii) Let K/F be a field extension. Then there exists a quasi-isogeny iff inv(P,¢,B) =
inv(P*,ut, 87), of (247

(iii) Let K/F be an unramified field extension. If B is a polarization of height 2 fh with h € {0,1}
then inv" (P, ¢, B) = (—1)". For a given h, there exists (P,,3) with these properties.
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Proof. To prove the first assertion, we may apply the polarized contraction functor Cffgj of
Theorem We choose an arbitrary isomorphism a; of the F-vector spaces Cp, @ Q and
CP1+ ® Q. Since ¢, resp. ¢T, define dualities of these spaces with Cp, ® Q, resp. CP; ® Q, we
can extend «; to an isomorphism a : (Cp,¢) @ Q — (Cp+,¢T) ® Q.

If K/F is a field extension, we conclude by Proposition that the equality inv(P, ¢, 5) =
inv(P*, T, 1) is equivalent to the equality inv((Cp, ¢, 9) ®Q) = inv((Cp+,tT, ¢T)®Q). There-
fore, by Definition these anti-hermitian K-vector spaces are isomorphic, which proves our
assertion.

Finally we prove the last assertion. We consider the bilinear form 3, : Py x Py — W (k). If we
choose a W (k)-basis of Py and Py, we can speak of ord,, detyy (1) By. This number is independent
of 1 and equals h. Let B(3) be the restriction of 5 to P @® P;. We obtain ord,, dety () 8(¢) = 2h.

Recall 3, cf. ([#.5.8). Let 3(1)) the restriction of 3,

BW) : (Py ® Py) x (Py & Py) = Op @ _, 5 W(k).

Then we have

ord, detyy (1) 5(¢) = ord, detOF®0Ft1J)W(k) B(). (4.5.30)

Indeed, the function t(a) = Tro, 0, Yv~1a, for a € Op, where 9 € Op is the different of F/Q,,
defines for an arbitrary Op D0 0 W (k)-module U an isomorphism of Op R0 0 W (k)-modules,

HomoF@’oFt,q/?W(k)(U’ Or ®0Ft,¢ W(k‘)) AN Homw(k)(U, W(k)), ar— aot. (4.5.31)

We apply this to U = P, & Pg. If we regard B as a homomorphism of U to the left hand
side of and § as a homomorphism from U to the right hand side, they correspond
to each other. Therefore the cokernels of these two homomorphisms are isomorphic and have
the same length. This shows . By Remark we have for each 1 an isomorphism
Cp ®or (OF ®g_, j W(k)) = P. Since ¢ coincides with the restriction of B(x)) up to a unit,

we conclude that ord, detp, ¢ = 2h. By Lemma we have inv(Cp,t,¢) = (=1)". By
Proposition we are done. [l

5. THE ALTERNATIVE MODULI PROBLEM REVISITED

In this section we give another proof of the main result of [I7] which gives an alternative inter-
pretation of the Drinfeld moduli space of special formal Op-modules in the case of a quaternion
division algebra D over a p-adic local field F. We also prove a refinement concerning descent
data. The original proof was already simplified by Kirch [I4], but the argument here is different
and is based on the theory of displays.

5.1. Special formal Op-modules. We fix the finite extension F' of Q,, with uniformizer = and
residue field kp. Let R be an Op-algebra. Let (X, ) be a p-divisible group over R with a strict
action ¢ : Op — End X. A relative polarization of X is a relative polarization of the display of
X. Here, by a relative polarization we mean one with respect to O, cf. Definition

If R = k is a perfect field, we may work with the associated Wo,, (k)-Dieudonné module
(M, F,V) of X. It is obtained from the display of X by the Ahsendorf functor Ao, /z, g, cf.
Remark In this language, a relative polarization is a Wo . (k)-alternating pairing

w:MXM—>WOF(k‘),

such that
Y(Fz, Fy) =m "y(z,y), z,ye M, (5.1.1)
cf. . If the bilinear form ¢ is perfect, we will say that the polarization is principal.

We denote by D the quaternion division algebra with center F'. Let F’ C D be a quadratic
unramified extension of F. Let Op C D be the ring of integers. Recall that a special formal
Op-module X over R is a p-divisible group X over R of height [D : Q,] with an action ¢ : Op —
End X such that the restriction of ¢ to Op is strict and such that Lie X is locally on Spec R a
free Op ®o, R-algebra, cf. [9]. One can check that this condition is independent of the choice
of F”.
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Proposition 5.1.1. Let k be an algebraically closed field of characteristic p with an Op-algebra
structure O — k. Let F' be an unramified quadratic extension F' of F. We denote by F and
V' the Frobenius and the Verschiebung acting on Wo,. (k).
Let (M, F,V) be a Wo,.(k)-Dieudonné module (see Definition[3.1.8) of height 4 and dimension
2 which is endowed with an Op-algebra homomorphism
t:Opr — End(M, F, V).
Assume that « makes M/V M into a free module of rank 1 over kp ®y, k. Then there exists a
principal relative polarization ¢ on (M, F,V) such that
Y((w)z,y) =Yz, (u)y), forueOp, z,ye M (5.1.2)
Any other relative polarization ¢ of (X, i) with the property (with v replaced by ¢) is of
the form
o(z,y) = Y((c)z,y)
for some element ¢ € Op.
Proof. We choose an embedding O — Wo,. (k). We set, for i € Z/2Z,
M, ={xe M| (u)x = Fiuw, for u € Op/}.
We have the decomposition
M = My & M. (5.1.3)
The operators F' and V are of degree 1. The k-vector spaces My/V My and M;/V M, are by
assumption both of rank 1.
If ¢ is a bilinear form with the properties (5.1.2), then the decomposition (5.1.3) is orthogonal.
We choose alternating perfect forms 1y resp. 11 on the free W, (k)-modules My resp. M; of

rank 2. These forms are unique up to a unit in Wo,, (k). By this uniqueness we find an equation
of the form

F_21/~)0(F2x0,F2x6) = §7r21/;0(x0,x6), &€ Wo,(k), forall zg,zy € M. (5.1.4)

By assumption we have ord, det(F?|My) = 2. Comparing the determinants on both sides of
(5.1.4), we conclude that £ is a unit. Since k is algebraically closed we may write

DO
¢=F"m

Replacing 1/30 by g = m/NJO we may assume that we have £ = 1 in equation 1'
With the same argument as before we find an equation

Fﬁle(Fxl,Fa:’l) =&y (xy, 1)), & € Wo,(k), forall z,,x) € M.
Comparing the determinants we see that & € Wp, (k) is a unit. We set ¢y = 51151 and
1 = 1o @1y (orthogonal sum). Then ¢ satisfies (5.1.1]). To prove (5.1.2) it suffices to show that
»i(t(w)z, 7)) = Vi (zi, 1(u)x))  fori=0,1.

This is trivial from the definition of (M;, ;).
If we have a second ¢ satisfying (5.1.2)), we find ¢ € Wp,. (k) such that

Po = .
Since both sides of this equation satisfy l) with € = 1 we obtain “¢ = c. Therefore we
have ¢ € Ops C Wo,.(k). We obtain that ¢(z,y) = ¢ («(c)z, y). O

Corollary 5.1.2. Let (N,¢) be a second Wo,. (k)-Dieudonné module of height 4 and dimension
2 with an action of Op: such that N/V N is a free kp ®y,. k-module of rank 1. Let p: N@Q —
M ® Q be a quasi-isogeny of height 0. Then

V(p(2),p(w)), zweN (5.1.5)
is a perfect bilinear form on N.

Proof. Let ¢y be a perfect alternating form on IV given by Proposition and let vy, be its
restriction to Ny. This form differs from the form (5.1.5)) restricted to Ny by a factor in ¢ € F’.
Since p has height 0 we conclude that ¢ is a unit. O



78 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK

Let K/F be a ramified quadratic extension of F' generated by a prime element IT € K such
that 11> = —7. Let 7 € Gal(F’/F) be the Frobenius automorphism. Let

OD = OF/ [H}7
such that the following relations hold:
Hu=7(uwld, I?=-7, wu€cOp.

Then Op is the maximal order in the quaternion division algebra over F'.
We have O = Op[II] C Op. We consider on Op the involution:

d=u+vll+—d =u—Tv, u,ve€Op. (5.1.6)
It is trivial on O/ and induces the conjugation of Ok over Op.
Proposition 5.1.3. Let k be an algebraically closed field of characteristic p which is endowed

with an algebra structure Op — k. Let X be a special formal Op-module over k. Let (M, F,V)
be the Wo . (k)-Dieudonné module of X. Then there exists a principal relative polarization

i Mx M — Wo,(k),
on X such that
P(u(d)zr, v2) = (w1, 1 (d)z2). (5.1.7)
Any other polarization with the property is of the form ui, with u € OFp.

Proof. We take ¢ as in Proposition Then we consider the alternating bilinear form

Y1z, y) =Pz, ((My), z,y € M.
Then 1, is by the uniqueness part of Proposition of the form

wl(xay) = w(L(C)xa y)7 ceE OF/'

If we apply the last equations to 729 (x,y) = ¥ (¢(I1)z, ¢(I1)y), we obtain c¢7(c) = 72. Therefore ¢
is divisible by 7. We write ¢ = ar for some unit a € Ops with ar(a) = 1. We write a = ur(u)~!
by Hilbert 90 and consider the form

Pa(z,y) = P(u(u)z,y).
Then we have
P2 (I, ((INy) = ¢ ((u)e()z, ((INy) = ((M)e(7(u))z, ((IN)y) =
= ¥(u(c)u(r(u)z,y) = P(uru)z, y) = ma(x, y).
Therefore ¥ satisfies the requirements . The uniqueness assertion is proved as before. [

Definition 5.1.4. With the notation of Proposition [5.1.3] we call ¢ a Drinfeld polarization on
the special formal Op-module X over k.

Proposition 5.1.5. Let X be a special formal Op-module over Kp. Let R be a O p-algebra such
that p is nilpotent in R. Let (X,1) be a special formal Op-module over R such that there exists
a quasi-isogeny of formal Op-modules

X®zp R/TR — X ®r R/7R. (5.1.8)

Then there is a principal relative polarization v on X which induces on Op the involution
d — d' and which is up to a factor in F* compatible with a Drinfeld polarization on X by the
quasi-isogeny ,

Assume that R is noetherian and that Spec R is connected. Then any other relative polariza-
tion on X which induces the involution d — d’ is of the form fi for some f € Op.

Proof. We recall some generalities from [9] which are formulated there for Cartier modules.
We fix an embedding Opr — Op. From this we obtain homomorphisms Ops — R and
A:Opr — Wo,(Op) — Wo,(R). Let X be the composite with the conjugation of F’/F.
Let P be the Wo,, (R)-display of X. The action of Op on P is also denoted by ¢. We have
the decompositions
P=PFPeP, Q=0QdQ: (5.1.9)
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such that for a € Op C Op the action of 1(a) on Py is multiplication by A(a) and the action
on Pj is multiplication by A(a) and Q; = Q N P;. We regard (5.1.9)) as a Z/2Z-grading. Then
F.II, F' are all homogenous of degree 1,

F: P —>Pi+17 II: P _)Pi+17 F:Qi—>.PZ'+1. (5110)

To show the existence of ¥, we begin with the case where R is reduced and Spec R is connected.
We remark that the set invariants of F': Wo,.(R) — Wo,(R) is O C Wo,.(R).

We assume that there exists a critical index i for X. We may suppose that i = 0, i.e., the
homomorphism

HIP()/QO —)Pl/Ql

is zero. We consider the composite ® : Py i> Q1 i> Py. We claim that ® is a Frobenius
linear isomorphism. It is enough to show that det ® € Wy, (R) is a unit. By base change we
may assume that R = k is a perfect field. Since ¢ = 0 is critical we find [IFy C Q1 = V F,.
Since Py /V Py and Py /TIP, are k-vector spaces of dimension 1 we obtain I1Py = V Py. Therefore
VI = ® is bijective and therefore a Frobenius linear isomorphism.

For each n € N we consider the functor on the category of R-algebras,

Uo(n) : S — (Po ®w,,.(r) Worn(9))?, (5.1.11)

where the RHS denotes invariants of the Frobenius-linearly extended ®. This functor is rep-
resentable by a scheme which is finite and étale over Spec R. Moreover the existence of the
quasi-isogeny (5.1.8]) implies that this scheme is constant. The sheaf is therefore with
its natural Op-module structure isomorphic to the constant Op-module (Or/7"OF)?. We set
Uy = projlim Up(n) and obtain an isomorphism functorial in R-algebras S,

WOF(S) ®WoF(R) Py = WOF(S) RO Uo.

We choose a perfect alternating pairing o : Uy X Uy — Op and extend it by base change to a
perfect bilinear pairing

’L/)O : Po X Po — WOF(R)
We extend this bilinear form to a form
Y:(PRQ)x (PeQ) — Wo.(R)®Q,

as follows. We note that 7 € Wy, (R) ® Q is a unit. Therefore we may define a bilinear
alternating form on the Wy, (R) ® Q-module P; ® Q by the equation

1
V1 (21, 2) = ;T/J()(Hwhﬂxll)a z1,z) € P ®Q.

We define ¥ on P ® Q as the orthogonal sum of ¥ and ;. Clearly 1 induces on Op the
involution d — d’. We show the equation

. 1 :
Y(Fz, Fz') = = Pz, 2') = Fo(z,2)), =z, e PeQ. (5.1.12)
™
Since g is the linear extension of «, we find the equation
1/)0(FH.’E0,FH(E6) = Fwo(xo,x()), 1'0,1'6 S Po.

We note that F extends to an endomorphism of P ® Q. This extension commutes with the
action of the field F'. From the definition of 1, we obtain

mip1 (Fxo, Fal) = o(IlFzo, IIFz)) = Tz, 2p), x0,2) € Py ® Q.
If we take xq, z(, € Qo we have Yo (o, x() € o, (R) because Qo/Io, (R)Py has rank 1 and )y is

alternating. We deduce

1 (Fao, Fap) = = Fapo(wo, 2f) = Fipo(wo, 2)) € Wo,.(R), @0, ) € Qo.

3| -

This equation shows that 1 induces a pairing

1/)1 IPl X P1 — WOF(R)
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This pairing is perfect. Indeed, for the verification we may assume that R is a perfect field.
Then we already have a perfect pairing by Proposition [5.1.3] which agrees with the form v here
up to a unit constant.

To complete the verification of , we need to show that

Yo(Fay, Fah) = Ty (21, 2)), 21,2) € Q1.
We may verify this in P ® Q. We may assume that x; = lxzg, 2§ = IIz{. Then we find
1

bo(Fzy, Falh) = vo(Fllg, FTlzg) = Foo(wo, 25) = ) Fpo (Mary, Ty )

1 .
= Fopr(zr,2h) = For(21,2)),

as desired.
We now drop the assumption that R is reduced but we continue to assume that the map

HIP()/QO —>P1/Q1 (5113)

is zero. It suffices to show that, if R — R is a pd-thickening, then a polarization ¢ on P lifts
to P’. Here P and P’ are the displays of Xr and Xg. We apply the Grothendieck-Messing
lifting theorem for displays [I], cf. the end of subsection Hence it suffices to see that
Q'/I(R')P’ is totally isotropic for the pairing on P'/I(R')P' x P'/I(R')P’ induced by 1. But
Q'/I(R)P' = (Q'/I(R)P' )& (Q'/I(R')P'); as an orthogonal direct sum, and both summands
are free of rank one over R’, locally on Spec R’, whence the assertion.

For a general O 3-algebra R such that p is nilpotent in R we consider the closed subscheme
Spec R/ap which represents the property that is zero. In the same way Spec R/a; is
defined from the map I1: P;/Q1 — Py/Qo. We consider the exact sequence

0— R/(apNa;) — R/ag x R/ay — R/(agp +a;) — 0.

Since we know the existence of ¢ for R/ag and R/ay, a gluing argument shows the existence of v
for R/(agNay). Over a field one of the indices 0 or 1 is critical. This implies the V(ag) UV (a1) =
Spec R, i.e. the ideal ag N a; is nilpotent. We can as above apply the Grothendieck-Messing
criterion to R — R/(ag N a1) to obtain the existence of ¢ for R.

For the last assertion we may assume by rigidity that R is an algebraically closed field. Let
1’ be a second polarization. We may assume that the index 0 is critical. Then ¢’ induces
by restriction an alternating pairing Uy x Uy — Op. This differs from « above by a factor
f€O0p. O

With the notation of the last Proposition we may regard 1 as an isomorphism X — XV, cf.
(3:422). By duality O acts on XV. If we compose this with the isomorphism Op — OPP
defined by the involution 7 we obtain an action of Op on X V. This gives a special formal
Op-module which we denote by X2. The polarization ¥ may be regarded as an isomorphism
of special formal Op-modules

A X — XA, (5.1.14)

Corollary 5.1.6. Let yx be a Drinfeld polarization on X. Let
p: X®zp R/TR— X ®r R/TR

be a quasi-isogeny of height 0. Then the relative quasi-polarization ¢ on X ®g R/mR induced by
Px s a relative principal polarization that lifts to a relative polarization ¢ on X.

Proof. We take a perfect relative polarization ¢ on X which exists by Proposition Then
the polarization induced from g must be of the form f1 for some f € F*. Since p is of height
0, we conclude the f is a unit. Therefore the induced involution is perfect. O

Let us recall the Drinfeld moduli functor Mp, on the category of schemes S over Spf O . We
will use the notation S = S ®gp¢ 0, Speckr. We fix a special formal Op-module (Y, vy) over the
O j-algebra Rp. We call Y a framing object. By [9] there is a quasi-isogeny of height 0 between
any two choices. For a scheme S — Spf O, a point of Mp,(S) consists of the following data
up to isomorphism:

(1) A special formal Op-module (Y,¢) over S.
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(2) A quasi-isogeny of Op-modules of height 0
p:Y xs S —Y Xspecrp S (5.1.15)

The functor is representable by the p-adic formal O z-scheme 0 F Xsptop Spf Op.
We define the functor Mp, (i) by replacing in (2) height 0 by the condition heighty, p = 2i.
We set
Mp, = [ Mp:(i).
i€z
Let (Y,:) be a special formal Op-module. Let u € D*. Then we define a new special formal
Op-module (Y, ") by setting

Y=Y, “d)=(u"tdu), fordec Op.

The multiplication ¢(u) : (Y%, ") — (Y, ¢) is a quasi-isogeny of special formal Op-modules. We
obtain for each ¢ € Z an isomorphism of functors

u: Mp,(i) = Mp,(i +ordpu), (Y,p)— (Y ty(u)p"), (5.1.16)

This defines an action of D* on Mp,. If u € 0§, the multiplication by ¢(u) defines an isomor-
phism ¢(u) : (Y*, vy (u)p®) — (Y, p). Therefore the action of D* factors through ordp : D* — Z.
We will call this action the translation.

We endow Mp, with a Weil descent datum relative to O;/OF. Let 7 € Gal(I:“/F) be the
Frobenius automorphism. Let € : O — R be an algebra in Nilpop. We denote by R, the
ring R with the new O z-algebra structure € o 7. The Frobenius 7 induces 7 : kp — kp. We
have the Frobenius morphism

Fy;:Y— 7Y (5.1.17)
For a rp-algebra ¢ : kp — R, we set ¢(r) = P’ for r € R. This defines a kp-algebra
homomorphism R — R|;. If we apply the functor Y we obtain (5.1.17). We will define a

morphism

Wy, : Mpu(i)(R) — Mpy(i + 1)(Rp)- (5.1.18)
Let (Y, p) € Mp,(i)(R). We define p’ as the composite
«Fy -

£
Yeoo rr — €Y =5 £,7.Y.
F

The image of (Y, p) under (5.1.18)) is by definition (Y, p’). Since height,, Fy . = 2, we obtain
p-1.18

that heighty . p" = 2i + 2. From (5.1.18) we obtain a Weil descent datum

Wp, : Mpr(R) — MDT(R[T]) (5.1.19)
on the functor Mp, (compare [27]). We introduce the notation
M) = Mpy Xspt 0,5, 5pi - SPE O (5.1.20)
Then we have ./\;lgr)(R) = MDr(R[T]). We write in the form
Wy, : Mpr — M. (5.1.21)

The translation IT : Mp,(i) = Mp,(i + 1) is an isomorphism. We use it to identify these
functors. By Drinfeld’s theorem we obtain an isomorphism

MDr = (QF XSpf Op SpfOI}) X 7. (5.1.22)
We denote by w, the action of 7 via the second factor on QF Xsptop SPEOp.

Proposition 5.1.7. The Weil descent datum wa,,, induces on the right hand side of
the Weil descent datum

Wanp, : (1) — (wr(§),1+1). (5.1.23)
The translation functor is on the right hand side (§,1) — (£,1+ 1).
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Proof. Let (Y, p) € Mp,(R). Composing way,, with the translation we obtain a Weil-descent
datum on Mp,,

(o7 MDr(R) — MDr(RT).
It associates to (Y, p) the point (YH_l,,ol)7 where p; is the composite

Fy

o1 P m-1 €« (Hfl)
YR@oFF@F —> Y —

e YT e Y. (5.1.24)

Our assertion says that Drinfeld’s morphism Mp, — Q r fits into a commutative diagram

MDr(R) - MDI‘(R[T])

~ 7

Qr(R)

This is stated as an exercise in the proof of [27, Prop. 3.77], but we give the verification. We

have to go back to Drinfeld’s proof and therefore we use his notation. A point of 0 r(R) is given
by data (n,T,u,r) ([9], §2, Thm.). Drinfeld constructs the data (n, T, u) entirely from a graded
Cartier module M = @M;. The Cartier modules M and M[l;[{1 are the same and the gradings
are also the same because M ~— M ' shifts the grading by 1 and M ~ M shifts the grading
by 1 in the opposite direction. Finally, we have to see that the rigidification r is not changed
by the application of as. This can be checked on the geometric points of Spec R. But over an
algebraically closed field L, the rigidification is obtained as follows. We take the morphism of
rational Dieudonné modules

N — N
induced by (5.1.15) for S = S = Spec L. Then r is obtained by taking the invariants by V ~1II
on both sides. We see from the definition (5.1.24) that a5 does not change 7. O

Let Aut? (Y) be the group of quasi-isogenies of Y which commute with the action of vy. With
the notation of ((5.1.9)), let N = Ny @ N1 = P ® Q be the rational Dieudonné module of Y. The

natural map
Aut% (Y) = GLp(NY 1) = GLy(F)
is an isomorphism. This group acts on the functor Mp, as follows. For ¢ € Auth (Y) we define
g : Mpy(i) = Mpy(i + orddet g), (Y, p) — (Y, gp).
The action commutes with the translation. Let Jp, be the cokernel

Z — AwL(Y)xZ — Jpr—0.
i — (7, —2i)

The second group acts on Mo, such that the factor Z acts by translation. We obtain an action
of Jpy on Mp,. We introduce the groups J*" and J*"" as cokernels
F* = Ay (Y)x KX — JT =0,
[ (f, f7h)
F* = Awh(Y) x (F)* — J" —=0.
fo— (f:f7h

(5.1.25)

The homomorphisms ordg : K* — Z, resp. 2ordg : (F')* — Z, induce homomorphisms
J*T — Jpy, resp. J* — Jp,. Therefore these groups act on Mp,.
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5.2. The alternative theorem in the ramified case. Let K be a ramified quadratic extension
of F'. We also assume that p # 2. We choose prime elements Il € Og and m € Op such that
II? = —7 as in section With the notation before Proposition we regard Ok as the
subring of Op.

For each i € Z we define the functor V(i) = Nk,p,(i) on the category of schemes S —
Spf Op. We fix a special formal Op-module Y over Kr and we fix a Drinfeld polarization t)y.
We denote by Ay : Y — Y2 the isomorphism associated to vy, cf. . We will consider
p-divisible groups X on S with an action ¢ : O — End X such that the restriction of this
action to Op is strict. By duality we obtain an action of Ok on the Faltings dual XV. If we
compose this action with the conjugation of K/F we obtain (2 : Ox — End XV. We write
XA = (XV,1”) and call this the Faltings conjugate dual of (X, ).

Definition 5.2.1. A point of N (i)(S) consists of the following data:
(1) A formal p-divisible group X over S with an action

t:0g — End X,

such that the restriction of ¢ to O is a strict action.

(2) An isomorphism of Ox-modules X : X — X which induces a relative polarization on X,
cf. Corollary

(3) A quasi-isogeny of Ok-modules

p:X x5S —Y Xspecrr S-
We require that the following conditions are satisfied.

a) p respects the Og-actions. There is an element u € O such that the following diagram of
quasi-isogenies is commutative

X x5 8 —L5Y Xspecry S (5.2.1)

u‘n'i)\l l)\w

XA XS S"ﬁYA xSpeCRF S
P
b)
Tr(.(IT) | Lie X) = 0. (5.2.2)
Two such data (X71,:1,A1,p1) and (Xa, 12, A2, p2) define the same point of A (7)(S) iff there is
an isomorphism « : (X1,t1) — (X2, t2) which respects the polarizations up to a factor in O
and such that o commutes with p; and ps.

We note that changing A by a factor in O does not alter the points of N'(S). The existence
of p implies that dim X = 2 and that the Op-height of X is 4. The condition b) implies the
following Kottwitz condition for the characteristic polynomial,

char(c(a) | LieX) = (T —a)(T —a), a€ Ok. (5.2.3)

Clearly the functor N (i) does not depend on the choice of the Drinfeld polarization Ay.

It follows from [27] that A/(7) is representable by a formal scheme which is locally formally of
finite type over Spf O .

Let S = SpecR, R € Nilpoﬁ. Let Px be the Wo,.(R)-display associated to the p-divisible
group X. The conjugate dual Wo,. (R)-display 73)% is nilpotent. It corresponds to X2. We
denote by ¥ : Px X Px — P w,, (r) the bilinear form of displays which corresponds to A.
We may reformulate the commutativity of the diagram as follows: the quasi-polarization
p*1by coincides with ¢ -g of (Px)g/=r up to a factor in OF.

We obtain from that

4i = 2 heightg . p.

As for the functors Mp, (i) we have functor isomorphisms

NG <5 NG +1), (X, p) — (X, u(IT)p), (5.2.4)
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which we call the translations. Let 7 € Gal(ﬁ’ /F) be the Frobenius automorphism. Using the
Frobenius Fy » : Y — 7Y we define

exactly as wayp, in (5.1.18). This defines a Weil descent datum wys relative to O;/Op on the

functor .
N =T[NG).
i€z
Lemma 5.2.2. The action of the group J** from on the Ok -module Y gives an iso-
morphism
T T
where
J ={a € Auti (Y) | ¥y (a(2), a(y)) = pla)y(z,y), for some p(a) € F*, z,y € Py ® Q}.

O
The group J* acts on the functor A by
(Y,e,p) — (Y,t,gp), forge J™.
We have a natural morphism of functors on Nilpoi
Moy (i) — N(3). (5.2.6)

This is defined as follows. Let (Y, ¢, p) € Mp,(7)(S) be a point. Let ¢ be a Drinfeld polarization
on Y which is compatible with the quasi-isogeny p, cf. Proposition It is uniquely deter-
mined up to a factor in Of. Locally on S we have p*iypy = fi) for f € F. Since heighty . p = 2i
we obtain ord, f = i. Therefore (Y, 0, ,v,p) € N(i)(S).

The main result of [I7] may now be formulated as follows. Note that in loc. cit. Weil descent
data were not considered.

Theorem 5.2.3 ([I7]). Assume that p # 2. The functor morphisms define a functor
isomorphism

Mp, N
which commutes with the Weil descent data and the action of the group J = J** on both sides.
In particular it commutes with the translations.

It is clear that the morphism of functors MDr — N , is compatible with the Weil descent
data waq,, and wpr relative to O /OF and with the translations (5.1.16) and (5.2.4)). From this
we see that it commutes also with the actions of J*". We need to prove that it is an isomorphism.
For the proof we need some preparations.

Let k be an algebraically closed field which is an Op-algebra. We consider a Wo, (k)-
Dieudonné module M of height 4 and dimension 2. We assume that an Og-action ¢ : O —>
End M on M is given such that the restriction to O is via O — Wo,. (k).

Let

b M x M — Wo, (k) (5.2.7)
be a relative polarization, i.e., an alternating Wo,. (k)-bilinear form such that

Y(Fxy, Fag) =7 F’(/J(Il,l‘g).
We require that
¢(L(a)1’;y) = 1/’(1177 L(C_L)y), ac OK

Proposition 5.2.4. Let M be the Wo,.(k)-Dieudonné module of a special formal Op-module
with a Drinfeld polarization vy, cf. Definition . Let (M, t,%) be as above and such that ¢
is perfect. We assume that there exists an isomorphism of rational Wo . (k)-Dieudonné modules
pM®Q — M®Q, such that p is a homomorphism of Ok -modules and such that p respects
the polarizations Yy and ¥ up to a factor in F*.

Then there exists a unique Op-module structure on M such that M becomes the Dieudonné
module of a special formal Op-module and such that p is a quasi-isogeny of Op-modules.
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Proof. We will write az := i(a)z, for a € O and z € M. For a € O this coincides by definition
with the action via Op — Wo,. (k).

We define W = Og ®0, Wo, (k). We extend the conjugation of K over F by linearity to
W over Wo,.(k). We denote the traces of K/F and of W/Wo,.(k) both by Tr. The Frobenius
endomorphism of Wy . (k) extends Ok-linearly to W and is denoted by F. It will be impossible
to confuse this with the field F.

We define a hermitian form

h:MxM-— W,

by requiring that
Trell Yh(z,y) = (z,&y) E€W, z,y € M.
Then h is W-linear in the second variable and hermitian,
h(z,y) = h(y, ).
The pairing h is perfect and satisfies the equation
h(Fz,Fy) = "h(z,y).
Since N := M ® Q is the rational Dieudonné module of a special formal Op-module with its
Drinfeld polarization, we have a decomposition
N =No® Ny, (5.2.8)

which is orthogonal with respect to v (see ) One should note that Ny and N; are not

W-modules.
We note that for ng,n{, € Ny, n1,n} € N1 we have

h(ng,ny) = %Hw(no,ng), h(ny,n}) = %Hw(nl,n’l), (5.2.9)
h(no,nl) = %’l/}(n(),ﬂnl). o

Indeed, the equation
I

Tr ﬁh(no, ngy) = ¥(ng, ng) =0

implies that II71h(ng,n}) € Wo, (k) ® Q. We obtain the first equation of (5.2.9):
21 ' h(ng, ngy) = TrIT~h(ng, ) = (ng, ny).

The proof of the next equation is the same. We have

Tr I h(ng, n1) = ¥(ng,ny) = 0.
This implies h(ng,n1) € Wo,. (k) ® Q. We obtain the last equation of (5.2.9):

2h(ng,n1) = Trh(ng,n1) = ¢ (no, IIny).

In particular we see from (5.2.9) that an element ng € Ny is isotropic for h.

We call an element « € M primitive if it is not in ITM. We find an element € M N Ny such
that © ¢ 7M. Assume that = Iy for some y € M. Then y € M N N;. Then it is clear that y
is a primitive element in M. Interchanging the role of the indices 0 and 1, we may assume that
x € M N Ny is primitive.

Since the pairing h is perfect and z is isotropic for h, we find an element y’ € M, such that

h(z,y’) = 1. We can even choose y’ to be isotropic for h. Indeed, we set y = 3’ + Az for some
A € W. Then h(x,y) = 1. We compute:

h(y.y) = h(y,y') + h(y', \z) + h(Az,y') = h(y',y') + A + .

We choose A = —(1/2)h(y’,y’) (which is legitimate, as p # 2) and obtain h(y,y) = 0. According
to (5.2.8]) we write

Y =% +y1, Yo € No, y1 € N1.

We write
1= h/(:]f,y) = h($7y0) + h(xayl)'
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We have h(z,yo) € IWo, (k) ® Q and h(z,y1) € Wo, (k) ® Q by the formulas (5.2.9). This
implies h(z,y0) = 0 and h(x,y;) = 1. On the other hand, we find by (5.2.8)

0= h(y,y) = h(yo + y1,90 + y1) = h(yo, y1) + h(y1, yo)-
Since h(yo, y1) € Wo, (k) ® Q, this implies h(yo,y1) = 0 and then h(y,yo) = 0. The elements x

and y generate N as a W ® Q-vector space. Because we already proved that h(z,yo) = 0, we
conclude yg = 0. Therefore y = y; € M N N;. We obtain

M:W:v+Wy,

because h is unimodular on the right hand side. Then the elements z, Iz, y, [Iy are a basis of
the Wo .. (k)-module M. We have z,Ily € M N Ny and y, Iz € M N N; and therefore

M= (MnNNy) @ (Mn Ny).

This shows that the Op-module structure on N induces an Op-module structure on M. [l
Proof of Theorem[5.2.3 We consider the morphism (5.2.6) for i = 0 and denote it by
Mp, — N. (5.2.10)

Clearly it is enough to show that this is an isomorphism. Proposition shows that for
any algebraically closed field k& which is an O z-algebra, the induced map Mp,(k) — N (k) is
bijective.

We note that the morphism is formally unramified. Indeed, let S — R be a surjective
morphism in NilpOF with nilpotent kernel. Let X be a p-divisible group over S with base change
Xpg over R. Then an Op-module structure on Xp lifts by rigidity in at most one way to X.
We consider the underlying topological spaces in with their induced structure of reduced
schemes. Then we obtain a formally unramified morphism of K g-schemes

MDr,red — -/\[red (5211)

These schemes are locally of finite type over Krp and have irreducible components which are
proper over kg, cf. [27, Prop. 2.32]. Moreover, the morphism is bijective on geometric points.
Then the irreducible components of both schemes correspond bijectively to each other. We
consider a point x € Mp,(Fkp). Let X be the union of all irreducible components which pass
through x with the reduced scheme structure. Let y € N (k) be the image of z and define
Y C N in the same way as X. Then X — Y is a finite morphism. If we remove all points
in X resp. Y which belong to components not passing through x, resp. y, we obtain a finite
morphism of open neighbourhoods U — V of 2 € Mpy yea and y € Nyeq. Therefore is
a finite morphism of schemes locally of finite type over the algebraically closed field K. Since
this morphism is unramified and bijective on geometric points, it is an isomorphism.

Lemma 5.2.5. Let S — Rp be a surjective morphism in Nilpop such that the kernel is nilpotent
and endowed with divided powers. Then the map

Mp,(S) — N(S)
is bijective.

Let us assume that the lemma is proved. Then we consider points z and y as above. We
consider an open affine neighbourhood U of z. By the isomorphism ([5.2.11)) we regard U also
as a neighbourhood of y. Let n € N. For a suitable ideal sheaf of definition J of N, we have a
homomorphism

(ON/TNU) — Opty, (U) /7" O pts, (U).
This map is surjective modulo 7 by (5.2.11]) and is therefore surjective. We note that by EGAOy,
Prop. 7.2.4 the ring (On/J)(U) is w-adic. It follows that
On(U) — Omp, (U)
is surjective. Taking the inductive limit over U we obtain an epimorphism of local rings
Oy — Oy (5.2.12)

By [27, Thm. 2.16] this is a homomorphism of noetherian adic rings (comp. EGA I, Prop. 10.1.6).
The ring O, is, as a local ring of the scheme Mp,, regular of dimension 2. Let m, and m, be
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the maximal ideals of the local rings. We remark that the squares of the ideals are open because
the topologies are adic.

We apply Lemma to S = Oy/m2. Then we obtain an oblique arrow which makes the
following diagram commutative,

Oy — O,

|~

Oy/m2.

It follows that there is a surjective homomorphism m, /m? — m,/ mg. The epimorphism of
local rings also gives a surjection in the other direction. We conclude

. 2
dimg, m, /m; = 2.

Therefore O, is a regular local ring of dimension 2, and the map ([5.2.12) is an isomorphism. It
follows that the map of sheaves

ON — OMDK-

is an isomorphism. Finally let J be the maximal ideal sheaf of definition of Ox. By the
isomorphism (5.2.12]) we obtain an isomorphism

0,/J0, — O, /70,

Therefore JO, = m0,. Therefore J = 7O, is an ideal sheaf of definition. We obtain that
(5.2.10) is an isomorphism of formal schemes.

It remains to prove Lemmal[5.2.5] We denote by m the kernel of S — &p. Let £ : Spec S —
N be a morphism. We show that it lifts uniquely to Spec S — Mp,. We denote by y € N'(kr)
the point induced by &. Let @ € Mp,(Rr) be the unique point over y.

We denote by P the Op-display of the special formal O p-module over kg which corresponds to
x. We denote by P the unique Wo . (S/%)-display which lifts P, cf. Theorem We write
P= (]5, Q.F, F) The Op-action on P extends to P. Therefore we have the decompositions

P=Pa&P, Q=QoQ1.
We consider only the most interesting case where II acts trivially on LieP, i.e., Speckp —
Mp, is a singular point of the special fibre, cf. [9]. In this case we obtain Frobenius-linear
isomorphisms
FOH:ﬁ0%Q1—>p07 FOH:P1—>Q0—>p1.

We set U; = {x € P; | F oIl(z) = x}. Then the canonical morphism Wo,.(S) ®0, U; — P; is
an isomorphism.

We can make the same construction with the display P. Then we obtain U; C P; such that

the canonical Op-module homomorphism U; — U; is an isomorphism. Using our knowledge
about P we find elements e; € U;, for ¢+ = 0,1 such that

o, 11é, € Py, é1,1éy € Py,

are a basis of the Wo,.(S)-module P. The natural polarization ¢ on P extends to a polarization
1 on P which is given by the conditions

¥(éo, ITe1) = 1 = o(é1,11éy),
and such that the decomposition P = Py & P, is orthogonal with respect to 1.

We classify now the liftings of Specir — N to a point SpecS — AN. We consider the
Hodge filtration L = Q/Io, (k)P C P/Iop, (k)P. Since we compute now all the time modulo the
augmentation ideal Io, (k) C Wo, (k), resp., Io,(S) C W, (S), we continue to simply write
€o when we mean the residue class in IS/I(S)P The k-vector space L has the basis Ileg, Ile;.
Therefore a lifting of L to a direct summand L C P/I(S)P has a unique basis of the form

fo=1le1 +~vég + de1, f1 = Iléy + aey + Beé,
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because it is complementary to the module generated by €o, €1. Since we want a lifting of L we
have a, 3,7,6 € m. The lifting L determines a lifting of the display to S. The form ¢ lifts to a
polarization of this display if and only if L is isotropic under ¥. Therefore we must have

0= w(Héo + aég + Bé1, Ile; + vég + (561)
One obtains easily that the right hand side is
O(I1Eg, 061) + (o, I1E1) = —0 + a.

Since the lifting L should define a point of A, the condition 2) in the definition of points of N
implies
0=Tr(Il | P/L) = a +4.

Because p # 2 we obtain o = ¢ = 0. This implies that L = (LNPy)@(LNP;). This shows that the
display over S defined by L is the display of a special formal Op-module. Therefore the liftings
of Speckp — N to N(S) correspond via (5.2.6) bijectively to the liftings of Spec kg — Mp,
to a point of M(S). This proves Lemma d Theorem [5.2.3]

O

The properties of Drinfeld’s moduli scheme Mp, imply the following corollary, cf., e.g., [4].

Corollary 5.2.6. The formal scheme N is m-adic and has semi-stable reduction. The special
ﬁber/\f@oﬁ Kr of N is a reduced scheme. O

Finally we prove the uniqueness of the framing object, cf. (i) of subsection We begin
with this question in the category 09%%01, cf. Definition [4.4.10

Proposition 5.2.7. Let r be special and let K/F be ramified. Let k € Nilpy, be an alge-
braically closed field. Let (Pe.1,te,1,8c,1) and (Pe2,te2, Be2) be two objects in DSRZOI. Assume
that inv(Pe i, i, Be,i)) = —1 for i = 1,2. Then there exists a quasi-isogeny o : Pe1 — Poa
which respects tc; and Bc;.

If the forms B.; are perfect, then the actions i.; extend to actions iy ; : Op — Endo, Pc;
such that P.; becomes a special formal Op-module with Drinfeld polarization §; and such that
«a becomes a homomorphism of Op-modules.

For the proof we need some preparations.

Lemma 5.2.8. Let K/F,r,k as in the last Proposition and let (P, te, Bc) € 09‘1201. Assume that
inv(Pe, te, Be) = —1, ¢f. Definition m Then the Wo,. (k)-display P is isoclinic of slope 1/2.

Proof. The K ®0, Wo,(k)-vector space N = P, ® Q has dimension 2. The isoclinic decomposi-
tion of the Wo,.(k)-isocrystal N is invariant under the action of Ox and has therefore at most
two summands. We have to show that there is only one summand. If not, we have N = Ny @ Ny,
where Nj is étale and Ny is dual to Ny. The dimension of each N; as a K ®¢, Wo, (k)-vector
space is one. Therefore we find a generator eg € Ny such the Veeg = eg. We use the notation
of before Definition Let e; € Ny be the generator such that s.(eg,e1) = 1. Let 7 be the
Frobenius acting via the second factor on K ®o, Wo, (k). From the equation

-1
se(Veeo, Veer) = maee(eo,e1)” =,

we conclude that Vie; = we;. Therefore Vi(eg A e1) = meg A eq. This implies that the invariant
of (P, te, Be) is 1, which contradicts the assumption (P, tc, 8c) = —1. O

Let (Pe, tc) € 0Ny be isoclinic of slope 1/2. Then there is an Wp . (k)-lattice A C P.®Q which
is invariant by 771V.2. Then there is also a lattice invariant by the ”square root” II"1V.. One
deduces that the invariants C' of II"'V, acting on P. ® Q form a K-vector space of dimension 2
and

P.®Q=C®o0, Wo,(k). (5.2.13)

The anti-hermitian form s¢. associated to 5. by induces the anti-hermitian form on the
K-vector space C

#.:CxC — K. (5.2.14)
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Indeed, for z,y € C we find

P ().

This shows that s (z,y) € K ®0, Wo, (k) is invariant by the Frobenius F acting on Wo,, (k),
and therefore this element is in K. The same argument shows that S.(z,y) € F. The form
restricted to C' is obtained from the restriction of . to C' by the formula

7T”c(xa y) = %c(Hxany) = %C(‘/:D'Tv ‘/;y) =7

TrK/F(a%c(xvy)) = 6C(a1’,y), z,y€C, a€K.

Lemma 5.2.9. Let (Pec1,tc1,Be1) and (Pea,te2, Be2) be objects of 0%201 such that P.1 and
Pe.2 are isoclinic of slope 1/2. Then the canonical map

Hom ((Pe,1; te,1 Best)s (Pey2s te,2, Be2)) ® Q — Hompg ((Ct, Be,1), (Ca, Bey2))

is an isomorphism.

Proof. This is an immediate consequence of the isomorphism (|5.2.13]) because the K-action, S,
and V, on P, ® Q can be recovered from the right hand side of the isomorphism. The map V is
induced from II @ F~! on the right hand side. ([l

Lemma 5.2.10. There is the following relation between the invariants defined in Definition

and in Definition |8.1.1
inv(Pe, ¢, Be) = —inv(C, Be). (5.2.15)
We remark here that (C, 8.) determines (Pe, ¢, Sc) up to isogeny.

Proof. Let x1, x5 be a basis of the K-vector space C. Then the right hand side of (5.2.15|) is
given by the 2 x 2-determinant

det(sec(zi, z4)).
By definition of C' we have V.z; = Ilz;. We conclude that V.(xq A xz3) = —m(z1 A x2) in A%C.
From Lemma we obtain that the determinant above gives —inv(Pg, ¢, f¢). O

Lemma 5.2.11. Let (Psp, Lsp) the Wo,. (k)-display of a special formal Op-module. We denote
by ¥ a Drinfeld polarisation. Let 1, be the restriction of isp, to Ox C Op. Then (Pgp, 1, %) €

DEREOI, and

inv(PSp,L;p,w) = —1.
Proof. We write M = P,, and consider it as a Wo,. (k)-Dieudonné module. Let N = M ® Q.
Then v is a relative polarization that satisfies (5.1.2). By the decomposition (5.1.3)) (or (5.1.9))

we obtain a decomposition

N = Ny & Ny,
which is orthogonal with respect to ¥. As in the proof of Lemma [5.2.9] we consider the in-
variants Cgp, = N VL Because VI is homogenous of degree zero, the decomposition of NV

induces Csp, = Cy ® Cy. Each C; is a F-vector space of dimension 2. The restriction of ¢ is a
nondegenerate alternating pairing

Y :Cop X Cp — F

Let 5 : Cy, x Cyp, — K be the anti-hermitian form associated to 1 as before Lemmal[5.2.9] We
choose a basis e, fo of the F-vector space Cy such that ¥ (eg, fo) = 2. We claim that

x(eo, €0) = #(fo, fo) =0, (eq, fo) = 1. (5.2.16)
Indeed, we write s(eg,e9) = a + IIb, a,b € F. By definition of » we find
TI‘K/F(%(G(), 60)) = 11)(60, 60) = 0, TI‘K/F(H%(C(), 60)) = 1/)(]._[60, 60) = 0.

The last equation follows because Cy and C; are orthogonal. This implies a = b = 0. Clearly it
is enough to verify the last equation of (5.2.16]). Again we write s(eq, fo) = a + IIb, a,b € F.
Then we find

Trg/r(5(eo, fo)) = ¥(eo, fo) =2, Trg/r(ls(eo, fo)) = ¥ (Ileo, fo) = 0,
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and therefore a = 1 and b = 0. Since ey, fo is a basis of the K-vector space Csp,, the determinant

x(eg,e0) (e, fo) \ _
det( #(fo,e0) 2(fo, fo) ) -

gives the invariant 1 = inv(Csp, ) = —inv(Psp, 14y, ¢) by the last Lemma. O

Proof. (of Proposition By Lemma we know that P, is isoclinic of slope 1/2 for
i = 1,2. Therefore Lemma [5.2.9] is applicable. By Lemma the associated K-vector
spaces (Cj, B, ;) have the same invariant 1 and are therefore isomorphic. Therefore we find the
quasi-isogeny « by Lemma |5.2.9

We use the notations of Lemma [5.2.11] By what we just proved we find a quasi-isogeny
(Psps tép> ) — (Pejiste,1,Be1). If Beq is perfect, this quasi-isogeny extends by Proposition
to a quasi-isogeny of special formal Op-modules and so does o. O

We can now prove the uniqueness of the framing object.

Proposition 5.2.12. Let r be special and K/F ramified. Let k be an algebraically closed field
in Nilpg . Let (P,¢,B) € B ! be an object such that B is perfect, cf. Deﬁmtwn . Assume
that inv" (P, ¢, B) = —1. Then 77 is isoclinic of slope 1/2.

If moreover (P1, i1, 81) is a second triple with the same properties, then there is a quasi-isogeny
of height zero

p: (Pa [/76) — (Plal/laﬂl)7
such that there is an f € OF with

Bi(p(x), p(y)) = B(fx,y), =,y€P.

Proof. We apply the functor @f’(,;l to (P, ¢, B) and obtain (P, tc, Be), cf. 1 4 14)). By the definition
of this functor (. is perfect. We conclude from Proposition - that inv(Pe, te, Bc) = —1. By

Lemma P, is isoclinic of slope (1/2). By Corollary [4.3.3| and Proposition L P is
isoclinic of slope 1/2.

By Proposition we find a quasi-isogeny a : (Pe, te, Be) —> (Pe1, te,15 Be,1) which we can
make into a quasi-isogeny of special formal Op-modules. The height of « is then a multiple
of 2. Composing a with an endomorphism of the special formal Op-module (P.,t.), we can
obtain a quasi-isogeny of height 0 of Op-modules p¢ : (Pe,tc) — (Pe1,te,1)- Then p. respects
the Drinfeld polarizations 3. and .1 up to a constant in Ox. By Theorem we obtain a
quasi-isogeny of height zero as claimed in the proposition. ([l

Remark 5.2.13. We chose here the framing object for A as coming from the Drinfeld moduli
problem. It can also be characterized in terms of the moduli problem N, cf. [14]: it is a triple
(X, 1, \) consisting of a p-divisible strict formal Op-module X over Kz, with an action ¢ of O
satisfying the Kottwitz condition , and a perfect relative polarization A such that the
special automorphism group is isomorphic to SLy(F'), comp. [14, Prop. 3.2].

5.3. The alternative theorem in the unramified case. In this subsection K denotes an
unramified quadratic extension of F. Let k be an algebraically closed field of characteristic p
which is endowed with an Op-algebra structure. We will sometimes write F' = K if we refer to
subsection Let 7 be the Frobenius of F'/F. We write 7(a) = a for a € Op-.

Let M be the Wo,, (k)-Dieudonné module of a special formal Op-module over k, as in Propo-
sition In addition to v, we use another polarization of M,

0:MxM— Wo,(k).
This is an alternating bilinear form of M which satisfies
O(Fxy, Fao) =7 Y0(xy,x0), 1,20 € M
0(e(a)zy, x2) = (a1, (a)xs), a € Opr,

G(L(H)mlaxQ) = 9(1‘1, L(H)l’g),
ord, det 6 = 2.

(5.3.1)
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The polarization 6 is unique up to a constant in Ox. It is constructed as follows: We choose
an element § € Oy, such that § + 7(d) = 0. We set II; = ¢II. Then II; is invariant under the
involution ((5.1.6)) and therefore we have

Pz, y) = Pz, o(Th)y).

We define
We see that 6 is alternating. It induces on D the involution given by
=10, ul=7(u), forueF' (5.3.3)

Conversely, assume that 6 is a polarization with the properties (5.3.1). Let ¢ (x,y) = (Il 2, y).
Using IT;IT = —IITI; we see that 1, satisfies the properties (5.1.7). By Proposition this

shows the uniqueness of 6 with the properties above.
Let (Y, ty) be a special formal Op-module over the Op-algebra % and such that ((II) acts
as zero on Lie Y. We endow Y with the polarization fy defined above, cf. (5.3.2).

Definition 5.3.1. We define for each i € Z the functor N(i) = Ng/p(i) on the category
(Sch/ Spf O). A point of N (i)(.S) consists of the following data:
(1) A formal p-divisible group X over S with an action

t:0g — End X,

such that the restriction of ¢ to O is a strict action.

(2) A relative polarization # on X such that the determinant of § is 72 up to a unit and such
that 6 induces on Ok the conjugation over Op.

(3) A quasi-isogeny of Og-modules
p: X ng — Y X Spec kg S.
Here, if S = Spec R, the condition in (2) means that the polarization of the corresponding Op-

display P of Y has determinant 72, up to a unit in Wo, (R). We require that the following
conditions are satisfied.

a) p respects Ox-actions. The relative quasi-polarization p*@y differs from 70 by a factor in
Oj.
b) Lie X is locally on S a free O ®¢, Og-module of rank 1.
We note that, as in the ramified case, the Op-height of X is 4 and the dimension 2. The
condition b) implies the following Kottwitz condition for the characteristic polynomial:
char(¢(a) | LieX) = (T —a)(T —a), a€ Ok.

It follows from [27] that A/ (7) is representable by a formal scheme which is locally formally of
finite type over Spec O ;. The functor N'(0) will be also denoted by N.
We have a natural functor morphism

Moy (i) — N(3). (5.3.4)

Indeed, let (Y, p) € Mp,(i)(R). Then we have the Drinfeld polarization ¢ of ¥ and we define
Oy by the formula (5.3.2). This gives a point of N'(R)(7).
The diagram similiar to (5.2.1)) shows that

height, . p = 2i.
We will define a translation functor isomorphism
I N(i) = N(@i+1). (5.3.5)

Let (Y,¢) be a special formal Op-module over R € Nilp,, . We fix a Drinfeld polarization .
This is also a Drinfeld polarization for (Y™, /). For the polarizations § and 6 derived by
(5.3.2)), we obtain ! = —0. We consider the morphism (' : YII — V. One easily checks that

(), (I)y) = 70" (z,y).
This is an identity of bilinear forms on the Wo . (R)-display of Y.
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If (X,¢) is a p-divisible Og-module, we define the conjugate p-divisible Ox-module (X¢, ()
by setting X¢ = X and (°(a) = ¢(a) for a € Ok. For the special formal Op-module Y we have

(Y%, (or)) = (Y, 15,0)-
Let R € Nilpy _ and let (X,,0,p) € N(i)(R). We define

P Xy £ ye =yl Dy,

We set ¢ = —0. Then (X°¢,:,6%p°) € N(i + 1)(R). This defines the translation functor
morphism (5.3.5). It is clearly an isomorphism. With this definition, the functor morphism
(5.3.4)) commutes with the translations on source and target.

Let 7 € Gal(F'/F) be the Frobenius automorphism. Using the Frobenius Fy , : Y — 7Y,
we obtain a morphism

wy N (i) — N(i+ 1))
with the same definition as (5.1.18]). This induces a Weil descent datum wy on
N =TING).
i€z

Lemma 5.3.2. The action of the group J*** (cf. for F', which is now denoted by K )
on the Ox-module Y gives an isomorphism

J s T
where
J' = {a € Auti (Y) | Oy (a(z), aly)) = p(a)by(z,y), for some p(a) € F*, x,y € Py @ Q}
O
The group J' acts via the rigidification p on the functor N.
Theorem 5.3.3 ([I7]). The morphisms of functors extend to a functor isomorphism
Mp, = N
which commutes with the Weil descent data, the actions of J*™ = J', and the translations on
both sides.

Proof. We already checked that extends to a functor morphism which respects trans-
lations and Weil descent data on both sides. Therefore it suffices to see that is an
isomorphism for ¢ = 0,
Mp, = N. (5.3.6)

We begin with the case where R = k is an algebraically closed field. Let Y € N (k). Let M be
the Op-Dieudonné module of Y and let M be the Op-Dieudonné module of Y. The quasi-isogeny
p induces an isomorphism M ® Q =2 M ® Q. The polarization ¥y induces a polarization ;1 on
M ® Q. Since p is of height zero and ord, det ¢y = 0 we conclude that ord, det ¥y = 0. On the
other hand, we have by Proposition [5.1.1] a perfect pairing ¢ on M which differs from 1y by an
element f € F’. This shows that v is perfect on M. Then we define the action ¢(II) by the
equation

O(x,y) = ((Iy)x,y), =,y € M. (5.3.7)
Therefore the morphism (5.3.6)) evaluated at k is bijective.

Since both functors o are representable by formal schemes locally of finite type,
it suffices now to check the following statement. Let S — R be a surjective Op-algebra
homomorphism such that S and R are artinian local rings with algebraically closed residue class
field. Assume that is bijective when evaluated at R. Then it is bijective when evaluated
at S. We may assume that the kernel of S — R is endowed with divided powers.

We consider a point Y eN (S) and we denote by Y € N(R) its reduction. By our assumption,
Y carries the structure of an Op-module compatible with p. Therefore 1y induces a perfect
polarization on the Op-display P of Y. The Op-display P of Y is a lifting of P. By the
crystalline property of displays [I], cf. end of subsection we obtain a perfect pairing

V:PxP—Wo,(9).
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The involution induced by {/; on Op is trivial. It follows that the decomposition
P=PoP
according to the two Op-algebra embeddings Op — O is orthogonal with respect to QZ The
Hodge filtration . . . )
Q/IOFP CP/IOF 5, 1=0,1
is isotropic with respect to w because these direct summands are of rank 1. Therefore ¢ is

a polarization of the Op-display P. Using the given polarization 6 on P, we can define the
endomorphism ¢(ITy) = +(6I1) of P by

g(xa y) = /(Z(Z’(Hl)xu y)
This gives the desired Op-module structure on P and therefore on Y. O

The analogue of Corollary follows as before from the properties of the Drinfeld moduli
space.

Corollary 5.3.4. The formal scheme N is m-adic and has semi-stable reduction. The special
ﬁber./\/@ou Kr of N is a reduced scheme. O

We next prove the uniqueness of the framing object, cf. (i) of subsection n We start with
the following statement.

Proposition 5.3.5. Let k be an algebraically closed field which contains kp. Let M be a
Wor (k)-Dieudonné module of height 4 and dimension 2. Let v be a homomorphisms of Op-
algebras

t:Op — End M.

Assume that M/V M is a free kg ®, k-module of rank 1. Let 6 be a relative polarization on
M which satisfies
0(c(a)xy, o) = O(x1, (a)xs), a € Op,
ord, det 6 = 2.

Then the action v extends to an action ¢ : Op — End M such that 0 satisfies . In
particular M is isoclinic of slope 1/2. Furthermore, inv(M,t,0) = —1 (see Deﬁmtlon 1| for

this invariant).
If (M',/,0") is a second triple with the same properties, then there exists a quasi-isogeny
(M, 1) — (M', /) of height 0 which respects the polarizations 6 and 0" up to a factor in OF.

Proof. Let ¢ be the principal relative polarization on M which exists by Proposition [5 We
define an endomorphism p : M — M by the equation

0(x,y) = d(z,ply), =ye M.
One checks that p is an endomorphism of the Dieudonné module M such that

p(a)x) = @)p(x), a€ Op. (5.3.8)

As in the proof of Proposition we choose an embedding A : Opr — W, (k) and obtain a
decomposition M = My ® M;. We note that

My ={z € M| i(a)z = Xa)z}.
It follows from (5.3.8)) that p(My) C My and p(My) C My. We obtain a commutative diagram

MOL>M1

‘| v
M, *p) Mp.

By our assumption on M/V M, the cokernels of both vertical maps have Wy, (k)-length 1.
Therefore the cokernels of the horizontal maps have also the same length. This length must be
1 because ord, det(p|M) = ord, det § = 2.

We have
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because both sides are equal to ¥(p(x), p(y)). We consider the form

1 (l‘, y) = w(P(JC)a p(y))

This relative polarization satisfies the assumptions of the last part of Proposition[5.1.1] Therefore
there exists ¢ € Ops such that ¢ (z,y) = ¥((c)z,y). We find

D(u(e)z,y) = 0(p(x),y) = —0(y, p(2)) = —¢(y, p*(x)) = ¥(p*(2), y)-
This shows that
p* =(c).
Since p commutes with the left hand side it commutes with ¢(c¢). Comparing this with ,
we obtain ¢ € Op. Since p? has height 4 we obtain ord, ¢ = 1.

For a € O}, we consider the endomorphism p,(z) = ¢(a)p(x) of M. We obtain p2 = 1(aa)p®.
Since each unit of F is a norm in the unramified extension F’/F we can arrange that p2 = —m.
We set IT = p,. Then we obtain an action of Op = Op-[II] on the Dieudonné module M. Since
My /TIM; and M, /TIM, have length 1, we have obtained a special formal Op-module. The
equations are satisfied for 6. Therefore 6 is up to a factor in O} uniquely determined by
the Op-action. This implies the first and the last assertion of the Proposition.

Because the invariant depends only on the isogeny class, it is enough to compute it for a
special formal Op-module with two critical indices and the canonical form 6 from .

We use the isomorphism

Op @0, Wor (k) — Wo, (k) x Wo,(k), (5.3.9)
which maps a ® £ to (A(a)é, A(@)€). Let o = F be the Frobenius automorphism of Wo,. (k). It
acts on the left hand side of (5.3.9)) via the second factor. This induces on the right hand side
the action o : (§1,&2) = (0(&2),0(&1)).

We set N; = M; ® Q. This is a Wo,. (k)g-vector space of dimension 2. In the decomposition
N = M®Q = Ny® N, the summands are isotropic with respect to 6. We consider the invariants
U, = NV,

(In the notation of the proof of Proposition this is U; ® Q.) The U; are F-vector spaces of
dimension 2. Let

A%0 : A2No x A2Ny — Wo, (k)o
be the bilinear form defined by

/
0(no A ng,n1 Anf) = det ( 0(no,n1) 0(no,n}) ) ’

0(ng,n1)  B(ny,nh)
for ng,nf, € Ny, n1,n} € Ni. In the same way we can define A20 : ANy x A2Ng — Wo,.(k)g.
Then we obtain A20(xg, 1) = A20(x1,30) for 19 € A2Ny, 21 € A2N;. From 6 we pass to s, cf.
(8.1.2) (there our F” is called K),
#:NxN—F' ®p WOF(k)Q = WOF(k')Q X WOF(k)Q-
Explicitly we have
#(no +n1,ng +ny) = (0(no, n}), 0(n1,ng)) € Wor.(k)g x Wor (k)g-

We take A2 on the F' ®r Wo, (k)g-module

2

N\ N=ANy & A’N;.

F'@rWo (k)

From the expression for s we obtain

A% se(z0 + 21, 7 + 7)) = (A20(w0, 21), A20(21,20)) € Wo, (ko x Wo, (k)g (5.3.10)
The restriction of 8 to Uy x U; induces a nondegenerate F-bilinear form
0:Uyx U — OF C F'c WOF(]C)Q, (5311)

where ¢ was defined after (5.3.1). Indeed, for uy € Uy and w1 € Uy we have by definition
O0(Vug, Vuy) = 0((IDug, c(IMuq) = 9(L(H)2u0,u1) = —70(ug, u1).
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Because 6 is a polarization, we have on the other hand
0(Vug, Vur) = mo™ " (0(ug, u1)).

Therefore 0(ug, u1) is anti-invariant by o and is proved.

We choose a nonzero element ug € Uy. Then we find u; € Uy such that 6(ugp,u;) = 5. We
remark that 6(¢(II)n,n) = 0, for an arbitrary n € N. This is clear from the third equation of
because 6 is alternating. Since 6(ug, ¢(I)ug) = 0, the vectors uq, c(Il)ug € Uy are linearly
independent. We set

x=zp+ x1 :=uo A t(IDug +ug A e(ID)ug € Aiﬂ’@pwop(k)@N'
It satisfies A2V = 7. Indeed,
AV (ug At(IDuy) = (Vug Ae(IDVur) = (t(IDug Ae(ID)?uy) = (e(IugA(—=7)uy) = m(ug Ao(I)ug).

The similiar equation holds for the second summand in the definition of z. By Definition
we obtain

inv(M, L 9) — (_1)ord7 /\2%(36,3?).
By (5.3.10) we have ord, A?s(z,x) = ord, A?0(zg,21). We compute

9 _ 0(uo,u1) O(ug, t(I)ug) _ 6 0 9
N 6(wo, 1) = det ( O(Mur,ur) Oy, o(Myuo) ) =\ 0 or ) =7
This shows ord, A%20(zg,z1) = 1 and therefore inv(M,,0) = —1. O

We can now prove the uniqueness of the framing object.

Proposition 5.3.6. Let r be special and K/F unramified. Let k be an algebraically closed field
in Nilpg . Let (P,,3) € E(l’g be such that ord, dety (1) 8 = 2f, cf. Definition . Then P
is isoclinic of slope 1/2 and inv" (P, ¢, 8) = —1.
If (P1, 1, 51) is a second triple with the same properties, then there exists a quasi-isogeny of
height zero,
p: (Pa [/76) — (Pla [/17181)7
such that there is an f € O with

Bi(p(z), p(y)) = B(fx,y), =,y€P.

Proof. We apply the functor Cfff,;l to (P,,8) and obtain (P, tc, Be), cf. |i By Theorem
we find ord, detWOF(k) B = 2. Therefore we can apply Proposition [5.3.5( to (P, tc, Bc)-
We obtain that P, is isoclinic of slope 1/2 and inv(P.,t.,3.) = —1. By Corollary and
Proposition we find that P is isoclinic of slope 1/2, and by Proposition we obtain
inv" (P, ¢, 8) = —1.

By Proposition there is a quasi-isogeny of height 0 between (P, tc, Bc) and (P1 ¢, t1,c, B1,c)-
It induces by Theorem a quasi-isogeny of height zero as claimed in the Proposition. [

We end this section by justifying the footnote in Definition Let S € Nilpy . and let
(Y, 1,0, p) € N(S). Since there is an Op-module structure on Y such that 6 is of the form (5.3.7)),
the kernel of 6 : Y — Y, considered as morphism to the dual relative to Op, is annihilated
by 7. More generally we prove:

Proposition 5.3.7. Let K/F be an unramified quadratic field extension. Let R be an Ok-
algebra. Let P and P’ be Wo . (R)-displays of height 4 with an action ¢ : O — End P, resp.
(' : Ox — EndP’. Assume that Lie P, resp. LieP’, is locally on Spec R a free Ox ®¢, R-
module of rank 2. Let a : P — P’ be an isogeny of Op-height 2. Then there exists locally on
Spec R an isogeny 5 : P’ — P such that

Boa=midp, «aof =midp.

Let P and P’ be the displays of formal p-divisible groups X and X' with an Ok -action. Then
the kernel of any isogeny o : X — X' of height 2 is annihilated by .
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Proof. The proof is a variant of the proof of Proposition 1.6.4 in [35]. We will use notation from
that proof. The Og-algebra structure on R induces a natural homomorphism O — Wo,.(R)
which is equivariant with respect to the Frobenius 7 € Gal(K/F') and the Frobenius on Wo,.(R).
The composition with 7 gives a second homomorphism Ox — Wo . (R). We denote by ¥ the
set of these two homomorphism. We write 1) = 1 o 7 for 1) € W.

The Og-action gives the usual decompositions,

P = @we\ppw, P = @¢eq/P12).

We have the same kind of decompositions for Q C P and Q' C P’. We choose normal decompo-
sitions

Py =Ty ® Ly, PQZ:T{ZJEBL;).
The T and L on the right hand sides are by assumption locally free of rank 1. Using these
decompositions, we write ay, : Py — Pz’b in matrix form

_( Xy VY
My = < v, 7, ) . (5.3.12)

The maps Fy : Io, (R)Ty ® Ly — Tyr @ Ly, vesp. F), : Io, (R)T), @ L, — T}, & L, , are
given by invertible matrices

(B ) (B,
Cy Dy Cy Dy
The matrices ((5.3.12)) define a morphism « of displays iff
Md”'(p?/) = (I);,Z; SMw, for ¢ € W. (5313)

S

We will argue as in [35]. The meaning of the upper left indes
the determinants we obtain

is the same as there. Taking

det My, det @y = det @y, det *M,. (5.3.14)
In particular det My, and * det M, differ by a unit in Wo, (R). As in [35] we obtain that
det My = 7Th€¢,7

for some units e, € Wo,(R). By (5.3.14), h is independent of . Since « is an isogeny of height
2 we conclude that h = 1. Now we pass to the adjucate matrices

adq)w adeT _ ad( sMw) adq)zp.
Since the matrices ® are invertible, we conclude
(det ®y) *I My, ), = (det /)Py *I( *My). (5.3.15)

We consider first the case where R is reduced. Then 7 is not a zero divisor in Wo,, (R). In this

case, we conclude from (|5.3.14))
det @, €y, = det P, Fey.
Thus we may rewrite equation (5.3.15)) as
—1 ad F_—1 ad
€or My, ﬁ/,:q)w €y (T My).

This shows that the matrices 61;1 "‘de define the desired morphism 3 : P’ — P. In the case
where R is not reduced we may argue as in the proof of Proposition 1.6.4 in [35]. ]

6. MODULI SPACES OF FORMAL LOCAL CM-TRIPLES

In this section we prove Theorems and Recall that d = [F' : Qp], and that we
write d = ef.
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6.1. The case r special and K/F ramified. Let (Y,cy, Ay) be a special formal Op-module
over kp with a Drinfeld polarization Ay, cf. Definition and section We denote by a
resp. E, the completions of the maximal unramified extension of F', resp. of the reflex field
E. Their residue class fields are identified with g resp. Kg. We note that in the ramified
case £ = E’'. We extend the embedding ¢y : O — Opg to an embedding @o : Oy — Op.

The base change (Y, ty, A\y)z, is the base change via Bo. It is an object of DRZIPPOL - We

RE

refer to Theorem [4.4.11| for the latter notation. It is therefore isomorphic to the image of an
object (X, ux,\x) € D‘Bffgd. The polarization \x is again principal. We consider the functor
M, = Mg /p,, of Definition in the ramified case (where h = 0). By Proposition this
Definition may be reformulated as follows.

Proposition 6.1.1. Let S be a scheme over Spf Oy. A point of M,.(S) consists of

(1) alocal CM-pair (X,t) of CM-type v over S which satisfies the Fisenstein conditions (EC,)
relative to a fized uniformizer Il of K and such that

Tr(e(I) | Ea,, Liey, X) =0. (6.1.1)

(2) an isomorphism of p-divisible O g -modules
A X S XN

which is a polarization of X.
(3) a quasi-isogeny of height zero of p-divisible O -modules

p:X XSS—)XXSPCC,QE S,
such IZLat the pullback quasi-isogeny p*(A\x) differs from /\|XXS§ by a scalar in O}, locally on S.
Here S =S XSpec O Speckg.

In Definition we required that the scalar is in F'* but because the polarizations A and A\x
are principal and p has height 0 the scalar is automatically in O . We remark that the condition
depends only on the restriction of the structure morphism S — Spf Op.

We define for i € Z the functor M,.(i) on the category of schemes S — Spf O by replacing

(3) in Proposition by

(3') a quasi-isogeny of p-divisible O -modules
p: X xg 8 — X X Spec f 5’,
such that the pullback quasi-isogeny p*(Xx) differs from pi)\|XXS§ by a scalar in O}, locally
on S.
It follows from the last condition that
2 height p = height(p’ | X) = 4di. (6.1.2)
We have an isomorphism of functors
M, — M,.(3),
which associates to a point (X, ¢, \, p) € M,.(S) the point (X, ¢, A, I¢p) € M,.(i)(S). We set
M, =M. (i).
i€z
We define a Weil descent datum on M, relative to Oj/Og. Let 7g be the Frobenius of E/E

It is enough to consider the functor M,. for affine schemes S = Spec R. We write ¢ : O, — R
for the given algebra structure. We write R|,) for the ring R with the new algebra structure
€ oTg. By base change to kg, we obtain

£:kp — R:=R®o, kp.
We consider a point (X, ¢, A, p) € M,.(i)(R), where p is a quasi-isogeny
p: Xp — &X.
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Since the notion of a CM-triple depends only on the induced Og-algebra structure on R, we
may regard (X, ¢, A) as a CM-triple on R|,,;. We set

F T
p: Xp e, X 278 £, (1) X
The assignment (X, A, p) = (X, ¢, A\, p) defines a morphism
WM, : MT(Z)(R) — MT(Z + fE)(R[q-E]) (6.1.3)

where fg = [kg : Fp]. Here we note that the inverse image of the polarization (7g)+Ax on (7g).X
by Fx .y : X — (78).X is p/ZAx. From (6.1.3) we obtain the Weil descent datum

wag, s My — MTE) (6.1.4)

where the upper index (7z) denotes the base change via Spec7g : Spf Op — Spf O ;.

Let N(i) be the functor of Definition Note that we took Y for the framing object
appearing in the definition of N'(i). We consider a point (X, ¢, A, p) € M,.(i)(R), where R €
NilpOE. Applying the contracting functor Qﬁf%, we obtain a quadruple (Xe,te, Ax_,pc). It
follows from the isomorphism (4.3.11) (which also holds in the ramified case, cf. a few lines
below ([£.3.11))) that the conditi(]on:@ implies

Tr(e.(TI) | Lie X.) = 0.

By functoriality, the polarizations p} Ay and p*( x.) differ by a unit in Op. Hence (X, tc, Ax,, pc)
defines a point of N (7). Therefore we obtain from Theorem [4.4.11] an isomorphism of functors,

MT(Z) ;> N(BZ) XspfOF Spf OE (615)
The base change on the right hand side is via ¢ : Op — O
We set
Nle] = [NV (ed). (6.1.6)
1€Z

We endow Ne] with a Weil descent datum relative to Oz /Op. Let R € Nilpy, . We consider
the map

@=DI8/1 T8/ N (i) (R) — N(e(i + f5)(Riry))-

Here on the left hand side appears the iterate of the Weil descent datum wpr : N (i) — N(i+1))
of N relative to Oz/Op from (5.2.5) and the translation functor II : N'(i) — N(i + 1), cf.
(5.2.4)). This defines a Weil descent datum relative to O /Op,
@=DIe/f,l2/ T2 Nle] — Ne]P). (6.1.7)
We define
J = {a€ Auty X | a*Ax = udx, foru € p2O)} (6.1.8)
= {a€Aut} Y |a*\y = uly, foru € p?Oy}. o

The last equation holds because of the contraction functor. This group acts via the rigidifications
p on the functors M,. and Ne]. By the last equation of |D we may regard J' as a subgroup
of J*T of Lemma [5.2.2)

Proposition 6.1.2. There is an isomorphism of formal schemes over Spf O
M, — Ne] xspro, Spf O,

where the right hand side denotes the base change via @g : Op — Op. This isomorphism is
compatible with the action of J' on both sides.

Under the isomorphism the Weil descent datum on the left hand side corresponds to
the Weil descent datum

H(dfl)fE/wa{}E/f : ./\7[6] — N[e](TE)
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on the right hand side. More explicitly, for any i € Z, there is a commutative diagram
M,.(7) %N(ei)oé
erl J/H(d—l)fE/fw/f\/_E/f (6.1.9)
Mo (i + f)78) = N(e(i + f))G2)-

Proof. The isomorphism of formal schemes over Spf O comes from (6.1.5). It remains to show
that the diagram is commutative. Let R € NilpOE with structure morphism € : Oy — R.

Let £: kg — R =R ®o0, ke be the induced morphism. We start with a point (X, ¢, A, p) €
M,-(i)(R). If we apply wag,., we change p to

- Fyry _

p:Xp— &X ¥ &.(mp)X

The lower horizontal arrow in applies to p the contracting functor €, g, cf. Definition
We have X, = Y. Let Px be the W(xz)-Dieudonné module of X. Then the Wo,. (kz)-
Dieudonné module of Y is by definition the degree-zero component of Py defined by ,
comp. Remark £:4.4] From this definition we obtain

(v =mt-iv,
In terms of Dieudonné modules, Fx ,, is given by
Py — W(K5) ®w(rp)W(ng) Px, T+ 10 V/Pa.

In terms of the relative Dieudonné module, Fy ., is given by (V' )/E. Therefore the contracting
functor applied to Fx ,, gives

w@VIE/N Ry Y — (15).Y,

since (V')/2 = MU -Dfe/fy /e On the other hand wys just multiplies p. by Fy ,,. Therefore
we obtain the commutativity of the diagram. O

Corollary 6.1.3. Let w,, denote the action of Tg on the formal scheme scheme (AZF X Spf O
Spf Oy via the second factor. There exists an isomorphism of formal schemes over Spf O

./\;lr ;> (ﬁF XSpfoF SpfOE) X Z,
such that the Weil descent datum waq,. induces on the right hand side the Weil descent datum

(f»l) — (WTE (5)71 + fE)

In particular the formal scheme My ., over Spf O is a p-adic formal scheme which has semi-
stable reduction; hence it is also flat, with reduced special fiber.

Proof. We consider the isomorphism /\;IDr — N of formal schemes over Spf O from Theorem
It is compatible with translations and the Weil descent data on both sides. Combining
this with the Drinfeld isomorphism (5.1.22)), we obtain an isomorphism

(Qr Xsprop SPf O ) x Ze =5 Ne]. (6.1.10)

We consider on the right hand side the Weil descent datum I1(d—1/=/f w/{f /f which is a composite
of an iterate of the translation functor and an iterate of the Weil descent datum wys. By (5.1.23))

we see that H(d’l)fE/fwjt}E/f induces on the left hand side of (6.1.10f) the Weil descent datum

(53 ei) — (WTEve(i + fE))

The assertion about descent data follows by forgetting e. The last assertion follows from Corol-

lary O
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6.2. The case r special and K/F unramified. Let ¢g,$y € ® be the special embeddings.
Their restrictions to F' are the same. We extend the resulting embedding O — Opg to an
embedding Oz — Op. The two embeddings ¢, o then factor over the two Op-algebra
homomorphisms @g, 3o : Ox — Op.

Let (Y,ty) be a special formal Op-module over kp. We endow the Wo,. (Rr)-Dieudonné
module Py of Y with the polarization 6, cf. (5.3.1). (One should note that we call now K what
was F’ in that section.) Then 6 defines an isogeny to the Faltings dual,

Ay Y — YV,

If we compose the action ¢y of (Op)°PP on YV with the anti-involution { of (5.3.3)), the isogeny

Ay becomes an isogeny of special formal Op-modules. We indicate this by rewriting the isogeny
as

Ay 1 Y — YA, (6.2.1)

In section we used (Py,0) to define the functor N(i). Together with the restriction to

Ok of the action of Op on Py, we obtain an object of 9RE%, cf. Definition [4.4.10 By Theorem

Rp>o

4.4.11} this object is the image of an object in Omif;gp; !. The latter is the display of an object
(X, tx,Ax) € 54357%1” cf. Definition The height of the polarization Ax is 2f, and the

associated Rosati involution induces on O the conjugation over Op.
We consider the functor M, = Mg/, g, of Definition with the framing object (X, tx, \x)
as defined above. We can give an alternative description of that functor.

Proposition 6.2.1. Let S be a scheme over Spf Op. A point of M,.(S) consists of
(1) alocal CM-pair (X,1) of CM-type r over S which satisfies the Fisenstein conditions (EC,.)
relative to the fixed uniformizer m of F'.
(2) an isogeny of height 2f of p-divisible O -modules
A X — XN
which is a polarization of X.

(3) a quasi-isogeny of p-divisible Ok -modules
p: X XspecR Spec R — X X Spec fn Spec R,

such that the pullback quasi-isogeny p* (Ax) differs from A|x x sSpec § Y a scalar in Oy, locally
on S, where S =8 ®Spf 0, SPeCKE.

Proof. We may assume that S = Spec R. Let (X, X1, A\, px) € M, (R) be a point as in Definition
We obtain a point (X, A, px) as in the Proposition if we set X := Xy, keep px and redefine
A to be the composite

Xo — X1 25 X).

We note that p is automatically of height zero because by the last condition p*(Ax) and Ax have
the same height 2f.

Conversely, assume (X, \, px) is as in the Proposition. Then we set Xg = X and X; = X"
By Corollary X satisfies the condition (EC,.) and, by Proposition Xp and X satisfy
(KC,) . The polarization A\ defines an isogeny a : Xo — X7 of p-divisible Og-modules which
has height 2f. To the morphism induced by a on the displays we apply the contracting functor
of Definition [£.4.2] We obtain an isogeny of Wo, (R)-displays o : Py — Py of height 2. To
this isogeny we may apply Proposition We find an isogeny 8 : P; — Py such that
Boa=mridp,.

The existence of p guarantees that X, X; and a are defined over an Og-subalgebra R’ C R
which is of finite type over O. Therefore we may apply Theorem m It gives us a morphism
b: X1 — Xo such that boa = 7widyx,. We see that X, X1, p together with the defining
isomorphism X; — X, defines a point of the functor M, of Definition m O

Definition 6.2.2. We define the functor M,.(7) in the same way as in Definition but we
replace the data (4) by the following



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 101

(4) A quasi-isogeny of p-divisible O g-modules
p:X ng — X XSpeckp S,
such that the pullback quasi-isogeny p*(Ax) differs from pi)\‘ X x5 by ascalar in O, locally
on S.
As in the ramified case (6.1.2]) we conclude that height p = 2di. We set
M, =[] M.(3).
ieZ
Let R € NilpOE. Exactly as in the ramified case we obtain a morphism
wm, : M (D) (R) — M (i + f5)(Rirp)), (6.2.2)

where, as in the ramified case, fg = [kg : Fp]. With the notation used in the ramified case, it
changes the datum p in point (4’) of Definition to

F; T
5 (Xo)p - 6. X 278 £, (mp). X

From (6.2.2) we obtain the Weil descent datum,

wam, s My —s MTE), (6.2.3)
We define an isomorphism of functors on Nilpoé,
M. (i) = N(ei). (6.2.4)

Let (X,¢, A, p) € M,.(i)(R). Applying the contracting functor Qﬁf%, we obtain a quadruple
(Xestes Ax, s pe), where p. @ X.®p, R — Y ®z, R. This gives a point of N'(i)(R). The functor
Qf% is an equivalence of categories if the ideal of nilpotent elements of R is nilpotent, cf.
Theorem [£.4.11] Therefore we may reverse the construction of (6.2.4). Therefore M,.(i)(R) —
N (ei)(R) is bijective for those R. For a general R we obtain the bijectivity as in the proof of
Proposition With the notation we have a bijection M,.(R) = Ne](R).
We define
J = {a€Auty X | a*Ax = ulx, foru € p?Oj}
= {a€Aut} Y |a*Ay = uly, foru € p?Oy}.
The last equation holds because of the contraction functor. This group acts via the rigidifications

p on the functors M, and N [e]. By the last equation of 1) we may regard J' as a subgroup
of J*W of Lemma [5.3.21

(6.2.5)

Proposition 6.2.3. There exists an isomorphism of formal schemes Spf O,
M, =5 Ne] Xspfo, Spf Op,

where the right hand side denotes the base change via Qg : Op — Op. This isomorphism is
compatible with the action of J' on both sides, and the Weil descent datum (6.1.4) on the left
hand side corresponds to the Weil descent datum

ﬂ'gwj:};/f : Ne] — Ne](®).
on the right hand side. Here g = fg(d—1)/2f. More explicitly, there is a commutative diagram

M (i) ————— No_ (i)

‘*)MTJ/ J/Trgwj:}g/f (626)

The multiplication by m is the morphism N (j) — N(j +2) which is obtained by multiplying p in
Definition by w. Equivalently one can apply two times the translation functor .

Proof. We have already proved the isomorphism of formal schemes over Spf O . The compati-
bility with the Weil descent datum follows from the following lemma. O
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Lemma 6.2.4. Let X be the framing object over kg, with corresponding Frobenius morphism
Fx oy X — (7). X. Let Y be its image under the contracting functor fo%lE. Then the image
of Fx x, under Qf?f,’;}E is given as

TIFy 4o Y — (T8)4Y.
Proof. Let M = Px be the W(Rg)-Dieudonné module of X. Then the Wp, (kz)-Dieudonné
module M’ of Y is by definition the tp-component of P§ defined by (4.3.18). In terms of
Dieudonné modules, Fx ,, is given by

M — W(kg) @rpwg M, z+—1® vieg.
This induces
VIE M — W(RE) @ wins M. (6.2.7)
We consider the decomposition
M = EBMw.
We denote by o the Frobenius on the Witt ring W (%g) and also the Frobenius of K*/Q,. We
note that
W(RE) ®7’E,W(F§E) Md} = (W(RE) ®TE,W(RE) M)TETZJ = (W(RE) ®TE7W(7€E) M)wofE'
In terms of the relative Dieudonné module, Fy ,,, is given by (V’ )72, Our problem is to express
(6.2.7)) in terms of V’. By definition we have
V=g~ %V . M¢U —_ M¢.
We consider
VIE My s My 0 My, s
Therefore we obtain for this map
VIE = p%e-1 . . p%e—IE (V/)fE.

By definition of the reflex field £, we have ay, = a,-s5. This implies that the number

g = Oypo-1 + ...+ Ayo—fp
is independent of ¥. We add to the last equation

g=0ps-1+ ...+ Ajs—ig-

Since Ay + ag is e or e — 1 we obtain

This proves the Lemma. O

Corollary 6.2.5. Let w,, denote the action of Tg on the formal scheme scheme (AZF X Spf Op

Spf O, wvia the second factor, i.e., in the notation of (m, Wrp = wiE/f. There exists an

isomorphism of formal schemes over Spf O
./\;lr L) (ﬁF XspfoF SpfOE) X Z7
such that the Weil descent datum wag, induces on the right hand side the Weil descent datum

(572) — (O‘)TE (f)a i+ fE’)

In particular the formal scheme M g, over Spf O, is a p-adic formal scheme which has semi-
stable reduction; hence it is also flat, with reduced special fiber.

Proof. We consider the isomorphisms of functors
M, =5 Nole] <~ (Mpile])o,, — (Qp Xsprop SPEOj5) x Ze. (6.2.8)
The last arrow is the isomorphism (|5.1.22)) and the left arrow in the middle is the isomorphism

of Theorem We must see what the Weil descent data Fng{f /T on /\~/'0E [e] does on the last
functor. By Theoremm it induces on (Mp, [e])o,, the Weil descent datum wfVEl é f multiplied



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 103

2g-times with the translation (cf. last sentence of Proposition [6.2.3). By (5.1.23)), the induced
Weil descent datum on the last functor of (6.2.8) is

(&ie) — (Wrpsic + (f5/ ) + 29).
But we have

ie+ (fe/f)+29=ie+ (fe/f)+(d—1)(fe/f) =ie+ fre.
This proves the Corollary. (]

6.3. The case r banal and K/F ramified. Let ¢ € {£1}. There is up to isomorphism a unique
anti-hermitian K-vector space (V, 1) of dimension 2 such that inv(V, ) = ¢, cf. Deﬁnition
Let A C V_be an Ofg-lattice such that 1 induces a perfect pairing on A, cf. Lemma [8.1.3] By
Theorem (A, %) corresponds to a display (P,¢, ) € D‘B?;}E over the residue class field of
O j; which is unique up to isomorphism. Let (X, tx, 8x) be the corresponding polarized p-divisible
Og-module of type r. It is uniquely determined by the conditions that g is principal and that
inv"(X, ux, Bx) = €. Then (Cx ® Q, ¢) ~ (V, ).

Definition 6.3.1. We define a functor M, .(i) on the category NilpOE. For R € NilpOE, a
point of M, .(i)(R) is given by the following data:

(1) alocal CM-pair (X, () of CM-type r over R which satisfies the Eisenstein conditions (EC,.)
relative to a fixed uniformizer II € K.

(2) an isomorphism of p-divisible Ox-modules
A X — X7,
which is a polarization of X.
(3) a quasi-isogeny of p-divisible O g-modules
p:Xp — X Xgpecip Spec R,
such that the pullback quasi-isogeny p*(\x) differs from pi/\‘ X x5 by ascalar in O, locally
on Spec R. Here R=R Qo KE-

Two data (X,¢, A, p) and (X71,t1, A1, p1) define the same point iff there is an isomorphism of
Og-modules o : X — X7 such that p; oap = p. (This implies that « respects the polarizations
up to a factor in Of).

By Proposition M, -(0) is the functor Mg g, . used in Theorem We will also
consider the functor

M = [[ M ().
i€Z
Let i € Z. We consider the following functor G.(i) on the category Nilpy_. A point of
G-(i)(R) is given by the following data:

1) a locally constant p-adic étale sheaf C' on Spec R which is Z,-flat with ranky C = 4d and
P P
with an action

L OK — Endzp C.
(2) a perfect alternating Op-bilinear pairing
¢:CxC— Op,

such that ¢(u(a)c1, c2) = ¢(c1,t(@)ce) for ¢1,¢0 € C and a € Ok.

(3) a quasi-isogeny of Og-module sheaves on Spec R
p:(C1) — (Cx,t) (6.3.1)
such that locally on Spec R there is an f € Of with
p'foler,ca) = dx(pler), ple2)).
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Another set of data (C”, 1/, N, p’) defines the same point iff there is an isomorphism a : C = C”
such that p’ o @ = p. Then « respects ¢ and ¢’ up to a factor in Oj.

We remark that in we regard C'x as the constant sheaf on Spec R. The existence of
the quasi-isogeny implies that C is locally constant for the Zariski topology. Therefore locally
on Spec R the sheaf C' is the constant sheaf associated to an Ok-submodule C' C Cx ®z, Q) and
p is given by the last inclusion.

The polarized contraction functor €2°! defines a morphism of functors

Mo (i) — Ge(i). (6.3.2)

To describe the functor G.(i), we may restrict to the case where the sheaf C is given by
an Og-submodule of Cx ®z, Q,. Then C defines a point of G (i)(R) iff (1/p")¢x is a perfect
alternating pairing on C'. We define an algebraic group over Z,, and its Z,-rational points,

J'(Zp) = {g € GLo, (Cx) | ¢x(ge1, ge2) = f - ¢x(cr, c2) for some f € Op}.
By Lemma there is an isomorphism g : (Cx, ¢x) — (C, 1%¢X). This means that ¢Cx = C
and
dx(ger, gea) = p'ox(ci,c2),  c1,c2 € Cx ®z, Q. (6.3.3)
We define

J'(i) = {g € GLk(Cx ®z, Q) | ¢x(gc1, ge2) = p' fox(c1,c2), for some f € Of}.
This construction gives us a functor isomorphism
Ge(i) — J'(0)/ ' (Zy),
where the right hand side is considered as the restriction of the constant sheaf to NilpOE. Let
J" € GL(Cx) be the union of the J'(7). Using the contraction functor we may write

J = {a € Aut} X | a*Ax = p(a))x for some pu(a) € p“OF}. (6.3.4)
Therefore J' acts via p on the functor /\;lm.

Proposition 6.3.2. The morphism of functors on NilpoE obtained from is a J'-equivariant
isomorphism,

M, =5 J' )T (Zy). (6.3.5)
The left hand side is endowed with the Weil descent datum way, relative to Op/Op which is
defined exactly in the same way as . This Weil descent datum corresponds on the right
hand side to the Weil descent datum given by multiplication with 172 . Here we regard 11/ as
an automorphism of the K -vector space Cx ®z, Qp.

Proof. We show that is an isomorphism of functors. By the Grothendieck-Messing crite-
rion both are formally étale, hence we may restrict to the category of K g-algebras. Both functors
commute with inductive limits of rings, i.e., they are locally of finite presentation. To see this,
we consider the special fiber M, . z,(0). Let m € N. We consider the subfunctor U,, which
consists of points such that p™p~! is an isogeny. Then X is the quotient of X Xgpec#, Spec R by
a finite locally free subgroup scheme of X(4dm) Xgpecry Spec R. (We have denoted by X(4dm)
the kernel of the multiplication by p*¥™.) This shows that U,, is a scheme of finite presenta-
tion over Spec kg. Therefore U, is locally of finite representation as a functor, cf. EGA IV,
Thm. (8.8.2). One easily deduces from this that M, . z,(0) is locally of finite presentation as a
functor. In the same way we see that G. (i) is locally of finite presentation. To show that
is an isomorphism of functors we can therefore restrict to kK g-algebras R which are of finite type
over kg. For such R, induces a bijection by Theorem

It remains to compare the Weil descent data on both side. It is enough to make
the comparison for the restriction of to the category of Rp-algebras. Let € : Rp — R
be a Kg-algebra. The restriction of the functor M, . to Kg-algebras has a Weil descent datum
WM, F, : Mre(R) — M, (R[,)) over Fy, given by

er,me((Xa La/\vp)) = (XvLa)‘vp[a])v (636)
where p|y) is the composite
X 256X E—F\f O X.
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Here o denotes the Frobenius automorphism of kg over F,. To see that this makes sense, we
have to check that all p-divisible Ox-modules above satisfy the rank condition (RC,) and the
Eisenstein conditions (EC,). The condition (EC,) says that II¢Lie X = 0. This remains true
if we regard X as a p-divisible Og-module over Rj,j. For the condition (RC,), the claim is
obvious.

Therefore it suffices to show that w4, r, induces on the right hand side of the Weil
descent datum g +— I1¢g. This follows from the following Lemma. O

Lemma 6.3.3. There is an identification Cx = Cy x. The functor QZE%IE applied to the Frobenius
morphism Fx : X — 0, X yields I1¢ : Cx — Ck.

pol

Proof. The first assertion follows because the functor €7

sider the Dieudonné module Px of X. We have
Cx ={ce Px | Vec=1I¢},

commutes with base change. Con-

cf. Remark The map
Px — W(RE) QoW (7g) P, c—1®c

defines the identification Cx = C,,x. The Frobenius Fx induces on the Dieudonné modules

#
Px L) W(RE) QoW (Rp) Px, xz— 1 V.
For ¢ € Cx we obtain Vic=1® Ve =1 I O

We can reformulate a part of Proposition as follows. We consider the algebraic group
over Zj, such that
J(Zy) = {g € GLo, (Cx) | ¢x(gc1, gea) = u - ¢x(c1, c2) for some u € Z,) }.
We define
J(i) = {g € GLK(Cx ® Q) | ¢x(gc1, ge2) = up” - ¢x(cy, c2) for some u € Z)y}.
The union of the J(i) is the group J(Qp) of unitary similitudes with similitude factor in Q).

Corollary 6.3.4. Let J(Q,) be the group of unitary similitudes of Cx ®z, Q, with similitude
factor in Qp, and let J(Zy) be its subgroup stabilizing the lattice Cx. There are isomorphisms
of functors on NilpOE,,

MT7€ ;> J<QP>/J(Z;D)7 MK/F,T,E L> J(QP)O/J(ZP)
Here J(Qp)° denotes the group of unitary similitudes with similitude factor in 7).

Proof. It is enough to show that G.(i)(kg) is in bijection with J(¢)/J'(Z,). For this is enough
to show that for each C € G.(i)(kg) there exists g € J(i) such that gCx = C. This we have
already shown before ([6.3.3)). (|

In this reformulation it is less obvious what the Weil descent datum is.

6.4. The case r banal and K/F unramified. Let ¢ € {£1}. We consider a CM-triple
(X,¢,\x) over kg such that Ax is principal if ¢ = 1 and is almost principal if e = —1. By

Proposition 4.5.14] such a CM-triple exists and inv" (X, ¢, Ax) = €. In fact, by Lemma and
1511 (

Theorem X, ¢, Ax) is unique up to isomorphism.
We recall the functor Mg/, from section [2.6]

Definition 6.4.1. Let (X, ¢, Ax) be a framing object with an almost principal polarization. We

define a functor M,.- (i) on the category Nilpy, . For R € Nilpy,_, a point of M, (i)(R) is given

by the following data:

(1) alocal CM-triple (X,¢,A) of type r over R which satisfies the Eisenstein conditions (EC,)
relative to the fixed uniformizer 7 € K.

(2) the polarization A is almost principal.
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(3) a quasi-isogeny of p-divisible O -modules
p:Xp — X Xspecip Spec R,

such that the pullback quasi-isogeny p*(Ax) differs from pi)\‘ X by a scalar in Oy, locally
on Spec R. Here R =R ®o,, KE-

Now let (X, ¢, Ax) be a framing object with a principal polarization. Then we have h(\x) =0
and inv"(X, ¢, Ax) = 1. We define the functor M.+ (i) by exactly the same data but we replace
the condition (2) above by the condition

(2") the polarization A is principal.

In the almost principal case there exists an isogeny X" — X such that the composite
X5 XN—X
is wmidx. This follows from the following analogue of Proposition [5.3.

Proposition 6.4.2. Let a : Py — Pa be an isogeny of CM-pairs of type r over R € Nilpg,
which both satisfy the Fisenstein condition (EC,). Let ac : C; — Cq be the morphism in
Et(Ok)r associated by the contracting functor €, r. Then

height = 2f - length,, Coker ac.
If height « = 2f then there exists a unique morphism 3 : Po — Py such that
aof =m7idp,, [oa=midp,,

Proof. To prove the first assertion we can assume that R = k is an algebraically closed field.
Then we can use that Coker a = Coker ac ®z, W (k). If lengthy,, Coker ac = 1, then B¢ clearly
exists. 0

In the case where ¢ = 0, the quasi-isogeny p is of height zero because the polarizations Ax and
X have the same degree. We set Xo = X and X; = X”. Since X and X" satisfy the Eisenstein
condition (EC,) and, by Proposition also the Kottwitz condition (KC,.), we obtain a point
of the functor My p, 1 of Definition We conclude that M,-(0) = Mg,p,1. The
index r~ on the left hand side indicates that we are in the case where the adjusted invariant of
the framing object is —1. Similarly, M,+(0) = Mg, p,1. The index r* on the left hand side
indicates that we are in the case where the adjusted invariant of the framing object is 1.

We will describe the formal scheme which represents the functor Mg/ p, .. More precisely,
consider the functors on Nilpg _,

Mri = HMri (7’)
€L
These functors are endowed with a Weil descent datum wpg , @ M+ (i) — M+ (i + fg)™®
relative to E/E using exactly the same definition as in (6.1.4). Recall (Cx, ¢x) = (Cx, tx, ¢x).
We define
J'(Zp) = {g € Auto, Cx | ¢x(gcr, gea) = [ - dx(cr, c2) for some f € OF},
J'(i) = {g € Aut Cx @z, Q, | ¢x(ger, gez) = p' fox(cr, ca), for some f € OF}.

As in the ramified case, we see that a point of M,.+(i)(R) is locally on Spec R given by a
lattice C' C Cx ®z, Q, such that the restriction of (1/ pH)¢x to C induces a Op-bilinear form

]%(bx:CXC—)OF

which is perfect in the case of T and such that ord, %qﬁx =1 in the case of r~. For the case of

r~, we are using here Proposition

We deduce that there is an isometry g : (Cx, ¢x) — (C, (1/p")¢x), cf. Lemma Con-
sequently we have g € J'(i). Conversely, if g € J'(7), the sublattice C' = gCx with the bilinear
form (1/p%)¢x gives rise to a point of M.+ (i)(R).

We will denote by J' C Aut Cx the union of the J'(i). We can identify J’ with a subgroup of
Autf X exactly as in the ramified case, cf. . It acts via p on the functor M, .
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Proposition 6.4.3. There is a J'-equivariant isomorphism of functors on NilpOE,,
M,x =5 ' )J(Z,). (6.4.1)

Here the right hand side is the constant sheaf on Nilpoé. The Weil descent datum wp .

on the left hand side corresponds on the right hand side to the Weil descent datum given by
multiplication with w¢72/2.  Here we view n¢'2/2 as an automorphism of the K -vector space
Cx ®z, Qp by multiplication.

Proof. That (6.4.1]) is an isomorphism of functors follows from Theorem [4.5.11|in the same way
as in the proof of Proposition [6.3.2] )

Let us recall the definition of the Weil descent relative to O;/Og on the functor M,+. We
write

FX,TE X — (TE)*X (642)
for the Frobenius relative to kg. Let € : Oz — R be an object of Nilpoé. We write € = eRKkg :
kg — R. Let (X,¢,\, p) € M,=(i)(R) be a point. We view (X,¢,\) as a CM-triple on R,
and we endow it with the framing

ExFx rp

P Xp e X TSP E (1R). X
Then (X,¢, A, p) defines a point of M,=(i + fg)(R[;,)). Varying i € Z, we obtain the Weil
descent datum
Wi, My — M7
We note that the inverse image of (7z)«\ by (6.4.2) is p/ZX. The compatibility of the Weil
descent data follows as in the proof of Proposition [6.3.2] from the following Lemma. a

Lemma 6.4.4. The contracting functor applied to the Frobenius morphism Fx ,, : X — (7). X
yields the multiplication by w¢f#/2 . Cx — Cx.
Proof. We use the Dieudonné module P of X over K. The map Fx ,, induces on the Dieudonné
modules the map
Vet P — W(RE) ®pip g, P, 22— 1@V,
By definition we have
C:=Cx={ceP|Vc=mc},

where we recall 7, from (4.5.12)), cf. Remark [4.5.13} With the identification Cx = C(,).x, the
restriction of V/2: to C gives

FﬁfEHWT-..m Fﬁlm-m :C — C. (6.4.3)
The right hand side is a module over

Ok ®z, W(kg) = H Ok ®¢, 5 W(EE).
Yer

On the right hand side, F~! is given by the map

Ok ®¢ W(kp) — Ok ®p , s W(kE), a®{—a® 3

Kt¥o
Therefore the components of the element on the left hand side of are
gleeUE=D L L pGwe L g0,
Since o/ fixes kg we have Ayoip = ayp. It follows that the numbers
Gy = Qo (fp-1 T oo Qypo T Ay
are independent of ¥. We call this number g. We find:
29=gyp+95=clE
because ay + a; = e. We conclude that is the multiplication by 7¢/#/2. 0O
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Corollary 6.4.5. Let J(Q,) be the group of unitary similitudes of Cx ®z, Q, with similitude
factor in Qp, and let J(Zy) be its subgroup stabilizing the lattice Cx. There are isomorphisms
of functors on Nilpoé,

Mo =5 J(@)/T(Zp),  Miypre = J(Qp)°/T(Zy).
Here J(Qp)° denotes the group of unitary similitudes with similitude factor in Z) . O

6.5. The banal split case. Let R = k be an algebraically closed field. There is up to isomor-
phism a unique hermitian Og-module (C, ¢) of rank 2 with ¢ perfect. Hence there is a unique
CM-triple
(X, ix, Ax) € PBPY,

with principal A\x. We take this as framing object.

We define functors M,.(i) on the category Nilpoé. For R € Nilpoé, a point of M,.(1)(R) is
given by the following data:
(1) alocal CM-triple (X,¢, A) of type r over R which satisfies the Eisenstein conditions (EC,)

relative to the fixed uniformizer = € F.
(2) the polarization A: X — X" is principal.
(3) a quasi-isogeny of p-divisible O g-modules
p:Xp — X Xspecip Spec R,

such that the pullback quasi-isogeny p*(Ax) differs from pi)\‘ X, by a scalar in OF, locally
on Spec R. Here R = R Qo KE-

Note that M, (0) = M,.1 of before Theorem [2.6.3] Consider a point (X, ¢, A, p) as above. Let
(C, $) be the p-adic étale sheaf associated to (X, ¢, \)z on (Spec R)g = (Spec R)g. Let Cx be
the constant sheaf on (Spec R)g; of the Ox-module Cx. The existence of p implies that C' is
locally constant for the Zariski topology. Therefore, locally on Spec R, we may regard C' as a
submodule of Cx ® Q. By the definition of M,.(), we have

f'o(z,y) = dx(z.y), z,y€Cx@Q,
for some f € Of. We see by Theorem |4.5.11| that a point of M,.(i)(R) is the same as a Ok-
sublattice C' C (Cx)r ® Q such that the restriction of (1/p*)¢x to C induces a perfect pairing
C xC — Op.

This is directly clear if the ideal of nilpotent elements of R is nilpotent, and follows from the
argument in the proof of Proposition in the general case.
Again we set

J'(Zy) = {g € GLo, (Cx) | ¢x(gc1, gca) = f - ¢x(c1,c2), for some f € O},
J'(i) = {g € GL(Cx @z, Qp) | ¢x(ger, gc2) = p' féx(c1, ¢2), for some f € Of}.

There is an isometry up to a constant in O,
1
9:(Cx,¢x) — (C, E¢x)~

Then g € J'(i) and gCx = C. Any other isometry of this type is of the form gh, with h € J'(Z,).
Therefore we have associated to the point (X, ¢, A, p) a section of the constant sheaf J'(¢)/J'(Zp).

We set

M, =[] M), T = UiezJ'(i).
i€Z

As in the ramified case, the group J’ acts via p on the functor M,., cf. (6.3.4). Moreover, this
functor is endowed with the Weil descent datum wa, : M,.(i) — M,.(i + f£)7®) relative to
O;/0g.

Let 0 € Gal(F'/F) be the Frobenius. We use the notation introduced below ([4.3.22). We fix
0 € O, with 6,,02 € U. Set

Q1,E = Qg, 5fp—1 + ...+t ag, o+ ag, (651)



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 109

This number is independent of the choice of 8 because, by the definition of the reflex field F,

aglng = a@l.

In the same way we define as g by using 6». If we add both definitions we find

a5+ a2 = efg.
The endomorphism
T = .E @ 2.5 . CX,l D ng — CX,l D CXQ (6.5.2)
is an element of J'(fg).
Proposition 6.5.1. The polarized contraction functor defines an isomorphism of functors on
NﬂpO )
E
M, = )T (Zy). (6.5.3)

The Weil descent datum w, relative to O /Op corresponds on the right hand side to the Weil
descent datum given by multiplication with 7% € J'(fg).

We note that .J'/J'(Z,) = J'/J'(Z,)("®) because this is true for any constant sheaf. Propo-
sition is the consequence of the definition of was, and the following Lemma.
Lemma 6.5.2. The Frobenius Fx -, : X — (7g)«X induces on Cx the multiplication by w2 .
Proof. The statement needs an explanation. Because the functor CE)OR]E commutes with base
change, we have a canonical isomorphism Cx = C(;,),x. Indeed, the inverse image of the
constant sheaf C'x by Spec 7g is the constant sheaf Cx.

Let M = Px be the Dieudonné module of X. The Frobenius Fx ,, is induced by the Ver-
schiebung

vie M — M.
We write in this proof C' := Cx. By definition we have
C=M"V"=C a0,
cf. Remark [£.5.13] Therefore the action of V/# on C coincides with the action of
FfEtt -1

e o m s C— CL (6.5.4)

We look at the components of the element on the left hand side in (4.3.22)). Let us consider the
components of the first set of factors of (4.3.22)) which act on C;. The component of (6.5.4) in
the factor Or @, , 5 W(Og) is

mhorelET L0 L o @ 1 = 10E @ 1.

Therefore V/# induces on C; the multiplication by 7%#. By the same argument it induces on
C5 the multiplication by 7%2.2. O

Corollary 6.5.3. Let J(Q,) = GLk(Cx,1 ®z, Qp) and J(Z,) = GLo, (Cx,1). There are iso-
morphisms of functors on Nilpoé,

MT - J(Qp)/J(Zp)a MK/F,T,l — J(QP)O/J(ZP)‘

Here J(Q,)° denotes the subgroup of elements with determinant in OJ. ]

7. APPLICATION TO P-ADIC UNIFORMIZATION

In this section, we reap the global fruits from our local work in the preceding sections. This
section is modelled on the case of p-adic uniformization of the first kind of the previous paper
[18] section 4].
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7.1. The Shimura variety and its p-integral model. In this section, K and F will be
number fields. Let K/F be a CM-field. We fix an archimedean place wy of F. We denote by
a — a the conjugation acting on K.

Let V be a K-vector space of dimension 2. Let

(,):VxV—Q
be a non-degenerate alternating Q-bilinear form such that
s(avy,va) = ¢(vy,ave), a €K, vi,vy € V.
We define three algebraic groups over Q. For a Q-algebra R, the R-valued points are:
U(V.<)(R) ={g € GLkor(V ® R) | sr(g21, 972) = sr(21,22)}
G(V,<)(R) = {g € GLkar(V ® R) | sr(guv1, gv2) = p(g)sr(vi, v2), plg) € R*}, (7.1.1)

G(V,<)(R) = {9 € GLrkgr(V ® R) | sr(gv1, gv2) = sr(p(g)v1,v2), u(g) € (F @ R)*}.

If (V,s) is fixed, we write U, G, G.
Equivalently, we can replace the form ¢ by the anti-hermitian form

x:V xV—5K
on the K-vector space V which is defined by the equation
Try /g ax(vi,v2) = c(avy,v2), a€ K. (7.1.2)

Then s is linear in the first argument and anti-linear in the second.
For each place w of F' we obtain an anti-hermitian pairing

st V@p Fy x VapFy — K®pF,. (7.1.3)

Let w : FF — R be an archimedean place. We choose an extension of w to ¢ : K — C. This
defines an isomorphism K ® g F,, = C and sz, becomes an anti-hermitian pairing

%¢:V®K,Lp(c X V®K,¢(C—>(C.

Note that the space V is determined up to isomorphism by the signature at the archimedean
places of F' and the local invariants inv, (V') at the non-archimedean places v of F. We will
impose the following signature condition on V. Let ® = Homg_a1s (K, C) and let r be a special
CM-type of rank 2 wrt. wy, i.e., a function

r:®— Z>o, P Ty, (7.1.4)

such that r, + 75 = 2 for all ¢ € ® and such that there is exactly one pair {¢g, o} such that
Tyo = g, = 1. The archimedean place determined by ¢ and @q is supposed to be wy.
We require that s, is isomorphic to the anti-hermitian form on C? given by the matrix

£, 0
( o iEw)7 (7.1.5)

for every . Here E,., is denotes the unit matrix of size r,, and i the imaginary unit. We note
that the last requirement is independent of the choice of ¢ above w. We endow

VagR= [ VeruR,
w:F—R
with the complex structure J such that s¢,(v1, Jvz) is hermitian and positive-definite for all w.
This defines a Shimura datum (G, h), resp., (G7 h), cf. [8l 4.9, 4.13] and an associated Shimura
variety Sh(G, h) with canonical model over the reflex field E of r.

Let p be a prime number. We choose a place v of F of residue characteristic p which does
not split in K and such that inv, (V) = —1. We choose an embedding E — Q,, and denote by
v the induced place of E, with corresponding prime ideal p,,. We assume that the place v, of F'
induced by

FEE—Q
is equal to v, i.e, that p, induces the prime ideal p,, corresponding to v.
We have an isomorphism

V®Qp = @p|pV ®p Fy. (7.1.6)
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Here p runs over all prime ideals of F' which divide p. We will write
Vo =Voerl, K,=Kork.
The decomposition ([7.1.6) is orthogonal with respect to ¢ and, for each prime ideal p of F' over
p, we obtain a bilinear form
i Ve xVp — Q.
It is related to s, by
Trxerr, /0, ary(x1,72) = plazi, z2), a € KQp Fy, x1,22 € V.
One defines algebraic groups over Q, as in (7.1.1)) above:
Up =U(Vps ), Gp =G (Vys ), Gp = G(Vpagp)~
Let p|p be such that p is unramified (and hence non-split) in K/F' and such that inv(V}, »,) =
—1, cf. Definition Then there is a Ok, -lattice
Ay CV,
such that ¢, induces a bilinear form
Sp i Ap XAy — Zy (7.1.7)
such that A, is almost self-dual, i.e., h(Ap,¢,) = 1 (compare (8.1.4))). Any other lattice with

these properties has the form gA, where g € U(V},¢,)(Qp). This follows from Lemma
In all other cases, we apply the following lemma.

Lemma 7.1.1. Assume that if p is unramified in K/F, then inv(Vy, »,) = 1. Then there is an
Ok, -lattice Ay CV @p F, such that ¢, induces a perfect pairing

Sp i Ap X Ay — Zp.
Any other such lattice is of the form gA, where g € Uy(Q,).

Proof. Indeed, because of Lemmas and we need only a justification in the case where
p is split. In this case we have K, = F}, x F}, and, accordingly, a decomposition V ®@p F, =
U, ® Us. The vector spaces U; and U, are isotropic with respect to ¢, and therefore ¢, induces
an isomorphism U, = Homg, (U1, @Q,). The form ¢, becomes

szt y+y’)=a"(y) —y*(z), zyeli, 2",y €U,
The existence and uniqueness of A, follows easily. O

To pass to a p-integral model over Op (,,) of Sh(G,h), we restrict the choice of the level
structure. To do this, we choose for each p|p a O;(@FFp -lattice A, C V, as above. We define

Ky ={g€Gy|ghy=Ap}
K, ={9€G(Q,) | gAy = A, for all p|p}.

We choose an open compact subgroup K? € G(A’}) and set K =K, - KP C G(Ay).

We extend the embedding v: £ — Qp to an embedding Q — Qp. We obtain a decomposi-
tion

(7.1.8)

® = Homg.a1e (K, Q) = HHom@p Alg(Kp, Qp) = ]_[cbp (7.1.9)

The restriction of the function r to ®, will be denoted by r,. The group Gal(Q,/E,) acts on ®
via the restriction
Gal(Q,/E,) — Gal(Q/E).
Therefore 7,, = 1, for p € ® and 7 € Gal(Q,/E,). This implies that the local reflex fields
E(K,/Fy,rp) are all contained in E,.
Let R be an Op, -algebra. Let £ be an R-module with an Og-action. We have decompositions

Oxk @ R= ]:[OKp ®z, R, L=®,L,.
p

We will say that £ satisfies the Eisenstein condition (EC,) if each £, satisfies the Eisenstein
condition (EC,, ), cf. (2.2.12). We use a similar terminology for the Kottwitz condition (KC).
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Definition 7.1.2. We define the groupoid Ak on the category of O (,,)-algebras. A point of
Ak (R) consists of the following data:
(1) An abelian scheme A over R, up to isogeny of degree prime to p, with an algebra homomor-
phism
t:0g — End A ®Z(p).
such that Lie A ®o, , , Og, satisfies the conditions (KC,) and (EC,).

(2) A Q-homogeneous polarization A of A such that the Rosati involution induces the conjugation
of K/F.

(3) A class of Ok-linear isomorphisms

7’V @Al — VP(A) mod K?
which respect the forms on both sides up to a constant in Afc(l)x.

We impose the following two conditions.

(i) There exists a polarization A € ) such that the induced map to the dual variety A : A — A"
has the following property. Let (ker A), be the p-primary part of the kernel of A. It has
the decomposition (ker A), = [[,,(ker A),. We require that (ker A), is trivial, unless p is
unramified in K and inv(V,,¢,) = —1. In the latter case the height of (ker \), is 2f,.

(ii) There is an identity of invariants,

invy (4,1, A) = invy(Vy, ), for all plp.

An isomorphism of such data (A, ¢, \, 7?) — (A’,/, X', /") is given by a O-linear quasi-isogeny
¢: A — A’ of degree prime to p compatible with the Q-homogeneous polarizations and the level
structures.

We will denote a point of Ak (R) simply by (4, ¢, A, 7P).

Remark 7.1.3. It is equivalent to consider in (2) a Z,)-homogeneous polarization X of A such
that the elements A € X satisfy the condition (i) on the p-primary part of the kernel of \.

Remark 7.1.4. Let (A,1,\,7?) € Ax(R). Let A € X be as in condition (i) of Definition
For each geometric point w of characteristic 0 of Spec R the pairing induced by A on the p-adic
Tate module,

Ep 1 Tp(Ay) x Ty (Ay) — Zp(1) (7.1.10)
has the following properties. If p is ramified in K/F, the pairing is perfect and inv(V,(Ay), &) =
inv(V,,p). If p is unramified, then is perfect if inv(V},,s,) = 1 and is almost perfect if
inv(Vy,sp) = —1. If p is split in K/F, then is perfect.

For each geometric point w of R of characteristic p, the polarization A induces a pairing on
the Dieudonné module M of A, and therefore for each prime p|p of F' a pairing

Ep t My(As) x Mp(Ay) — W(k(w)), (7.1.11)

with the following properties. If p is ramified in K/F, the pairing is perfect and inv" (M, (As), &) =
inv(Vy, ). If p is unramified, then (7.1.11)) is perfect if inv(V,,s,) = 1 and is almost perfect if
inv(V,, ) = —1. If p is split in K/F, then (7.1.11) is perfect.

Proposition 7.1.5. Assume that K? is small enough. Then the functor Ak is representable by
a projective scheme over Spec O (p,) whose generic fiber is the Shimura variety Shk associated
to the Shimura datum (G, h). For general KP, Ak is a DM-stack proper over Spec O, (,,) whose
generic fiber is the Shimura variety Shx considered as an orbifold.

Proof. Let (A, 1, \,7?) € Ak (R), and fix n? € 7°. Let A C V be a Og-lattice on which ¢ is
integral. We find an abelian variety A; in the class A up to isogeny prime to p such that for
each ¢ # p
’I]p(Tg(Al)) =A ® Ze.

In this way we obtain also a polarization on A; whose degree is bounded in terms of ¢ and A. If
KP? is small enough we obtain a level structure on the m-division points for some m > 3.

The fact that the moduli problem of abelian varieties with a polarization of given degree and a
m-level structure for m > 3 is a quasi-projective scheme implies that the functor of (A, ¢, A, 77) as
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in (1)—(3) of Definition is representable by a quasi-projective scheme. Now the conditions
(i) and (ii) define open and closed subschemes (this is easy for condition (i), and follows from
Proposition[8.2.1]for condition (ii)). The representability by a Deligne-Mumford stack for general
KP? follows.

To compare the generic fiber of Ak with Shk, recall from [I5] §8] that Shk represents the
following functor Ak g on the category of E-algebras, comp. section A point of Ak g(R)
consists of the following data.

(1) An abelian scheme A over R, up to isogeny, with an algebra homomorphism
1:0g — EndA®Q

such that the Kottwitz condition (KC,) is satisfied.

(2) A Q-homogeneous polarization X of A such that the Rosati involution induces the conjugation
of K/F.

(3) A class of K-linear isomorphisms
i:V&Af — V(A) mod K
which respect the forms on both sides up to a constant in A(1)*.

Here we are implicitly using the fact that G satisfies the Hasse principle, cf. [I5] §7]. We define
amap Ak g(R) — Ak (R). We fix a Og-lattice A in V' whose localizations at p|p are the given
lattices A, above. Let (4,1, A\, %) € Ak p(R), and fix n € 7. We find an abelian variety A; in
the isogeny class A such that for each ¢

n(Te(A1)) = A® Zy.

Then we obtain ¢;: Ox — End(A;) ® Z,). The Eisenstein condition (EC,.) is automatically
satisfied, cf. Proposition We also find a polarization A; € A which satisfies the condition
(i) in Definition The existence of n implies Condition (ii). By forgetting the p-component
of 7, we have associated to (4,:,\,7) a well-defined object (Ai,:1,\1,77) of Ak (R). By the
uniqueness property of the lattices A, mentioned above, this map is bijective.

The properness of Ax — Spec O, (p,) is a consequence of Proposition below. O

Remark 7.1.6. If p, is the only prime ideal of F' over p, then it follows from the product
formula that condition (ii) of Definition is automatically satisfied. Indeed, condition (ii)
defines an open and closed subscheme which in this case has the same generic fiber.

Proposition 7.1.7. The morphism Ax — SpecOg,(y, is proper.
For the proof of Proposition we need two lemmas.

Lemma 7.1.8. Let K/F be a CM-field and let v be a generalized CM-type of rank 2. Let E C Q
be the reflex field. Let R be a complete discrete valuation ring with an Og-algebra structure. Let
L be the field of fractions of R. We assume that the residue characteristic of R is p > 0. Let
w be a finite place of F of residue characteristic £, such that K, /F, is a field extension. We
assume that L is of characteristic zero or that £ # p.

Let (A1, A\) be a CM-triple of type r over L. The polarization induces on the rational Tate
module V,,(A) an alternating pairing

Yoy Vip(A) X Vi (A) — Qy(1). (7.1.12)

If inv(Vy,(A),¥y) = —1, then the abelian variety A has potentially good reduction.

Proof. We consider only the case £ = p. We may assume that A has semistable reduction. We
choose an isomorphism Q, = Q,(1) over L. We obtain from ,, the anti-hermitian form
sty Vip(A) X Vi (A) — Koy,
cf. (8.1.2)). Let T be the toric part of the special fiber of the Néron model of A. Then Ok acts
on the character group X, (7). If T is non-trivial, we obtain that
dimT = [K : Q] = dim A.

This implies that the toric part V! (A) C V,,(4) is a K,,-vector subspace of dimension 1. By the
orthogonality theorem [SGA7, Exp IX, Thm. 5.2], the anti-hermitian form sz, is zero on this
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subspace. Let uy,us be a basis of V,,(A) such that u; is a basis of V! (A). Then we obtain, in
the notation of (8.1.1),
O/ (Viw(A), 220) = =320 (ur, ug) s (uz, ur) = s (u1, uz) s (u1, uz2) = 1

modulo Nmpg /g, K. . This contradicts the assumption inv(Vy(A), ) = —1. O

With the notation of the last lemma, we consider the case where ¢ = p and where the
characteristic of L is also p. The Og-algebra structure on R factors
Op — Kk, — R,

where k,, is the residue field of E,. We fix a commutative diagram

EV*)@}’J

| ]

E——Q.

Let w be a p-adic place of F. By the last diagram we can restrict r to a local CM-type r,, of

K, /F,. Then E, is the composite of the subfields E(K,,/F,, r,), for w running over all places
of F' over p.

Let (A,¢,A) be a CM-triple of type r over L. The action of Or ® Z, =[], OF

w )

runs over all p-adic places of F', induces a decomposition of the p-divisible group of A:
X =[] Xw
w

Then (X, tw, Aw) is a local CM-triple with respect to K., /Fy,, ., over the field L.

where w

Lemma 7.1.9. Let R be a discrete valuation ring of equal characteristic p > 0, and let L be the
field of fractions. Let R be an Og-algebra. Let v be the p-adic place of E induced by this algebra
structure.
Let (A, 1, \) be a CM-triple of type r over L. We assume that there is a p-adic place w of F
such that one of the following conditions is satisfied.
(1) K., /F, is a ramified field extension. The local CM-triple (X, tw, \w) satisfies the Fisenstein
condition (EC,.,), and inv" (X, tw, Aw) = —1.
(2) K. /F, is an unramified field extension. The local CM-triple (X, tw, Aw) satisfies the Fisen-
stein condition (EC,. ), and A, is almost principal.

Then the abelian variety A has potentially good reduction over R.

Proof. We may assume that A has semistable reduction over R. Let A be the Néron model over
R, and let B be the identity component of the special fibre of A. Let us assume that the torus
part T C B is nontrivial. Since Ok acts on T, we obtain that X.(T)q is a K-vector space of
dimension one. Let Y be the p-divisible group of T. We obtain a decomposition

Y:HYU

where u runs over all places of K over p and Y,, is an Ok, -module which is of height [K, : Q]
and of multiplicative type. We pass from R to the completion R Let X =X % be the p-divisible
group of A. By [SGA7, Exp IX, §5], the multiplicative group Y,, lifts to a multiplicative group
Y, C X{: of the finite part of X, over R. If we pass to the general fibre of the last inclusion
we obtain a nontrivial multiplicative subgroup (Y,) i C X,. But our assumption implies, by
Lemma in the ramified case, and by Proposition in the unramified case, that X
is isoclinic of slope 1/2. This contradicts the existence of a nontrivial multiplicative part and
therefore the assumption that the torus part of B is nontrivial. O

Proof. (of Proposition [7.1.7) We check the valuative criterion. Let R a discrete valuation ring
with a Og, -algebra structure. Let L be the field of fractions of R. Let « : Spec L — Ak be a
Op,-morphism. We have to show that a extends to Spec R — Axk. It is enough to show that
for a discrete valuation ring R’ which dominates R, the morphism Spec L' — Ak induced by «
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extends Spec ' — Ak. The map « gives a point (4, ¢, \,7?) € Ak(L). Since we may replace L
by L’ we may assume that A has semistable reduction. Let w be a geometric point concentrated
in the generic point of Spec R. We are assuming that inv" (T}, (Ay), &, ) = inv(Vy, ,<p,) = —1
when char L = 0, resp. inv" (M, (Au),&p,) = inv(V,,,<p,) = —1, when char L = p. Hence we
conclude by the last two lemmas that A has good reduction. Let /Nl/ R denote the abelian scheme
which extends A. Then ¢ extends to an action 7 of O on A. The Kottwitz condition and the
Eisenstein condition are closed conditions and hold therefore for A. The polarization A extends
to A: A — A", The condition (i) from Definition extends from A to A. For a geometric
point wg concentrated in the closed point of Spec R we find

iIlV; (Awoa Zwo ) /\wo) = inVT(MP (Aw0)7 gp) = inv(‘/}ﬂ gpv)

because the left hand is by Proposition equal to invy, (Ap,tr, Az). Hence condition (ii) from

Definition also extends from A to A. From this we obtain an extension of (4, :, A, 7) to a
point of Ak (R). O

Remark 7.1.10. The scheme Agk turns out to be flat over Spec O (;, ), cf. Theorem (1).
Hence its generic fiber is dense. It follows that it is enough to check the valuative criterion on
discrete valuation rings R with fraction field L of characteristic zero. Hence Lemma is not
needed.

The following proposition shows that there is only one isogeny class in the special fiber of
Ax. This is the underlying reason why there is p-adic uniformization.

Proposition 7.1.11. Let k, be the residue class field of E,,. Let (A1, 11, \1,7}) and (Ag, 12, Ao, 75)
be two points of Ak (R,). Then there exists a quasi-isogeny

(A17L15 X1) — (A27L25 X2)7

i.e., a quasi-isogeny which respects the actions v; and the Q-homogeneous polarizations \;. In
fact, there exists such a quasi-isogeny of degree prime to p.

Proof. Let X; be the p-divisible group of A;, with its decomposition X; = Hp‘ p Xip. It follows
from Proposition (jointly with Lemma and Proposition that X, is isoclinic.
In the banal cases p # p,, the same follows from Lemma for X;,. By [27, Cor. 6.29] we
find a quasi-isogeny
a: (Al, Ll) — (AQ,LQ).
We choose \; € \;. We set A = a*(\z). We find an endomorphism u € End®(4;) such that
A= )\1U.

Since A\; and A induce the conjugation on K, we conclude that « € Endj A;. Moreover u is
fixed by the Rosati involution * induced by A\; on D := End} A;. It is enough to find an element
d € D* such that
u= fd*d (7.1.13)

for some element f € Q*. The solutions of these equations form a torsor under the algebraic
group J over Q such that

J(@Q)={e€eD*|ee€Q}. (7.1.14)
By [15}, §7], this group satisfies the Hasse principle. Therefore it is enough to find a solution of
the equation in D® Qy for all places w of Q. If w is a finite place w # p we have, by
[27, Cor. 6.29], that

D ®Q, = Endgeq, V(A1)
such that the Riemann form &£)! induces the involution *. A solution of exists iff the
symplectic K ® Q,,-modules

(Vo (A1), €31),  (Vu(A2), E3?)

are similar up to a factor in Q.. But this follows from the existence of 7} and 75.

In the case w = p we can use Dieudonné modules. In this case we know, by condition
(ii) in Definition that the rational Dieudonné modules of A; and As together with their
polarizations are isomorphic.
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If w is the infinite place, one can deduce the assertion from the fact that u in is totally
positive.

Now let us prove the second assertion. We consider the Dieudonné modules My, resp. Ms,
of Ay, resp. As. We choose the polarizations A\; € A, resp. Ay € Mo, as in condition (i) of
Definition Using the contracting functor, it is clear that there is a quasi-isogeny of height
zero o @ (M, \1) —> (Ma, X2). Let p: (M1, A1) — (Ma,\2) be an arbitrary quasi-isogeny.
Consider the morphism

aopt: (M3, A2) — (M2, A2).
We consider the group J for (As, 12, A2) (compare ) Then cvop~? is an element of J(Q,)
by Tate’s theorem ([27, Cor. 6.29]). We approximate it by an element oy € J(Q). Then

poay: (A1, A1) — (A, 12, X2)
is the desired quasi-isogeny of order prime to p. O
7.2. The RZ-space M.,.. We fix a point (Ag, to, Ao, y) of Ak (R, ). We also fix a polarization
Ao € Ao which satisfies the condition (i) of Definition We denote by X the p-divisible
group of Ay. The action ¢ induces an action tx on X and )\ induces a polarization A\x on X.

We denote by g, the number of elements in x, = kg, .
Let R € Nilpp,, and let (X,¢) be a p-divisible group over Spec R with an action

t:0g ®Z, — End X.

The notion of a semi-local CM-triple (X, ¢, \) relative to K ®Q,/F ®Qy, and r should be obvious
but we explain it more precisely: the decomposition

OF®Zp:HOFp
p

X =]]%-

Let A be a polarization of X which induces the conjugation on K/F. Then the decomposition
extends to

induces the decomposition

(Xva)‘) = H(XPaL]%)‘P)' (721)
We call (X, ¢, A) a semi-local CM-triple of type  if each (X, tp, Ap) is a local CM-triple of type
rp, with respect to K, /F,. This makes sense because E(K,/F,,r,) C E,.

Definition 7.2.1. A semi-local CM-triple (X, ¢, A) of type (K ® Q,/F ® Q,,r) over an alge-
braically closed field with a kg, -algebra structure is said to be compatible with (V<) if, for each
plp,

inv"(Xy, tp, Ap) = inv(V}, 6p),
and if A\, is principal, except in the case where K, /F} is unramified and inv(V},,s,) = —1. In
the latter case A, is almost principal.

We note that the CM-triple (X, tx, Ax) over K, is compatible with (V<) and satisfies the
conditions (KC,) and (EC,), in the sense explained before Definition

Definition 7.2.2. Let i € Z. Let M, (i) be the following functor on the category Nilpy . For
an object R € NilpOEV7 write R = R ®o0, Kg,- A point of M, (i)(R) is given by the following
data:
(1) A CM-triple (X, ¢, ) of type (K @ Q,/F ® Q,, r) over Spec R which satisfies the conditions
(KC,) and (EC,.) and is compatible with (V,¢).
(2) A Ok ® Zy-linear quasi-isogeny
p: X =X Xgpec r Spec R — X Xgpecr, SpecR

such that p respects the polarization p’A on X and Ax up to a factor in (Op @ Z,)*.
We denote these data by (X, ¢, A, p). Two data (X,¢, A, p) and (X',¢/, N, p’) define the same
point of M,.(7) iff there is an isomorphism « : (X,1) — (X', ), such that p' cap = p. In
particular, o respects the polarizations A and X' up to a factor in (Or ® Z,)*.
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Remark 7.2.3. In (2) we could replace the last condition on p by
(2') The quasi-isogeny p respects the polarizations as follows,

P'A = p*Ax.
Then we obtain a functor which is naturally isomorphic to M, (¢). This follows because for
a € (Op ® Z,)* the points (X,¢,a\, p) and (X, ¢, A, p) of M,(R) are isomorphic. We could
also require up’\ = p*Ax for some u € Z, without changing the functor. We use different
descriptions of the functor M,.(i) in order to describe better different group actions.

Let 7, € Gal(E,/E,) be the Frobenius automorphism and let fg, be the inertia index of
E,/Qy, ie., q = pl2v . As earlier, the Frobenius Fx rp,,, defines a Weil descent datum on these
functors,

wat : My(0)(R) — My + f,) (R, ). (7.22)
cf. (6.1.3), (6.2.2). Since the degrees of the polarizations A and Ax are the same, it follows that

2height p = height(p’ | X) = 4[F : Q)i.
More precisely, p = Hp pp where p runs over the prime ideals of F' over p. For each p we have

2 height p, = height(p’ | X,) = 4[F}, : Q,]i.

We define
M, = [ M. (i). (7.2.3)
=
We describe the functor /\;lr with its Weil descent datum. Let
J(Qp) = {a € Endkgq, X | a"(Ax) = cAx, for some c € Q' }. (7.2.4)

This group acts naturally on M, via the rigidification p. We consider the decomposition |D
for X. We set

Jp ={a € Endy, X, | @"(Ay) = c)y, for some c € Q'} (7.2.5)
For all p the groups J,, are subgroups of J' as introduced in section 6 in the local cases and they
agree with J introduced in the banal cases.
We will give an explicit description of these groups. For this, it is convenient to replace the
bilinear form ¢, by the Fj-bilinear form
G Vo x V= By,
which is defined by
t(aip(xlva)) :';P(a$1,x2)a aGFPa
for t(a) = Trg, jg, ¥~ 'a, where as usual ¥ € Op is the different of F/Q,. The restriction to the
lattices A, gives
CNP : Ap X Ap *)OFF‘.
Let us consider the prime p = p,,. We denote by D, the quaternion division algebra over F,.
We choose a two-dimensional K,-vector space with an anti-hermitian form
oo+ Vo, X Vi, = I,
of invariant +1. The contraction functor associates to (X, ,ux, ,Ax, ) a special formal Op, -
module Y with the relative polarization A\, = v, resp. A, = 0, as in section 5.2 resp. 5.3.
Since the endomorphism ring is not changed by the contraction functor, it follows from Lemmas
and that there is an isomorphism
Tp, = G(Vo,:5p,)- (7.2.6)

For a banal prime p|p of F', we consider the image (Cx,,#x,) by the polarized contraction

functor €°9 of Theorem [4.5.11} By Proposition it follows from Condition (ii) in Definition
that there is an isomorphism

(Cx,,bx,) = (Ap,Sp)- (7.2.7)
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More precisely, Condition (ii) implies that the corresponding vector spaces are isomorphic; the
integral isomorphism follows from Lemmas and Therefore we obtain

Jo =GV, &) =Gy, forp #p,. (7.2.8)
Since we want a uniform notation, we set (V;,¢,) = (Vp,$) for p # p,. We set
GP = G(VP’ fp)'

We now have fixed an isomorphism .J, & G, for all p|p. For p banal, we have G, = G,.
Let - -
Vo = DppVp-
This is an K ® Qp-module. Let B B
G VpxV, =2 F®Q,
be the orthogonal sum of the forms ¢,. We define
G(Qp) = G(Vp,5p) = {g € Autreq,(Vy) | G(92, 9y) = c5(x,y), for some c € Q}. (7.2.9)

We have shown that G(Q,) = J(Qp). In the description of the descent data, the following
slightly larger group will be needed. We define the group G, O G(Q,) via

Gy, = {9 € Autkag, (V) | S92, 9y) = 1p(9)5(2,y), for uy(9) € p*(OF ® Z)*},
and
Gy = {g € Auti, (V) | (92, 9y) = 1p(9)Sp (2, y), for pp(g) € p"OF }.
The groups G; are isomorphic to the groups J{, = .J’ introduced in section 6 in the local cases.
We fix these isomorphisms which are associated to the framing objects. Therefore the groups
G, act on the local moduli spaces M of section 6 and the subgroup G}, C [[,,, G}, acts on M.,
cf. ((7.2.3).
We define the group G’ (Qp) as the union of the following sets for i € Z,

G'(i) = {(c, gp) € piOlﬁpv X H Gy | p(gp) € piOﬁp, for all p}. (7.2.10)
p banal

Let G'(Z,) C G'(Q,) be the subgroup of elements (c, g,) such that ¢ € O;F and gp(Ap) = A,.
The multiplicator py, : G;v — pZO;p induces homomorphisms

plp

G, —G'(Q,) and G(Q,) — G'(Q,). (7.2.11)
For the second map we used the identification Gy, = G, for p banal.
Definition 7.2.4. We consider the following element w!. = (¢, w,) € G'(Q,).
(1) c=plee.
(2) If K,/F, is ramified and hence Ax, is principal, wy, is the multiplication
ngny : VP — VP’

see Proposition [6.3.2]

(3) If Kp/Fy is unramified, then both principal and almost principal Ax, are allowed. In both
cases we define wy as the multiplication

epfE, /2 | T [/
Tp Ve —V,

see Proposition [6.4.3]

(4) In the case where K, = F}, x F, is split and hence \x, is principal, we have the decomposition
Vo = Vi1 ® Vp 2. Let E(rp) be the reflex field of (K, /F,,7p). Let f,., be the inertia index
of E(ry,). We consider the numbers a1,E(ry) and as p(r,) as defined by . We set

_ E, B IE,
a1, = a1,E(7-p)7f y, Q@2pB, = QQ,E(T'F)T .
Tp Tp

Then we have ai1,g, + as,5, = epfE,. We define w, to be the multiplication by m,"* on

Vp,1 and the multiplication by 7> on V1.
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The element w’, is clearly an element of the center of G'(Q,).

Proposition 7.2.5. There exists an isomorphism
M, =5 (O, xspron, SPEOp,) x G'(Q,)/C(Zy)

which is equivariant with respect to the action of G; on both sides. This extends the action of

J(Qp) = G(Qp) C G;)
The Weil descent datum w, relative to Oy [Op, on the left hand side (7.2.2)) corresponds
on the right hand side to

(&,9) = (wrp, (€)swrg), g € G'(Qy).
Proof. We use the decomposition
M, (1) = HMrp (4),
plp
which follows immediately from (7.2.1)). Then we conclude by the results of section[6] in partic-
ular Propositions [6.3.2}, [6.4.3] [6.5.1] ([

Remark 7.2.6. We may multiply each w, by a unit in K, in the Definition of w!.. This
does not change the assertion of the last Proposition.

We introduce the group
G(Q,) = {(c,9p) € Q, x H Gy | p(gp) = ¢, for all p banal}. (7.2.12)
p banal

There are natural homomorphisms

G(Q,) - G(Q,) and G(Q,) — G(Q,). (7.2.13)

For the second map, we used that in the definition of G(Qp) we can replace G, by G,. In
particular the groups G(Q,) and J(Q,) act on G(Q,). We denote by G(Z,) C G(Q,) the
subgroup of all (¢, gy) such that ¢ € Z) and g,A, = A,. By Corollaries |6.3.4 |6.4.5} [6.5.3} we
obtain a bijection

G(Qy)/G(Zy) = G'(Qy) /G (Zy)-
Corollary 7.2.7. There exists an isomorphism
M, = (Qp, xspior, SPEOp,) x G(Q,)/CG(Z,)
which is equivariant with respect to the action of J(Q,) on both sides. ([

Note that in this version of Proposition [7.2.5| we loose control of the descent data.

7.3. The p-adic uniformization. We will now define a uniformization morphism in the sense
of [27]. We fix a point (Ao, to, Ao, ) of Ak (%,). The uniformization morphism will depend
on the choice of i}y € 7f. This choice defines a point of the proscheme projlimy, Ak for all
congruence subgroups K = K,K? as above. We also fix a polarization Ao € Ag which satisfies the
condition (i) of Definition[7.1.2] Recall the p-divisible group with induced polarization (X, tx, Ax)
corresponding to Ay.

We denote by Ak the restriction of Ak to the category NilpoEu. The uniformization mor-
phism

G MT X G(A?)/Kp — AK XSpf O, SpfOE“u (7.3.1)

is defined as follows. Let (X,¢,\,p) € M, (i)(R) and let g¢ € G(A%}). Recall the notation
R=R ®oy, Fu- The quasi-isogeny p extends uniquely to a quasi-isogeny of abelian varieties

p:A— Ay Xspeci, Spec R. (7.3.2)

Because O acts on X = X ®p R, we obtain a map O — End(4) ® Zpy- Moreover the
polarization \g : Ag — A} induces on A a quasi-polarization R A — A" and 7} induces

ﬁ% = Vp(p_l) onp : V®A§i — VP(A) mod KP.
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On the p-divisible groups, \'; differs from p'A by a factor from (Or ® Z,)* and therefore
A :=p~ "N satisfies the condition (i) in the Definition of the functor Ak.
We associate to the pair (X, g) from the left hand side of (7.3.1)) the point
(Aa LA /\Av 77%9) € AK(R) (733)

The CM-triple (X, ¢, A) over R defines by the Serre-Tate theorem a lifting of (7.3.3) to a point
of Ak (R). This finishes the definition of the uniformization morphism © in (7.3.1])

Lemma 7.3.1. The uniformization morphism is compatible with the Weil descent data wm,
acting on the first factor on the left hand side and the natural Weil descent data on Ak Xspfop,
Spf OE .

Proof. This is essentially [27, Thm. 6.21] but we repeat the simple argument in our context.
By definition of the Weil descent data repeated below, it is enough to consider both sides of
on the category of %, -algebras R. We will denote by ¢ : K, — R the algebra structure.
Consider a point (X, ¢, A, p) € M,(R). The Weil descent datum wy, is obtained by changing p
to p':

*FX,TEV

o X2 s*XE — " eu(tp, ) X

This gives a point (X, ¢, A\, p’) € /\;IT(R[TEU]). The point (X, ¢, A, p) defines a quasi-isogeny of
abelian varieties
p:A— e, A,

as explained in the definition of ©. The point (X, ¢, A, p’) defines in the same way the quasi-
isogeny of abelian varieties over R, |,

exFag, i,
A *)5*140 — (5TEU)*AO~

Here A with its additional structure is regarded as a point of Axk» (Rir,])- This makes sense
because to be a point of Ak» (R) depends only on the x,-algebra structure on R. In other words

Ax» (R) = Axr Ry ))- (7.3.4)
But this equation is the Weil descent datum on the right hand side of ([7.3.1]). O

We define the group
J(Q) = {v € End% Ao | v*Xo = uo, for some u € Q*}, (7.3.5)

cf. (7.1.14]). Regarded as an algebraic group over Q, the group J is an inner form of G. In the
proof of Proposition[7.1.11| we saw that the Q,-valued points of J coincide with the group J(Q,)

of (7.2.4). We proved in section that G(Q,) = J(Q,). Let v € J(Q). With the chosen 7},
we define w(y) € G(A%}) by the equation

VP(y) oy = mow(y)- (7.3.6)
This defines a homomorphism

w: J(Q) — G(AY),

and an isomorphism J(A%) = G(A%). Therefore J and G are isomorphic over the finite places
w # p of Q. At the infinite place J is anisotropic because the Rosati involution is positive.
The group J(Qp) acts on M.,

(X0, A p) — (X, 0, A,9p), v € J(Qy).
Let ((X,¢, A\, p),g), with g € G(A’}) be a point from the left hand side of (7.3.1) and let

(A, 1a,24,1%9) be its image by ©, cf. (7.3.3). If v € J(Q), the quasi-isogeny vp extends
to the quasi-isogeny of abelian schemes

AL (A0)p —5 (Ao)g.
In follows from ([7.3.6) that the image of ((X,¢, A,7vp),g) by the morphism O is
(A7 LA, )\Aa in(’fl)g)
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We define an action of J(Q) on the left hand side of (7.3.1]) by
(X, 6, 0),9) — (X, 1, A,7p), w(7)9)-
Proposition 7.3.2. The uniformization morphism factors through an isomorphism
0 : J(Q\(M, x G(A})/KP) =5 Ak Xsptoy, Spf Oy .

This isomorphism is compatible with the Weil descent data relative to Oy /Og, . Here the Weil
descent datum on the left is induced from wag,., cf. Proposition @

Proof. We have just proved that the morphism is well-defined. The bijectivity follows from the
Proposition [7.1.11{ and [27, Thm. 6.30]. O

By inserting Proposition[7.2.5]in this result, we obtain our main theorem about uniformization.

Theorem 7.3.3. (i) The O, -scheme Ak is projective and flat, with semi-stable reduction.
(ii) Let Ak be the completion of Ak along its special fiber, which is a formal scheme over
Spf Og, . There exists an isomorphism of formal schemes over Spf OEu,

J@\[(Qr, Xspror, SPE O, ) x G (@) /' (Z) x G(AT) [KP] = Ak Xspt 0, SPE O - (T3.7)
For varying KP, this isomorphism is compatible with the action of G(A’;) through Hecke corre-
spondences on both sides. R

Let w!. the element in the center of G'(Q,) of Definition|7.2.4 We endow the left hand with
the Weil descent datum

(& 1y g) ¥ (wrp, (£),wlhyg), h€G(Qy), g€ GAR).

Then the isomorphism is compatible with the Weil descent data on both sides. O

There is a simpler version of this statement, as follows. When the inertia index fg, is even, this
simpler version can be used to describe the descent datum. We define G(Af) = G(Q,) x G(A}),
where we recall G(Q,) from (7.2.12)), and K = G(Z,) x KP.
Corollary 7.3.4. There is a natural isomorphism of formal schemes

J(Q)\[(va XspfoFU SpfOE“y) X G(Af)/K] L) AK XspfoEV SpfOEV . (7.3.8)
Assume that the inertia index fg, is even. The multiplication by p on V ®Q,, defines an element
of G(Qp). Let p be the image in G’(Qp), We also denote by p the element
(5.1) € G(Q,) x G(AY) = G(Ay).

If we endow the left hand side of with the Weil descent datum

(&,9) — (wrp, (€),07%9), g€ G(Ay),
then the morphism is compatible with the Weil descent data. (]

Note that G(Q,)/G(Z,) = G(Q,)/G(Z,), as follows from K, = ker(c: Gy, (Q,) —
Q) /Z) ). Hence
G(Af)/K ~ G(A)/K. (7.3.9)
Hence Corollary [7.3.4] implies Theorem in the Introduction.

7.4. The uniformization for deeper level structures at p. We now pass to deeper level
structures. For each prime ideal p of Or with p|p we have the group

Gp={g€ GfLOKp (Vo) | sp(g1, gr2) = p(g)sp (w1, 22), for some p1p(g) € Q) },
and the open compact subgroup K, C G, cf. (7.1.8). We will assume that there exist prime
ideals p which are banal since our deeper level structures exist only in this case. For each banal
p, we choose an open subgroup of Kj C K. For a natural number M we consider the subgroup
K, (p™) C K, which consists of the elements that act trivial on A,/p™A,. We will assume that

for some M
K,(p") cK; (7.4.1)
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For the special prime p, we set Ki =K, . We set
K} ={9=(90) € G(Q) | 9p € K}}.
This says that p,(gp) is independent of p. We also introduce
K;’ba ={(9p) € H K, | pp(gp) = c € Z,;, independent of p}. (7.4.2)
p, banal
This is a subgroup of

G**(Qy) ={(g0) € ] Goluplgp) =ce€Qy, independent of p}.
p, banal

Also, let Ob2 = I, bana Ok, -
We need with some generalities on p-divisible groups suited for our special case. Let X and

Y be p-divisible groups on a scheme S. We consider the category of étale morphisms U — S
with the étale topology.

Definition 7.4.1. Let n € N. We define a sub-presheaf
G? € Hom*" (X (n),Y (n)),
where the right hand side denotes the Hom in the category of étale sheaves. A homomorphism
a: X(n)uy — Y(n)y belongs to GE(U) if there is a profinite étale covering U — U and a
homomorphism of p-divisible groups & : X5 — Y; such that the restriction of & to X(n); is
aU.
We denote the sheafification of G? by G,,. We define the prosheaf

Hom® (X,Y) = "lim"G,,.
—
The limit is taken with respect to the natural restriction maps G,, — G,,, for n > m.

We note that a homomorphism of p-divisible groups & : X7 — Y} defines a homomorphism
a:Xn)y =Yy iff

pria — prsa € p" Hom(Xg, 5 Yoy, 0)- (7.4.3)

We consider now a banal local CM-type (K,/F,,rp). Let E, = E(ry) be the corresponding

reflex field. Let (X,:x) and (Y, ty) be local CM-pairs over S/ Spf Og,, which satisfy the Eisen-

stein condition. As above, we define HomgKF (X,Y) by replacing throughout homomorphisms by

homomorphisms of Ok, -modules. The presheaf G}, is now meant in this sense. The contracting
functor (cf. Definition [4.5.3) associates p-adic étale sheaves C'x and Cy with an Ok,-module
structure. By Theorem [4.5.4

Homo,, (X,Y) = Homo,, (Cx,Cy).
We set Cp, x = Cx/p"Cx. One checks easily by the remark after Definition that
G(U) = Homo,, (Cx,Cpy) = Homo, (Cn,x,Cny). (7.4.4)
In particular G5, = G,,. We conclude that, for a scheme S/ Spf O, , the pro-sheaf HO—m?)th (X,Y)
is a p-adic étale sheaf. Let ¢ : w — S be a geometric point. Then we find for the fiber
Hom3,  (X,Y), = Homo,, (Xu, Ya),

where the right hand side is the Hom in the cateory of p-divisible O -modules.

Let us assume that S is a scheme over Spf O i, The contracting functor of Theorem [4.5.11
associates to a CM-triple (X, tx, Ax) which satisfies the Eisenstein condition a p-adic étale sheaf
Cx with an alternating form

¢XZCXXCX—>OFp. (745)
We set {x = Trr, /g, 9~ ¢x. In particular there is a CM-triple (X,, Ix,, Ax, ) over R, such that
(Cx, e, ) = (Apssp), (7.4.6)

of. (727
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The group K, acts on the right hand side by similitudes. Therefore we obtain a homomor-
phism K, — Auto Kp X, such that the automorphisms in the image respect the polarization Ax,

up to a factor in Z.
Definition 7.4.2. Let p be banal and let (X,tx,Ax) be a CM-triple on S which satisfies the

Eisenstein condition as above. A CL-level structure on (X,tx,\x) as a class of isomorphisms
of p-adic étale sheaves

(Ap,sp) — (Cx,€xy)  mod K, (7.4.7)

which respect the bilinear forms on both sides up to a factor in Z;. We will write
X, — X mod Kj,. (7.4.8)
for a CL-structure.

More precisely this means the following. Let M > 1 such that ((7.4.1]) holds. Then a CL-level
structure is a right K3 /(K (p""))-torsor

T C Isomg, (A, ® Z/pMZ,Cx @ Z/p"'7)

such that the inclusion is equivariant with respect to the right actions of K} /(K,(p™)) on both
sides and such that the local sections of T' respect the bilinear forms on A, and Cx up to a
factor in (Z/pMZ)*. If S is connected and w — S is a geometric point a CL-structure is given
by a Kj-orbit of an isomorphism A, — (Cx), which respects the bilinear forms on both sides
by a factor in ZX and such that the orbit is preserved by the action of 71(S,w). This explains

the notation ([7.4.8).
Let (X, ¢, A) be a semi-local CM-triple relative to (K ® Q,/F ® Qp,r) over a scheme S €

(Sch/Spf Oy ), cf. the beginning of section We set XP2 = 1, banal Xp-  We choose
X, ux, Ax) as in section [7.2] Then (7.4.6) holds. From this we obtain an action of K*P* on XP2
( P

which respects the polarization Hp’banal Ax, up to a factor in Z;.

We define a CL-level structure on X* modulo K;’ba as a CL-level stuctures 7, : X, — X,
mod K, for each banal p which respect the bilinear forms up to a factor in Z;' that is independent

of p.

Definition 7.4.3. With the notations of Definition let i € Z. Let Mx: (i) be the following
functor on the category of schemes S over Spf OEV' We will write S = S XspfO, Speckp,. A
point of Mk (¢)(S) is given by the following data:

(1) A CM-triple (X, ¢, A) of type (K ®Q,,/F ®Q,,r) over S which satisfies the conditions (KC,)
and (EC,) and is compatible with (V).

(2) A Ok ® Zy-linear quasi-isogeny
p:X::XxSSHXXSpeC,@E S
such that p respects the polarization p’A on X and Ax up to a factor in Z;.
(3) Let XP2 = I, banat Xp- A CL-level structure
7 X 5 X mod K.
We set
My, =[] Mx (i)

icZ
We formulate a variant of Corollary [7.2.7} Since we assume that banal places exist, we do not
need the group G.

Proposition 7.4.4. There exists an isomorphism
MK; AR (QFU XSpf Op, Spf OE,,) X Gba((@p)/K;»ba7

which is equivariant with respect to the action of J(Q,) on both sides.
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Proof. At the banal places we may use lisse p-adic étale sheaves to describe a point of /\;IK; (S).
A point consists of a CM-triple (X, ,tp,, Ap,) and a quasi-isogeny py, : X, s — X, such that
p;u()\xpﬂ) = up'\x,, for some u € Z), i € Z and an isomorphism of lisse p-adic étale sheaves
on S,

(Ca, Exgia) —55 (C,€) C (Clgoa, Exenn) @ Q, (7.4.9)
where 7 respects the alternating forms up to a factor in Z,; and such that the restriction of {xva
with respect to the last inclusion is equal to up’¢ with the same u and i as above. By we
have

(Cxoa, Expa) 22 (AP P2, (7.4.10)
where the right hand side is the orthogonal direct sum over all (A,,¢,) for p banal.
We denote by ./\;llfg the moduli functor described by the data . We claim that there is
a natural iSOInOl”phiSle
MEg. = G*(Q,) /K™ (7.4.11)
Indeed, the group G**(Q,) acts naturally on this functor: Let g € G**(Q,) such that

¢x (921, gr2) = u'p Ex (21, 22).
Then g maps (7.4.9) to
(Cxon, o) 5 (9C, (1/u'p7)€) C Con @ Q.
If we have an arbitrary point (7.4.9)), then the composite of the arrow with the inclusion is an
element g € G**(Q,) and therefore (7.4.9)) is isomorphic to
Cyon = (9C, (1/u/p?)xpa) C Cxnn @ Q.

We see that the action is transitive and that the stabilizer of the base point

(Cioa, Exgpn) ~23 (Clgin, Exva) € Chga @ Q

is K;’ba. This shows (|7.4.11)).
Now we fix i € Z. We denote by M, the functor of section 6 associated to the special local
CM-type (K,,/Fp,,7p,). There is the natural injection of functors

My (i) = My, (i) x MEE (i)

We claim that this map is surjective. Indeed, assume we are given a point (va,va,)\pv,p;v),
where pj (Ax,, ) = wip'Ay,, with u; € Z5, from the first factor on the right hand side, and a
point (C, &) C Cxva (endowed with 7)), where ugp’é = &xva with ug € Z, from the second factor.
These two data form a point of MK; () iff u3 = uy. But in the point from the first factor we
can replace A, by (u1/u2)\,, without changing the isomorphism class of this point. Therefore
the surjectivity holds and the proposition follows as Proposition O

Let us fix an open and compact subgroup K? C G(A?). We set K* = KJK? and K = K, K”
as after (7.1.8). We choose (X, x, Ax) as above.
Definition 7.4.5. We define a functor A% on the category of schemes S over Spf Op . A point
of Aj. (S) consists of the following data:
(1) a point (A, ¢, \,7?) of Ak (9),
(2) a CL-level structure
Mp : xba A[p‘x’]ba mod K;’ba.

We denote here by A[p>°]"* the banal part of the p-divisible group of A with its structure of
a semi-local CM-triple. The morphism flf(* — Ak is a finite étale covering of formal schemes.
Since we assume that K? is small enough, Ak is a proper scheme over SpecOp . By the
algebraization theorem, there is a unique finite étale morphism of schemes over Spec O

f{* — .AK X Spec Ow.(v) Spec OEV’ (7.4.12)

such that the p-adic completion of A, is Ak..
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Recall the projective scheme Ak« g over E from section (the canonical model of Shk-),
comp. the proof of Proposition We will now relate Ak, with the general fiber Af. Xspec o,
Spec E,. We start with a reformulation of the level structure flp in Definition

We assume that S is a scheme over Spf OE,,’ i.e., we pass to the completion of the maximal

unramified extension of E,. We consider now a polarized local CM-pair (X,¢x,Ax) over S of
CM-type (K, /F},rp), cf. Definition We will always assume that the FEisenstein conditions
are satisfied. By Theorem [4.5.11} Ax is described by a Op,-bilinear form ¢y, or also

S 1 Cx x Cx = Zyp,
as defined after . Equivalently, we can consider the Ok, -anti-hermitian form
sy 1 Cx x Cx — Ky, (7.4.13)
which is defined by
Trg, /F, asony (c1,02) = Pry(acy, ), a€ Ok,, c1,c2 € Cx.

Then s, is OKp -linear in the first variable and O K, -anti-linear in the second variable.

If we define (X, tx,Ax) by (Cx, &) = (Ap,sp) (cf. (7.4.6)), we can reformulate (7.4.7): A

CL-structure is a class of isomorphisms
(X, Ax) = (X, x)  mod KJ

which respect the polarizations up to a factor in Z;. This agrees with Definition

Let Kg, be the residue class field of E'p. We will consider CM-pairs (Z,tz) of CM-type /2
over a scheme S/ Spf O iy Then Z is a p-divisible group of height 2d, and dimension d,, where
dy = [K, : Fy]. We will always assume that the Eisenstein condition is fulfilled. Proposition
m continues to hold with the same polynomials E4,. The functor Cz (cf. Definition
exists for local CM-pairs of type (K,/Fy,rp/2).

We will reformulate CL-level structures as suggested by [24]. There is up to isomorphism a
unique CM-pair (Xo,zo) of CM-type r,/2 over RE,. It lifts uniquely to a CM-pair (Xo, ) over
OE s and

P
Cx, = Ok, (7.4.14)
is the constant p-adic sheaf. We consider biextensions

B:Xox Xg— G

or, equivalently, bilinear forms of displays as in Proposition They are in bijection with
bilinear forms
¢ : CXO X OXO — OFp~ (7415)
Equivalently we use { = {4 or » = 34 as before (7.4.13).
We define s : Cyp x Cy — Ok, using (7.4.14), by
s5o(w,y) =2y. =,y € Ok, (7.4.16)

We denote by s¢ : Xo — X{* the homomorphism associated to ¢o. This homomorphism is
symmetric.

We note that there is a principal polarization A on Xy. It is a generator of the free O, -
module of rank one Homg, (Xo, X§'). In the case where K,/F, is ramified, the corresponding
form under the bijection (7.4.15) is

ox(z,y) = Trg, p, T 2y
Then so = M. In the case where K, /F, is unramified, we choose a unit ¢ € O, such that
€ + & = 0. Then the corresponding form under the bijection (|7.4.15) is
ox(w,y) = Trg, /r, € 2y
Then sg = Ae.
Let S be a p-adic formal scheme over Spf OE,; Let (X,tx,)Ax) be a polarized CM-pair

of type (K,/F,,rp) which satisfies the Eisenstein condition as always required. We endow
HomeotKp (X0, X) with an O, -anti-hermitian form with values in K. Let uy,us € Cy,(U). They
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are given by homomorphisms 1,42 : Xo — X which are defined over a profinite étale covering
U — U. We consider the homomorphism

ﬂé\)\xﬂl Xo—)X—>X/\—>X6\
This element of Homo, ((Xo)g. (Xq')z) may be written as
129/\)(121 = 5(@1,17,2)50, (7417)
with some constant 5(121, U2) € K,. In the ramified case,
6(uy,uz) == 6(i1, Giz) mod p"H_lOoKp
is well defined. In the unramified case, the element 5(111,112) is well-defined modulo p" Ok, .
Varying n, we therefore obtain a bilinear form
5 HomngF (X0, X) x Home‘Oth (X0, X) = K,.
This is a O, -anti-hermitian form. We set
-1
¢ = Ter/Qp TrKF/Fp ﬂFp/Qpa.
Then e is an alternating form
e: HomeOth (X0, X) x Hom‘f)tKv (X0, X) = Zp.
which satisfies e(aui,us) = e(u1,aus), a € Ok, .

Proposition 7.4.6. A CL-level structure on a polarized CM-pair (X, tx, Ax) of type (K, /Fy,rp)
over the p-adic formal scheme S can equivalently be given as a class of isomorphisms of p-adic
étale sheaves

n:(Ap,sp) — (HomeOth (Xo,X),¢) mod Ky, (7.4.18)
which respect the bilinear forms on both sides up to a constant in Z,; .

Proof. Indeed, we apply the contracting functor to the right hand side of the isomorphism
(7.4.18]). We view 1, Uo from (7.4.17)) as homomorphisms

’L~Li : OKP = CXO — Cx.

Let s\, : Cx x Cx — K, be the anti-hermitian form induced by Ax. The definition (7.4.17) of
the sesqui-linear form § which gives rise to ¢, reads in terms of the contracting functor as defined

by
sony (1 (), Ta (y)) = 6(iln, i2) 7. (7.4.19)
If we identify
Hom{, (Xo,X) = Homg, (O, ,Cx) = Cx

by sending @ to @(1), the form 4 is mapped to the form 5, - This is immediate by setting
x =y = 1in (7.4.19). Therefore we have identified the right hand side of (7.4.18]) with (Cx, &y )-

This proves the assertion. O

Proposition 7.4.7. Let S be a flat proper scheme over Spec OEP' Let (X,tx) and (Y,vy) be
CM-pairs of type (Ky/Fp,rp) or (Kp/Fy,1mp/2) over S. Let U — S be a finite étale covering,
and U — Spf Oép its formal completion along the special fibre. Set U, = U Xgpec O, Spec Ep.
Then there is a natural bijective homomorphism

Gn(U) = Homo,, (X(n)u,,Y (n)u, ). (7.4.20)

In particular, the p-adic étale sheaf Homo, (Ty(Xs, ), Tp(Ys,)) is unramified along the special
fibre of S.
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Proof. We consider the natural map G, (U) — Homo,. (X(n)y,Y(n)g). By Grothendieck’s ex-
istence theorem (EGA IIT, Thm. 5.1.4), the target of this arrow coincides with Homo, (X(n)y,Y(n)y).
If we restrict the last set of homomorphisms to the generic fibre we obtain the map (7.4.20).

The injectivity of follows from the definition of G™. To prove surjectivity, we can
assume that U is connected. By Grothendieck’s existence theorem we find a finite connected
étale covering Uy — U such that the sheaves C), X and Cmyé become trivial over Ul.

We write the proof only in the case where X and Y are of CM-type r,,. The cases where 7, /2
appears will be obvious. By the choice of Uy, we deduce the isomorphism

G (Uh) = Homo,, ((Ok, /p"Ok, ), (Ok, /p" Ok, )?)-
We choose a geometric point w of (U1),. Then we obtain injective homomorphisms
Gn(U1) = Homo,, (X (n)u,,,., Y (n)u,,) =
@Okp (Tp(Xy) @ Z/(p"), Tp(Yy) @ Z/ (p"))(Ur,5) —
Homo,, (T(Xo), Tp(Ys)) ® Z/(p") 2= Homo, ((Ox,)?, (Ok,)?) @ Z/(p").

Since we have the same number of elements on both sides, the arrows are bijective. In particular
this shows that the étale sheaf HomOKp (Tp(Xy), Tp(Y5)) ®Z/(p™) becomes trivial over the finite
étale covering Uy, — 5,. Therefore it is unramified along the special fibre of S.

Finally, we obtain the bijectivity of (7.4.20) by exploiting the sheaf property with respect to
the covering

U1><UU1 :; U1*>U

O

Corollary 7.4.8. With the assumptions of the last Proposition, there is a p-adic étale sheaf
HornoKp (X,Y) on S whose restriction to the special fibre SXgpec O, Speckp, is HorneOtKp (X,gEF Y, )

and whose restriction to the general fibre S Xgpec0,, Spec E‘p is HomOKp (Tp(XEp),Tp(YEp)).
P

Proof. The sheaves G,, over S are representable by finite étale morphisms of formal schemes.
They come therefore from finite étale morphisms G2 — S. We have to compare the general
fibre of G2 with MOKF (Tp(X), Tp(Yy)) ®Z/ (p™).

We have shown that both sheaves are trivialized by a finite étale covering S; — S. The
homomorphism gives a canonical isomorphism between these sheaves with constant
étale sheaves on S7 Xgpec O, Spec k By Finally, we consider descent for the general fiber of the

covering
p
Sl Xg Sl j Sl )
p2

We see that the descent data for the two sheaves agree since they are induced from the descent
datum on the étale sheaf Hom(X (n),Y (n)). O

We now go back to the Definition We choose for each banal p a CM-pair (X 0,tp,0)
of local CM-type (K /Fy,7y/2) over Spf O . We may assume that Cx, , = Of,. We endow
Cx,, with the hermitian form (7.4.16) which corresponds to the symmetric homomorphism
5p,0 1 Xpo — Xpo- We define X5 = [, 1,00 Xp,0 and we endow it with 50% = [[8p,0. Then

by Proposition we may replace (2) in Definition by
(2") A class 7, of isomorphisms of p-adic étale sheaves,

Np : Ab2 Homot;{a(Xé’a, A[poo]ba) mod K;’ba,
which respect the forms on both sides up to a constant in Z;,

The lisse p-adic sheaf on Ak given by the right hand side of (2') is the algebraization of a lisse p-
adic sheaf on Ak which exists because this scheme is proper over Spec O, . We denote this sheaf
by the same symbol. Then the scheme Aj. is given by the following functor on the category
of schemes S over Spec Oy, : A point of Ag. (S) consists of a point (4, ¢, A\, 7P) of Ak (S) and a
class 7, as in (2’). We deduce the following description of Aj..
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Proposition 7.4.9. The scheme Aj. Xspec Os, Spec E, represents the following functor on the
category of E,-schemes. A T-valued point is a point (A, 1, \,71?) of Ak(T) and a class 7, of
isomorphisms of p-adic étale sheaves

1y + AP = Hompue (T, ((X5™) g, ), Tp(A)**) mod K™, (7.4.21)

which respect the forms on both sides up to a constant in Z, .
The scheme Aj. is the normalization of Ax Xgpec Op.(s,) SPEC OE, in A Xspec O3, Spec E,
and is finite and étale over Ak Xspec O.(p) Spec OE‘,,' O

Theorem 7.4.10. Let Eﬁb be the maximal abelian extension of E',,. Then there is an isomor-
phism
Ak B Xspec 2 Spec B2 = Ay, XSpec Oy, Spec E2b (7.4.22)

which is natural in K*.

Proof. We make explicit what a level structure means after base change to Ef}b. Over
Eﬁb we may choose an isomorphism Z,(1) = Z, and therefore we do not need to worry about
Tate twists. The Tate module T),(X, ) of X, ¢ over an algebraic closure of E,isan O K,-module
which is free of rank 1. Therefore the Galois group of E,, acts on the Tate-module via its maximal
abelian quotient. We choose an isomorphism

T,(Xp0) = Ok, (7.4.23)

such that the action of the Galois group of Eﬁb on both sides is trivial. The symmetric map
Sp 0 Xpo — Xé\’o induces a hermitian form s, g on the Tate-module (7.4.23). We find

%p,O(x7y) = CP,Oxga T,y € OK

for some constant ¢, o € O;p . Note that in the ramified case two isomorphism classes are possible
for s, .

We consider a T-valued point (A4, ¢, \, 7P, 7p,) from the right hand side of (7.4.22)). Let X =
[1 X, be the p-divisible group of A. A polarization from A induces an anti-hermitian pairing »,
on T,(X,). The anti-hermitian form ¢, on Hom(7}, (X, 0),T,(X,)) is given by

%p(U1(.T),U2(y)) = 51:(“17“2)01:,033?7 T,y & OKp7 (7424)

where w1, us € Hom(7T,(X,0), Tp(X,)) are sections.
For an Ok, -lattice (I, ) with an anti-hermitian form s : I' x I' = K, we write I'[c] =

(T', cser). The equation (7.4.24)) gives an isomorphism
(Hom (T}, (Xp,0), Tp(Xp), ¢p,00p) = (T(Xp), 55).
We see that a level structure (|7.4.21)) at the banal prime p is given by an isomorphism
Aplep0] = (T(Xy), 25) mod K.

Choosing a fixed isomorphism Ay[cp 0] = A, we see that such a level structure at p is the same
as a class of isomorphisms

M+ Ap = (Tp(Xp), 45) mod K.
Since we want a level structure for T),(A)"*, we require that the 7, must respect the bilinear
forms on both sides by the same factor u € Z;. For the special prime p, we take an arbitrary
isomorphism

Npy * Np, = Tp(Xp,)

which respects the bilinear forms on both sides up to the same factor u € Z;. This is possible
because by (ii) of Definition m the O, -lattices of both sides are isomorphic and since, by
Lemmas M and (8.1.3} there exist isomorphisms with an arbitrary multiplicator u € Z;. We
set

Tp = Np,Mp : A ® Zy — Tp(A).
Finally we set
n=mm" VoA = V(A).
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Let 7 be the class of this isomorphism modulo K*. Then (4, , A, 7) is a T-valued point of A+ f.
Since the last construction can be reversed, we obtain the isomorphism of the theorem. O

We will formulate a more precise version of the last Theorem. Let EY be the algebraic closure
of E,. The action of the Galois group Gal(ES/E,) on T,(X, ) is given by a character

Xpo : Gal(ES/E,) = Of (7.4.25)
such that o(t) = xp.0(0)t for t € T,(X,0) and o € Gal(ES/E,). Since the polarization of X, o
is defined over E,, we obtain that Nmg, /r, Xp.0(0) = 1. We define
xe* (@) = ] xpol0) € G**(Qy).

p,banal
Finally we define xo : Gal(ES/E,) — G(Q,) by setting

Xo(0) =1 % xg*(0) € Gy, x G**(Qy).
We note that this element is in the center of the group G(Q,). By definition of the functor
Ak~ g before Remark Xo(o) acts on A B = Ak B Xspec 5 Spec E,, via the datum (3),
i.e. it acts by Hecke operators. We obtain the homomorphism
X0 : Gal(ES/Ey) — Aut®P Ay, » . (7.4.26)
(We write here the opposite group because the Hecke operators act by definition from the right.)

Corollary 7.4.11. Let o € Gal(E¢/E,). Then the action of iday, x Speco on the right hand
side of induces on the left hand side the automorphism x&(o) x Speco.

Remark 7.4.12. In general, let X a quasi-projective scheme over E,. Let x : Gal(ES/E,) —
Aut®®? X be a continuous homomorphism. Then descent says that there is a unique quasi-
projective scheme X () over E, and an isomorphism

X XSpec B, Spec E — X (x) XSpec £, Spec E;,

such that, for all ¢ € Gal(ES/E, ), the action of idx(y) X Speco on the right hand side induces
on the left hand side the action x (o) x Speco. We will call X (x) the Galois twist of X by x.

Proof. (of Corollary [7.4.11) We take (7.4.22)) over the algebraic closure E¢. For o € Gal(E¢/E,),
we write & := Speco. We consider the non-commutative diagram

o o C * o C
AK*7EU XSpec By Spec B¢ —— AK*,EU XSpec B, Spec E¢

idAx&J( J{idwx?f (7.4.27)

o v C * . c
AK*VEU ><Spec E, Spec El/ ? AK*,EV XSpec B, Spec Eu'

To understand how this does not commute we consider more generally a scheme S of finite type
over £, and write Sgc = S X spec 5, Spec Ef. The morphism 65 :=ids X 6 : Sge — Sge induces
maps
gA': AK*7EV(SE§) — AK*,EV(SEL?)’ A ! -A;Q’EV(SEg) - A;{*7EU(SE§)-

Our task is to compare the effect of these maps on an element § € Ag. » (See) = Ay, » (SE¢).
The moduli interpretation describes £ as a point of Ay. by a point (A1, \,7P) € Ak 5, (SEe)
and a rigidification 7, : AP> — Tp(A)ba mod K*”2. To make this more precise, we choose a
geometric point w : Spec ES — S which extends naturally to a point w : Spec ES — Sge. We
define w’ by the commutative diagram

65
Spy — s Sp

N

Spec Ef AN Spec ES.
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The rigidification is given by a homomorphism
np 2 AP* = T, (A,,)P™.
There is an isomorphism
Tp((654))w = 6" (Tp(Auw))-

By the moduli interpretation, the point o.4(€) is given by (65A4,6%5¢,65M, 6577) and the rigidi-
fication is given by

Aba = g* (AP T g7 (AL)). (7.4.28)
Now we consider o4+(£). We can give the sheaf Tp((Xga)EV) in (7.4.21) equivalently by the

Gal(ES/E,)-module AP2(xh?), where we indicate that the Galois group acts via the character
xb&. Then 7, of (7.4.21)) can be considered as a class of maps

AP (x6™) e — Tp(Au)P* mod K*P2. (7.4.29)

Since we are over E¢, the action via y§? is trivial and therefore (4, ¢, A, 77, 7p) describes also a

point of A7 . (Sge). But if we want to identify the inverse image of this point by s we must
take into account the twist x5®. This inverse image is again given by (654, 6%, G5\, 657P) as
before, but the new rigidification at the banal places is

AP (B e 22 6% (AP (5% e 8 67 (T (AL). (7.4.30)

The first isomorphism comes from the fact that both sides are the inverse image of AP*(x5)
considered as a sheaf on Spec F,,. Therefore this isomorphism is the descent datum on the
constant sheaf, which is the multiplication by x{*(o). We obtain

ba /. ba X}J)a(g) Ak ba ba &*(n ) Ak
AP (o) D G (ar) (k) ) 5T (AL).
This proves that o4+ = x§(0)o4. If we apply this to the diagram (7.4.27), we obtain
idg- x 6 = xo(o)(idg x &).
]

We now drop the assumption on K7 that it be contained in K, and come from a product of
K75. More precisely, let K} C G(Q,) be of the form

K’ = G(Q,) K, K", (7.4.31)

where K3 is an arbitrary open compact subgroup of G**(Q,). Since K, is a normal subgroup
of G, and G(Q,), this class of subgroups is stable under conjugation by elements of G(Q,).
Therefore, using the naturality of the construction in Proposition [7.4.9] we can extend the
definition of Aj. to all such K* = K7K? by first passing to a small enough normal subgroup
of finite index and then dividing out by the factor group.

‘We make this extension process more explicit by defining the functor ./Alf{* without using the
choice of A;,. Thereby the action of the Hecke operators becomes more obvious.

Let 0 : X — Y be an isogeny of p-divisible O ® Z,-modules. Let p, be a prime of O over
p. We say that 6 is an isogeny of order prime to p, if 6, is an isomorphism. We use a similar
terminology for abelian varieties with action by Op.

We consider a scheme S over Spf O, . We consider abelian schemes A over S up to isogeny of
order prime to p, which are endowed with an action ¢ : O — End A and with a Q-homogeneous
polarization X\ such that the Rosati involution induces the conjugation on Og. Moreover, we
assume that there is a triple (A, ¢, A) as in Definition which represents (A, ¢, \) such that
(A, ) satisfies the conditions (KC,) and (EC,) and such that (A,:,\) satisfies the conditions
(i) and (ii) of Deﬁnition Then call (A, ¢, \) an admissible prime-to-p,-isogeny class. Let
X = Hp X, be the p-divisible group of A. Then (Cxva,&)) makes sense and (Cyva @ Q,€))
depends only on (A,1,\). Let (X, x, Ax) as in Definition

Definition 7.4.13. We define a functor fl’f{* on the category of schemes S over Spf Oy . A
point of A% (S) consists of the following data:
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(1) an admissible prime-to-p,-isogeny class (A, ¢, A) over S.

(2) a class of isomorphisms
ip : Coa @ Q = Cgppoeppa ® Q mod K™,
which respects the bilinear forms on both sides up to a factor in Q..

We explain more detailed what is meant by (2). We assume that S is connected and we choose
a geometric point w of S. Then the meaning of (2) is that we have a class of isomorphisms

Mp ¢ (Cxpa)o ® Q = (Cgppoeppa)ew ® Q mod Ky P

which respects the bilinear forms on both sides up to a factor in Q and such that the class is
preserved by the action of 71 (S, w).

Let K} as in Definition Then the functors of the Definitions and coincide.
Indeed, let us start with a point of Definition Also, fix a triple (A, ¢, A) which represents
(A, 1, ), as before Definition The sublattice Aga C Cxwa)y is fixed by K;’ba. Therefore
the image C' of Ag" by 7, depends only on the class 7, and is invariant by 7 (S, w). Therefore
C defines a p-adic étale sheaf on S. We endow it with the polarization induced by <2, cf.
(7.4.6). Therefore, using the contracting functor C defines a p-divisible O gva-module YP? with
a polarization. Then Y = X, X YP2 is isogenous to the p-divisible group X of A. The
polarization on Y differs from the polarization induced from A on A by a factor in Z), as we
see by comparing the degrees of the polarizations. Therefore we obtain a point (Ay, 11, A1) of

A% (S) which is isogenous to (A, ,A). This proves that the point we started with comes from
a point of the functor in Definition It is clear that we have a bijection.

We have an action of GP*(Q,) on the tower Ak, for varying K7. This action extends to the

algebraization Aj. and coincides via Theorem with the Hecke operators on the tower

Ak k.

Corollary 7.4.14. For every K* = K;K? with (7.4.31) , there exists a normal scheme Ag.
over Spec O, such that for the p-adic completion of this scheme there is an isomorphism

lic: = J(Q\[(Q2r, xspror, SPEO)) x GP(Qy) /K™ x G(A)/KP).

For varying K*, these schemes form a tower with an action of the group G(Qy) X G(A’}), where
the action of G(Qp) factors through G(Q,) — G**(Q,). The isomorphism of formal schemes is
compatible with these actions.

The general fiber of Ak. is a Galois twist of Ak~ E Xspec E SPeC E, by the character x5, cf.

and Remark[7.4.13, The Galois twist respects the Hecke operators (cf. section[7.6 for

an explicit description of xg).

Proof. This is a consequence of Proposition [7.4.4] and the general pattern of p-adic uniformiza-
tion, cf. (7.3.1). The last assertion follows because xo : Gal(E2*/E,) — G(Q,) factors through
the center. 0

7.5. The rigid-analytic uniformization. Let Aﬁg denote the rigid-analytic space over Sp E,,
associated to Ak g. Then Theorem implies the following corollary concerning generic
fibers.

Corollary 7.5.1. Let K = K,K? as in (7.1.8). There exists an isomorphism of rigid-analytic
spaces over Sp El,,

A xspm, SP By = J(Q\[(2r, xspr, SPEL) x G'(Qy)/G'(Z,) x G(AT) /K] .

For varying KP, this isomorphism is compatible with the action of G’(A?) through Hecke corre-
spondences on both sides. O
Here Qp, = Pj, \ P'(F,) is Drinfeld’s p-adic halfspace corresponding to the p-adic field F,.

Similarly, Corollary [7.4.14] implies the following corollary concerning generic fibers for deeper
level structures.
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Corollary 7.5.2. Assume that there are banal primes. Let K* = KJK? with (7.4.31). Let Aiiﬁ
denote the rigid-analytic space over Sp E,, associated to Ak~ g. There exists an isomorphism of
rigid-analytic spaces over Sp Ef}b,

A xsp, Sp B = JQN[(Qr, xspr, SPES®) x G (Qy) /K™ x G(A]) /K],

For variable K*, this isomorphism is compatible with the Hecke correspondences by G(Qp) x
G(AR). O
f

7.6. Determination of the character x§. In this section we give an explicit description of
the character XB (7.4.26)) which is used in Corollary [7.4.14] In the case where p, is ramified in
K/F, we only obtain the restriction of x} to the Galois group of a quadratic extension of E,.

It is enough to describe x,.0 (7.4.25) for each banal prime p. This is done by Proposition
below.

Let K/F be a CM-field. Let Z C Homg.a1 (K, C) be a CM-type. We denote the reflex field
by H. We define an algebraic torus over Q, with Q-valued points

T(Q)={ae€ K* |aacQ*}.

We use the notation V' = K for K regarded as a K-vector space.
We recall the reciprocity law. We define the homomorphism

p:C* = (K®egC)* = H C*.
p:K—C

The element pu(z), for z € C, has component z for ¢ € = and has component 1 for ¢ ¢ = on the
right hand side. We find ppt = 1® 2z € (K ®g C)*. We obtain a homomorphism of algebraic tori

M Gm,C — TC.
This homomorphism is defined over H,

o Gm,H — TH.
From this we deduce the reciprocity map

N Nm

t: Resy (G, i) = Respyo(Tu) —%° T. (7.6.1)
We consider over the algebraic closure H = Q the set of tuples (4,1, \, k), where (A, ) is an
abelian variety over H of CM-type =, endowed with a Q-homogeneous polarization A which
induces on K the conjugation over F' and an isomorphism  : V(A) — V @ Ay of K ® Ay-
modules. We call a second tuple (A’, ¢/, N, k') equivalent to (A, ¢, A, k) if there is a quasi-isogeny

a: (AN = (A 0,N) (7.6.2)
such that the following diagram
V(4) - V(A"
Ve Af

commutes. We also say that (A, ¢, \, k) is quasi-isogenous to (A’, ', N, k').

Let C= be the set of tuples (A, ¢, A\, k) up to equivalence. Let o € Gal(H/H). Taking the
inverse image of (4, t, A\, k) by & := Speco : Spec H — Spec H gives a left action of Gal(H/H)
on C=. We denote the inverse image by o (A, ¢, \, k).

We formulate the main theorem of complex multiplication of Shimura and Taniyama.

Theorem 7.6.1. (|8, Thm. 4.19]) The Galois group Gal(H/H) acts on Cz via its mazimal
abelian quotient Gal(H®P/H). Let e € (H ® A)* and let rec(e) € Gal(H*®/H) be the automor-
phism given by the reciprocity law of class field theory. The following tuples are equivalent:

rec(e)(A, 1, \, k) = (A, 1, N\, t(ef)k),
where ey is the finite part of the idéle e.
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Remark 7.6.2. Let (H*)" C (H ® Af)™ be the closure of H*. We deduce a homomorphism
Gal(f1/H) — (H & A7) [(H)" = T(A7)/T(Q), (7.6.3)

where the first arrow is deduced from class field reciprocity and the second arrow exists because
T(Q) = T(Q)". To see this last fact, we note that the group of units in T(Q) is finite. Indeed,
the units are elements of K * with all absolute values equal to 1 at all places including the infinite
ones. Therefore T(Q) = T(Q)" by Chevalley’s theorem.

Theorem says that the action of Gal(H/H) on Czg is via . One can consider the
Shimura variety Shp. We may choose as usual a bijection

Shy(H) = Shy(C) = T(A;)/T(Q)".

Then the theorem may be regarded as a consequence of Langlands’ description of the reduction
of this Shimura variety at good places [15].

We fix an embedding Q — @Q,. The p-adic place which is induced on a subfield of Q will be
denoted by v.

Proposition 7.6.3. Let L C Q be a number field such that H C L. Let (Ao, 1o, o) be an abelian
variety over L with an action 1y : Og — End Ag which is of CM-type =. We assume that Ag
has good reduction at v. The group Gal(L,/L,) acts on the Tate module T,(Ao) via its mazimal
abelian quotient Gal(L2P/L,). Let I, C Gal(L>/L,) be the inertia group. The action of I,, on
the Tate module can be described as follows.

The inverse of the map induces a homomorphism
pr L T X C(H Q) T (K @ Q)X
Composing p with the reciprocity law of local class field theory yields
I, = 0F 5 (O @ Z,)*.

The action of an element o € I, on the Tate-module is the multiplication by the image in the
right hand side.

Proof. We set A = Ay QH H with the Og-action and the ipduced pplarization. We set A =
O C V and A = O ® Z. We choose a rigidification x : T'(A) 5 A. We consider the tuple
(A 1, \ k). Let
o€l,CGal(H,/H,) C Gal(H/H)
be an element of the inertia group at v. The image in Gal(H*"/H) corresponds to an idele in
(H ® A)* which has components 1 outside v and a component e, € O?IV at the place v. We
denote the idele also by e,. By Theorem [7.6.1] we have a quasi-isogeny
(A, 1, N k) 2 (A1, N, t(e, k).

Let us moreover assume that o fixes the elements of L. Since (A, ¢, \) is defined over L, it is not
changed by 6*. Now we consider the product of the Tate modules for all primes,

T(A) = 6*(T(4)) —W A.

The first identification is due to the fact that T°(A) is a projective limit of étale sheaves on
Spec L.

Lemma 7.6.4. Denote by T(c) the action of o on T'(A). Then
6* (k)T (0) = k.

We postpone the proof of the Lemma. Because we have good reduction, the element T(o—)
acts trivially on the Tate modules Ty(A) for £ # p. On T,(A) it acts by multiplication with an
element u(o) € (O ® Zp)*. Therefore we have a quasi-isogeny

(A, 0, N t(e))k) = (A, 1, N, u(o) k) (7.6.4)

The quasi-isogeny giving this equivalence must be trivial on the Tate modules V;(A) for ¢ # p.
It is therefore the identity. The proposition follows therefore from Lemma |7.6.4 (]
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Proof. (of Lemma [7.6.4) We consider an étale sheaf G over Spec L where L is any field. Let
L* be the separable closure of L. For ¢ € Gal(L*/L) we denote by G(o) : G(L*) — G(L®) the
natural action. Let I be a constant sheaf on Spec L associated to a set I'. Let

k:G—T

be an isomorphism of sheaves on (Spec L®)¢;. There are canonical isomorphisms 6*(G) = G and

Ak

6*(I') 2 T because both sheaves are defined over L. We must show that the map
WG =67 (G)(L7) W 6 (D) (L) =T
coincides with kG(o™1).

Let A be a finite étale algebra over L®. By definition of the inverse image, we have 6*(G)(4) =
G(As]). Therefore the L°-algebra isomorphism o : L® — L, induces a natural map Glo]: G(L?) —
6*(G)(L*). Our assertion follows from the commutative diagram, in which the composition of
the two upper horizontal arrows is G(o),

G(L
|
r

) =29 67(G)(L°) = G(L*)
(

6" K)J /
r

_—
I[o]=id

O

Let K/F,r,E — @p, v be as in section Let p be a banal prime of K. Let (X, 0,¢p,0) be
the unique CM-pair of CM-type 7, /2 over Spec Op, . We set

Ep={pe®,|r, =2},
where ®, = Homg,-a14(Ky, Qp), as in (7.1.9). We consider the homomorphism

My Q; — (K, ®(@p)X = H@;
@y

such that the component of u,(a), a € @p, is equal to a for ¢ € =, and is 1 for ¢ ¢ =,. This
morphism is defined over F,. We define the local reciprocity law t, as

N
X

v BX S (Ky 09 B)* —4Y K (7.6.5)

Let I, C Gal(E2*/E,) be the inertia group. As before (7.4.25), let E¢ be the algebraic closure
of E, in the completion of @p. By the reciprocity law of local class field theory, we define

—1
rec

pp : Gal(ES/E,) = Gal(EP/E,) ' 0%, 2 05, .
Proposition 7.6.5. Let p be a banal prime of K. Let xp o Gal(ES/E,) — OIX(P be the character
given by the action on Tp(X, ), compare . Then the restriction of this character to the
subgroup

Gal(E;/E,po(Ky,)) C Gal(Ey/E,)

coincides with the restriction of p, to this subgroup.

We remark that E, o (K b, ) equals E, if p, is unramified in K/F and is a quadratic extension
of E,, if p, is ramified in K/F.

Proof. Tt follows from the functoriality of rec that the proposition implies the same statement
for a finite extension E, of E,,.

We define a CM-type = C & = Homg a1g(K, C) by choosing ¢ : K — C with r,, = 1 and
setting

E={pe®|r,=2}U{wo}

We denote by H the reflex field of 2. We find that Hyo(K) = E@o(K). We claim that there
exists an extension of number fields L/H which is unramified at v and a tuple (A4, ¢, A, k) which
is defined over L and such that A has good reduction A over O L,- Let Y be the p-divisible group
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of A, which we write as Y = Hp Y,, where p runs through the prime ideals of Ok over p. Let p
be banal. Then (Y},t)®0,, Oy is a CM-pair of type ry /2 which satisfies the Kottwitz condition
and the Eisenstein condition. Therefore it is isomorphic to (X 0,tx, ,) which is defined over
0 i, Therefore the proposition follows from Proposition .

It remains to show the existence of L. We fix an open compact subgroup C' C T'(Af) which
is maximal in p and is small enough. The Shimura variety Shz ¢ which is associated to (7' )
and C' is representable by a moduli problem Az ¢ i which is finite and étale over H. Moreover
it has a model Az ¢ over Op,. It is defined exactly in the same way as Ak. Since for the
moduli problem Az ¢ each prime p of O is banal, it is representable by a finite étale scheme
over Op,. We conclude the Az ¢ g = ]_[:r;1 Spec L; for some finite field extensions L;/H which
are unramified over v. Restricting the universal abelian scheme over Az ¢ g to some L = L;,
we obtain a tuple as required. O

8. APPENDIX: ADJUSTED INVARIANTS

In this appendix we first collect some facts about anti-hermitian forms. Then we give a
correction to [I8, Prop. 3.2], by introducing the r-adjusted invariant of a CM-triple. Finally, we
relate the r-adjusted invariant to the contracting functor of section

8.1. Recollections on binary anti-hermitian forms over p-adic local fields. We first
recall the invariant of an anti-hermitian form in the case relevant to us. A good reference for
this material is [13].

Let K/F be a quadratic extension of fields of characteristic 0. We denote by a — a the
non-trivial automorphism of K over F. Let V be an 2-dimensional vector space over K. Let

x: VXV —K,
be a sesquilinear form which is linear in the first argument and anti-linear in the second. We
assume that s is anti-hermitian:
x(x,y) = —sx(y, ).
We choose a basis {v1,v2} of V. Then det(s(vi,v)))i jeq1,2; € F*. We denote by
the residue class of this element. It is independent of the choice of the basis and is called the

discriminant of (V, s).

Definition 8.1.1. Let F' be a p-adic local field and K/F' a quadratic field extension. Let (V] 5)
be a K-vector space of dimension 2 with an anti-hermitian form 3¢ which is nondegenerate.
We denote by inv(V,s) € {£1} the image of dx/p(V, ) under the canonical isomorphism
F*/Nmpg,p K* ~ {£1}. The invariant determines (V, ») up to isomorphism, cf. [I3].

We note that an anti-hermitian form ¢ can equivalently be given by an alternating non-
degenerate Q,-bilinear form
P:VxV—Q (8.1.2)
such that
Y(az,y) = Y(z,ay), z,yeV, a€K.
The anti-hermitian form s¢ is defined by the equation
Tryq, ax(x,y) = Y(ax,y).
In this case we set
inv(V, ) = inv(V, »).
The invariant inv(V, ) determines (V, 1)) up to isomorphism.
Let A C V be an Og-lattice such that v induces a pairing
Y AXA—Z,, (8.1.3)
i.e., 1 is integral on A. We consider the map
A — Homgz, (A, Zy)

y — Ly, where (,(z) =(z,y) (8.1.4)
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This is an anti-linear map of Og-modules. Therefore the image of this map is an O g-submodule.
We denote the length of the cokernel as an Og-module by h(A, ).

Lemma 8.1.2 ([13], Thm. 7.1). Let F be a local p-adic field and K/F an unramified field
extension. Let V' be a 2-dimensional K-vector space. Let

P:VxV—Q,

as in . Then inv(V 1) = 1 iff there exists an O -lattice A C'V such that i is integral on
A and such that h(A, ) = 0, i.e., such that Y|axa is a perfect pairing. Moreover, A is uniquely
determined up to Aut(V, ).

Similarly, inv(V,v) = —1 iff there exists an Og-lattice A C V', such that i is integral on A
and such that h(A, 1) = 1. Moreover, A is uniquely determined up to Aut(V,4). In this case,
Y|axa is called almost perfect.

Proof. This reduces to the analogous statement for the anti-hermitian form vV XV -—K
defined by }

t(EY (21, 22)) = ¥(Exr,22), 21,22 €V, (€K
where t : K — Q, is defined by t(a) = trx /g, (9~ 'a), where ¥ denotes the different of K/Q,.
Then it follows from loc. cit. O

Lemma 8.1.3 ([I3], Prop. 8.1 a)). Let p # 2, and let F be a local p-adic field and K/F a
ramified quadratic field extension. Let V be a 2-dimensional K -vector space. Let

YV xV —Qp.
as in . Then there exists an Ok -lattice A C'V such that ¢ induces a perfect form
Vi AXAN—Zp.
Moreover A is unique up to Aut(V, ). O

8.2. The r-adjusted invariant. Let K be a CM-field, with totally real subfield F'. We set
® = Homg-a1g (K, Q). Let r be a generalized CM-type of rank n, i.e., 7y + ry =n. Let E = E,
be the reflex field, cf. [I8] §2]. A CM-triple over an Og-algebra R is a triple (A, ¢, A) where A is
an abelian scheme over R with an action ¢ : O — End A with satisfies the Kottwitz condition
(KC,) and a polarization A whose Rosati involution induces the conjugation of K/F. In the case
n = 2 this is a CM-triple with satisfies the Kottwitz condition. Let v be a place of F. We define
an r-adjusted invariant inv] (4, t, A) attached to a triple (A,¢, A) of CM-type r, defined over a
field k that is at the same time an Og-algebra. When v is non-archimedean split in K, then
invy (A, ¢, A) = invy (A, ¢, A) = 1. If v is archimedean, or non-archimedean non-split in K, with
residue characteristic of v different from the characteristic of k, then invy (A, ¢, A) = inv, (A, ¢, A),
i.e., the adjusted invariant coincides with the invariant of [I8, §3]. Comp. section for the
definition of the latter invariant for n = 2. The case of general n is substantially the same.

Now let v be non-split with residue characteristic equal to the characteristic p of k. We may
assume that k is algebraically closed. Let us first assume that the Og-algebra structure of k is
induced by a O@-algebra structure. Let & be the induced p-adic place of Q. Let

@, ={p: K — Q| 7oy induces v }. (8.2.1)
Then
®, = Home (Kva@f/)'
Also let
Ty =To,-
Now define
invy (A, e, A) = inv, (A, ¢, A) sgn(ry), (8.2.2)
with
sgn(ry) = (_1)(%‘1“*250@3 re) _ (_1)52%,64,#’“9;*%)' (8.2.3)

Here @ is a half-system of embeddings in ®,, which has cardinality d, = [F, : Q,]. Since
ro + 1z =n for all ¢ € ®,, and n is supposed to be even, (8.2.3)) is independent of ®;. Note
that sgn(r,) only depends on the place v of E induced by v.
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The correct version of [I8, Prop. 3.2] is now as follows.

Proposition 8.2.1. Let S be an Og-scheme. Let (A, 1, \) be a CM-triple over S which satisfies
(KC,). Let ¢ € {£1}. Then for every place v of F, the set of points s € S such that

inv) (As, ts, As) = ¢
is open and closed in S.

Proof. Clearly we may assume that S is an Og-scheme of finite type. Further we can assume
that S is irreducible. Obviously the invariant is constant on the generic fiber of S. Also, we may
assume that v is non-archimedean non-split in K.

First we consider the case when S is an irreducible scheme of finite type over kg, . Since each
local ring of S is dominated by a discrete valuation ring R, it is enough to consider the case
S = Spec R. We may replace R by a discrete valuation ring that dominates R. Therefore we
can assume the R is complete with algebraically closed residue class field, i.e., R = k[[t]] for an
algebraically closed field k. According to the action of F' ® Q,, the p-divisible group X of A is
isogenous to a product Hw‘ » X. We consider the factor X,,. Let P be the display of X, over R,

%:PQ XPQ*)KU ®ZP W(R)

as in 1} We consider the hermitian form h = Ag s, W(R)% O1 Ao, ®sz(R)PQ' From
the equation

h(Fyy, Fyz) = p™ "h(y1,52), y1,92 € Ao, @z, w(r) P

we obtain that h(z,z) lies in the invariants (K, ®z, W(R))" = K,. Because h is hermitian, we
obtain h(z,z) € F,. The element = can be used to determine the invariant of the Dieudonné
module P ®y gy W(L) obtained for arbitrary base change R — L to a perfect field. Therefore
invy (As, ts, As) = Invy, (A, Ly, Ay) and invy (As, ts, As) = invy, (Ay, Ly, Ay), where s and n denote
the special and the generic point of Spec R. For the comparison with the definition of the
invariant of a Dieudonné module we should remark that the equations Fz = p™/2z and V& =
p"/2z are equivalent because FV = p" on AgKU ®ZPW(R)P'

Now we consider the case when the function field of S has characteristic 0. This case can be
reduced to the case when S = SpecOp, where L is the completion of a subfield of @p which
contains F and such that its ring of integers O = Oy is a discrete valuation ring with residue
field F,. We denote by Ay, the generic fiber of A, and by Ay its special fiber.

We decompose the rational p-adic Tate module of Ay, resp. the rational Dieudonné module
of Ay, with respect to the actions of ' ® Q,,

Vo(AL) = P Va(Ar), M(Ap)g =P M(Ar)gw-
wlp wlp
Here V,,(AL) is a free K ® F,-module of rank n, and M (A)q,w is a free K ®@p F\, ®g, W (k)q-
module of rank n. Set Qp =W(k)g-

Let S, = Nk, Vo(AL) and Ng» = Ak, M(Ag)q..- Both are equipped with hermitian forms
(for the first module, cf. [I8] section 3, case b)]; for the second module, cf. subsection. Also,
we have Ny, = 1,(%), where 1, is a multiple of the unit object in the category of Dieudonné
modules, comp. , or Lemma, Let U, be the image under the Fontaine functor of
Ng,w(—%). We need to compare the two hermitian vector spaces S,(—%) and U,.

Let T be the torus over Q, which is the kernel of the map defined by the norm of K,/F,,

1 —T— ResK“/Qp Gm,Kv — ReSF,,/Qp Gm,Fv — 1.

Then H'(Q,,T) = F,)/Nm(K,). We may regard the isomorphisms of hermitian vector spaces
Isom(U,, Sy(—%)) as an etale sheaf on Spec Fy,. This is a T-torsor. Its class cl(U,, Sy(—7%)) is
calculated by [27, Prop. 1. 20].

To evaluate this formula, note that the first summand, «(b), in loc. cit. is trivial. To evaluate

the second summand, p¥, we use the following description of the filtration on No,v ®g, Qp. For



138 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK
the filtration of M (Ax)g.u ®g, 617 = PByca, M(Ar)g,v,e We have that the jumps are in degree 0
and 1, with
(0) C Fily, C"¢ M(A)g,v.e- (8.2.4)

The upper index means that the cokernel has dimension r,. For the filtration of the one-
dimensional vector space Ng,v,,, this means that the unique jump is in degree n —r,. We use
the identification

K, F, Fy

X.(T) = Ker (Indj’ (Indg! (Z)) — Indg! (2)).

Then the corresponding filtration on N(A)q,u,(—7%) is given by the cocharacter u € X, (7T") with

n

N@ZE

We have to determine the image p* of p in X,(T)r. Under the identification X, (T)r =
HY(Q,,T) = Z/2, we obtain

— 1y, @ €D, (8.2.5)

n n
cl(Uv,Sv(—§)) = Z Php = §dv — Z T s (8.2.6)

pEDS pedf
where we used the notation introduced for (8.2.3). We deduce invy (A, t, \r) = inv, (A, tr, AL),
as desired. O

In the proof of Proposition [8:2.1] we used the following lemma.

Lemma 8.2.2. Let F/Q, be a finite field extension of degree d and K/F be a quadratic field
extension. Let n be an even natural number. Let k be an algebraically closed field of characteristic
p. Let (X,1) be a p-divisible group over k[[t]] of dimension nd and height 2nd with an action
Ok — End X. Let (P,1) be the display of X, cf. . Then there exists a non-zero element

Te Agx@sz(k)[[t]]P such that

A"F(z) = p™/ .

Proof. We consider the Z,-frame B, = (W (k)[[t]], pW (k)[[t]], k[[t]], 0, &), where o is the extension
of the Frobenius on W (k) to the power series ring given by o(t) = t? and where ¢ = (1/p)o.
The evaluation P; of the crystal of X at the pd-thickening W (k)[[t]]/k[[t]] has the structure of
a By-display. The display P is obtained by base change with respect to a morphism of frames
B — W(K[[t]]), cf. [34] and [21]. Therefore, it is enough to prove our assertion for the Bj-display
of X which we will now denote by P.

We consider first the case when K/F is ramified. When writing detyy (k) £, we mean
this with respect to an arbitrary W (k)[[t]]-basis of P. This determinant is well determined
up to multiplication with a unit in W (k)[[t]]. We know that dety g F = pMuy for some
ur € (W(R)[[])

We consider the decomposition P = @& F,, according to

Ox @ W(k)[H)] = [[ Ok @0, 5 WE)[[H)-
P
The Frobenius is graded, F : Py — Py,. We conclude that detyy ) (FY|Py) = p"®uy for
some unit us € (W (k)[[t]])*. We fix 1. Up to a unit we have
N/ pe detoK®oFWW(k)[{t]](Ff|Pw) = detyy (k1] (F/ | Py). (8.2.7)

We fix a normal extension L of W (k)g which contains K B0, W (k). The left hand side of
l) is the product of conjugates ci,...,c2. € OL[[t]] of deto, g, JW(k')[[t]]<Ff|Pw)' These
Fto¥

elements have the same order with respect to the prime element wy, of L which is a prime element
in the regular local ring OL[[t]]. We rewrite (8.2.7)

nd
Cl1:C2+..."Ce =P U3,

for some unit uz. Since Op[[t]] is factorial, we find ¢; = p/™/?p; for some units p;. We conclude
that
detoK®OFt1,@W(k)[[f,]](Ff|P¢) = pfn/2y,
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for some unit uy € (Ok @q , ; W(k)[[¢]])*. Since Py is a free O ®0 e W (k)[[t]]-module
of rank n, we find that, for each element y, € /\8K®OFM_)W(,€)W”P¢,, there is an equation

A" Flyy = p™2u(yy)yy for some unit u(yy) € Ok D0 0 W (k)[[t]]. On the last ring, o/ acts
via the second factor. There is a unit ¢ € Ox ®¢_, ; W (k)[[t]] such that

ol ()¢ = ulyy)-
Indeed, consider the image @ of u(yy) in Ox D0 1 4 W (k) by setting ¢t = 0. It is well-known
that in this ring o/ (¢){~" = 4 is solvable. One can lift ¢ successively modulo " to a solution (.
Then zy = (yy satisfies

/\"fow = pf"/zxw.
We define z,: € Py by A"Flzy = pin/wagi fori=1,...,f. Then z = (zy) € P ® Q satisfies
N'F(x) = p"/2z. Multiplying by a power of p we can arrange that = € P.

The proof in the unramified case is almost the same. We indicate the differences. In this case
Homg,-a1g(F*, W (k)g) has 2f elements. Therefore we have the equation (8.2.7) with f replaced

by 2f,
detOK@Opt ,,],W(k)[[t]] (F2f |P,¢}) = pfnu4

We define i € Py by A'Flgy, = pi”/waai fori=1,...,2f. Then z = (xy) € P ®Q satisfies
AF(z) = p/2a. O

Remarks 8.2.3. (i) The remarks and results on a product formula at the end of §3 of [18] become
correct when the invariants inv, (A4, ¢, A) are replaced by the adjusted invariants inv; (A4, ¢, A).
(ii) In the definition of M,y v in [18, (4.3)], the invariants inv,(A, ¢, A) have to be replaced
by the adjusted invariants invy (A, ¢, A).
(iii) One defines in the obvious way the r-adjusted invariant inv" (X, ¢, A) of a local CM-triple
of type r, (X, ¢, A), over a field of characteristic p.

8.3. r-adjusted invariant and the contracting functor. In this subsection, we return to
the situation in section We assume that K/F is a field extension. Let k be an algebraically
closed field of characteristic p with an Op-algebra structure, i.e., k € Nilpg,..

We consider the case where r is special. Consider an object (Pg, tc, ) € DSREOI cf. Definition
We write P, = (P, F¢, V.) for the corresponding Wo,.(k)-Dieudonné module. To avoid
too many double notations we denote the Frobenius automorphism on Wy, (k) by 7. The
Verschiebung on Wo,. (k) is then 77~!. For our purposes it is more convenient to allow quasi-
polarizations, i.e., 5. is a Wo . (k)-bilinear form

PC®Q X PC®Q_>WOF(I€)Q’

such that (P, te,p!B:) € DSREOI for large enough t € Z. Then fj, is alternating and the following

equations hold:
ﬁC(FCU’17FCu2) :WT(6C<U17’U/2)>7 U, U2 € PC®Q7

Be(te(a)ur, ug) = Be(ur, te(@uz), a € K.
The polarization . defines an anti-hermitian form
#.: P.RQ X P.®Q — K ®0, Wo,(k), (8.3.1)
by the formula
Trg/p arc(ui, u2) = Be(aur, uz), a € K ®o0, Wor(k), ur,uz € P. ® Q.
We note that, by Lemma [3.1.15] P. ® Q is a free K ®0, Wo, (k)-module of rank two.
Since Lie P, has dimension 2, we have ord, det Wo,, (k)(V.|P:) = 2. We recall that, for an
arbitrary K ®0, Wo, (k)-linear map V! : P.® Q — P. ® Q,
N p det K®OFWOF(k)(‘/:3u|PC ® Q) = detyy,, (k)(vcﬁ‘Pc ® Q).
We conclude that
ordn detrg, wo, (k) (VelPe) =2, K/F ramified,

8.3.2
ordr detxg,, wo, (k) (VelPe) =2, K/F unramified. ( )
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With our convention 7 = II in the unramified case, this is the same formula.

Let
2

H.= N\ PEoQ
K®orWor (k)
This is a free K ®0, Wo, (k)-module of rank 1. There is an element z., € H, such that
NV, z. = Tz, (8.3.3)

The existence of x. follows from (8.3.2)) and the fact that the T-conjugacy class of an element
¢ € K ®o, Wo,(k) is determined by its order, compare (2.4.2)).
The anti-hermitian form ¢, induces on H. an hermitian form

hc = /\Q}fC : HC X HC — K®OF WOF(k)
We find

he(N2Ve 21, N2V, 29) = w27 (he(21, 22)), (8.3.4)
where 7 acts on K ®¢,. Wo,.(k) via the second factor. Using (8.3.3]) this implies
hC(JTC,JTC) eF*ckK ®or Wopr (k‘)
The following definition is analogous to (2.4.7)).

Definition 8.3.1. The invariant inv(Pe, tc, 8.) € {£1} is defined as the image of he(zc,z.) by
the canonical map
F* — FX/NIHK/FKX ; {:I:l},

The following proposition relates this invariant with the invariant (2.4.7) under the contracting
functor.
Proposition 8.3.2. Let K/F be a field extension and let r be special. Recall the reflex field E
associated to r. Let k € Nilpo, be an algebraically closed field. Let (P,¢,[3) € D‘,Bfff;l and let
(Pe,te, Be) € 0%201 be its image by the contracting functor @f_c,;l, cf. (4.4.14). Then

invr(lp7 Ly 5) - iHV('PC, Le, ﬂc)
Here the r-adjusted invariant is given by
inv" (P, 1, B) = (=1)* Hinv(P, ¢, B).

Proof. The second assertion follows from the definition of sgn(r), cf. (8.2.3)). Let us prove the
first assertion.

We begin with the ramified case. We have the decomposition P = @ Py, cf. (4.3.6). By the
definition of the contracting functor for Dieudonné modules, we have

P.=Py,, V.=I°*y,

cf. Remark |4.4.12| The bilinear form BC on P, is the restriction of B of Proposition Since
we may change 3 by a factor in F’* without changing the invariant, we may replace 3 by 9713,
i.e., we may assume that Trr/q, 8 = 8. We define the anti-hermitian form

#:P®Q x P®Q — K ®z, W(k)
by TrK/F%:B. On
2
H= /\ PoQ (8.3.5)

K®W (k)
we obtain the hermitian form h = AZs. We have the decomposition

2
H=p AN P.o2e=H,
v Koo, Wk ¥

The hermitian form A is the orthogonal sum of the induced forms
h,/, : Hw X H¢ — K®0sz7 W(k)
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To determine inv(7P, tc, fc), we consider s, defined by Trg,p 5. = 3. and the hermitian form
he = A%, on H. = Hy,. The form hy, coincides with the hermitian form deduced from the

form f3. above. By definition g, = 77(];_ kﬁc, cf. . Hence we have
he = g g
We choose an element « € H such that
A2V (x) = pa.
Let x4, be the ¢o-component of z. Then inv(P,t, 8) is given by the element
Popo (X, Tapy) € F*.

We set 2y, = 1, ,fxwo. Then we find

2 _ _
he(zyg, 24,) = ﬂo,fkhwo (no,gmm%,z{%o) = Py (g Ty )
From V. = I~V / and A2V /2y, = p/zy,, we obtain
NVe(y,) = (1) n(p/m€) 2y,
NVe(zge) = 77 1) (1) e (p/m) 0] 2 = (=1)1 72,

By Lemma below, he(zy,, 2y,) € F* defines (—1)tinv(P,, tc, Be)-
We consider now the unramified case. As before, we have H with its hermitian form h, cf.
(8.3.5)). We consider the decomposition

2

H= @ ( AN P Q) - @Hw, (8.3.6)

K®0Kt ’J)W(k})

which has now 2f summands. Now Hy, and Hy, are orthogonal for 11 # 1)5. We denote by
h¢ : Hw X de —>K®O}(,u~) W(k)

the sesquilinear form induced by h. Let @ = (z,) € H such that A2V (z) = px or, equivalently,
A2V (zy4) = prypo-1 for all ¢. The invariant of (P,e,8) is the class in F*/Nmy p K* of
hy(zy,z5) € F C K Q0,0 W (k). This is independent of ¢. Equivalently, we can consider
ordy hy(zy,x;) € Z/2Z. Note that ord, makes sense for each element of K ®@, , 7 W (k).
Kts
The invariant of (P, tc, Bc) is defined by H. = Hy, © Hy, and he, via

ordy he(Te o Te i, ) (8.3.7)
where Tc = (Zc gy, T ) € Hyy © Hy, is the element of (8.3.3). We note that we can change h.
and the elements ¢ y,, resp. @, , by a unit in K 0,0 b W (k) without changing 1) In

particular, (8.3.7)) is equal to ordy Ry, (e s Te g, )-
For an element y = (yy,,Yyp,) € He we obtain from (4.4.3)

NVelyyy) =7 2990 N V(yy,), AN Velyg,) =7 2% A2 V(yg,).
We set

By =T IOLyy,  Zg =T W0ay.
We find
/\ZVC(Z%) =7 %o szgwopfx% — 9%~ 94 pf%o,

/\QVC(Z%) =7 9% 79”0pfz¢,0.

We have ord, (7% 9%0pf) = 1. Therefore we obtain an element z. as in (8.3.3) if we change
zy, and z,;, by a unit, cf. Lemma below. Therefore the invariant of (P, tc, fc) is

ordy g (24 25,) = (=Gv0 = 9iy) + Ordm P (g, T5,) = (1 — d) + 0rdr By, (g, )

This proves the unramified case. O

In the previous proof, we used two lemmas which we state as Lemmas and
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Lemma 8.3.3. Let K/F be ramified and let r be special. Let y. € H, be an element such that
/\2‘/;:(%) = —TYc-
Then he(Ye,ye) € F* and the image of this element in {£1} is —inv(Pe, te, Be).

Proof. We choose an element ¢ € Wp,,(k)* such that

T = L
Then 72(¢) = ¢ and therefore ¢ € O C Wo,. (k) where F'/F is the unramified extension of
degree 2. More explicitly, we take an element ¢ € kg such that 7(c) = —c and define ¢ = [¢] to

be the Teichmiiller representative.
We set z;, = (y.. Then the equation (8.3.3) is satisfied. We find

he(e, Te) = <2hc(ymyc)- (8.3.8)

Since (2 mod 7 = ¢% € Kk is not a square in this field, we conclude that ¢? is not in the image
of Nmg,p : O — Op since the norm is the square on the residue fields. Therefore the image
of the right hand side of (8.3.8)) in {£1} is different from the image of h¢(ye, Yc)- O

The last lemma has the following variant which we need in the banal case.

Lemma 8.3.4. Let K/F be ramified and let r be arbitrary. Let (P,t,8) be a CM-triple of type
r over an algebraically closed field k. Let y € A%(@W(k)P@ be an element such that

NV (y) = —py.
Set h = A*». Then h(y,y) € F C F @ W (k) and
h(y,y) = (—l)finV(P,L, B) mod Nmpg,p K*.
Proof. We consider the decomposition

Or @W(k) = [[Or ©0,, s W(k).
P

We denote by o the Frobenius acting on W (k). It induces via any of the embeddings ¥ the
Frobenius ¢ € Gal(F*/Q)). The decomposition induces a decomposition P = @& P, and

2 2
Neaw (Fo = Oy /\K®0Ft‘,d;W(k) Py q;
which is orthogonal with respect to h. By restriction of h, we obtain
A2 2 .
hy /\K®OFt)d;W(k)P¢7Q X /\K®0Ft1,@W(k)P¢7Q — K@, 5 W(k).

We find ¢ € O @ W (k) such that 0=1(¢)¢~! = —1 or equivalently o(¢) = —(. We set z = (y.
Then we find

NV (z) =07 Q)N V(y) = —o~ (Qpy = —o~ ()¢ 'pr = par
Therefore inv(P, ¢, ) is the class of

h(Cy,Cy) = C*h(y,y) mod Nmy p K*. (8.3.9)

This shows in particular that h(y,y) € F* because (2 € F*. We can replace in the left
hand side by (yphy(y,y) which gives for all ¢ the same element of F'. The equation o(¢) = —(
may be written as o(Cy) = —(yo. If we choose for a given v an element (; € Of ®o,, W (k)
such that o/ (¢,) = (—1)7(y, we obtain from this element a unique (.

In the case where f is even, we can choose (y = 1, which proves the Lemma in this case. If
f is odd, we obtain that ¢ € F"\ F. This implies as in the last Lemma that ¢? ¢ Nmg, g K.
This proves the case where f is odd. O

The following fact is well-known.
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Lemma 8.3.5. Let K/F be unramified. Let u € Ok D0 e 0 W (k) be a unit. Then there exists
a unit ¢ € Ok ®¢ _, 5, W(k) such that

o Q)¢ =
O
Proposition 8.3.6. Let r be banal, and let K/F be a field extension. Let R = k be an alge-
braically closed field. Let (Cp,t, @) be the image of (P,t,) € 0%31;’;1 by the polarized contraction
functor fo,f;:, cf. Theorem|4.5.11 Then

inv(Cp,t,¢) =inv" (P, ¢, 5).
Here the r-adjusted invariant is given by
inv" (P, ¢, 8) = (=1)%nv(P, ¢, ).

Proof. We begin with the ramified case. ~VVe choose kg C k. Let Fogn=! = 7¢/p = p, n €
Or ® W(kg) as in (4.5.19). We define 8 : P x P — Op ® W(k) by (.5.8) and the anti-
hermitian form » : Py x Py — K ® W (k) by Tr s = 3. This » differs from the s of (2.4.3) by
a constant in F'. We can use it to compute inv" (P, ¢, ). We set

B =np, =
We set V! =T17¢V. Then we have Cp = {y € P | V'y = y}, cf. Remark [4.5.13] From this, one
deduces

p- TBy1y2) = Byr,v2), 1,2 € Cp,
cf. . This implies
Fﬁ”(yl,m) = B/(yla Y2)
The restriction of 8 to Cp is the form ¢, cf. Remark
We choose an element @ € A*Py := A%gyy ) Po such that A?V(z) = (~1)°pz. By Lemma
[8.3.4) the class of A%x(w,z) € F*/Nmy,p K* = {£1} is (~1)/¢inv(P, 1, 8) = inv" (P, 1, B).
We note that A2V’ = (—=1)¢7=¢ A2 V. We set

z=n"lze /\QPQ.
Then we find
NV/(2) = T ) (=D A2 V() = T ) (=D (=) pr = T (7 oz = 2

Therefore z € A% Cp @ Q. The invariant inv(Cp, ¢, ¢) is given by A?3/(z,z). Therefore the
equality of invariants follows from

N3 (2,2) = n? A2 (e, a) = A2xe(w, ).

Now we consider the case where K/F is unramified. We use the notation H,h, Hy, hy from

(8.3.6]). We have by (4.5.13)) that
N, .Cp={z€H| NV(2)=nlz}.
Using the decomposition (8.3.6), the condition for z = (z,) becomes
A2V (2p0) = T2%% 2.

We choose z # 0. Then
inV(C'Pa Ly ¢) - (—1>0rd7" hd’(zw’zuj)7

for any 1. We set gy = ay + ayo + ... ayss-1. Then we obtain
Gpo = Gyp = Qyof — Qyp = A — Ay = € — 2y
We set uy = 9% 2. Then u = (uy) satisfies
A%V (u) = mu.
Indeed,

A2V (uye) = TI%7 A2V (240) = TIVo 2% 2 = 900 m2Te =90y = mouy.
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Let again ) € Op @ W (i) be the element defined after (4.5.19)). It satisfies n=! £ "5 = (p/7©).
We set = nu. Then A2V (z) = pz. Therefore

inv(P, 1, B) = (1) helers),

for any 1. Therefore the unramified case follows from

ordy by (zy, 25) = ordy hy (9% 2y, 9% 25) = (gy+gp)+ordy hy(2y, 25) = ef+ordy hy(zy, 25).
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