A Proposition of Kedlaya

Let k be an algebraically closed field of char.p > 0. Let W = W (k) be
the Witt ring and 0 = o, a > 0 be a power of the Frobenius. We will denote
by Wy an algebraic closure of W ® Q. We extend ¢ in an arbitrary way to
an automorphism of Wy . Let f = Y onez Gnl™ € L, where a, € Wy be a
Laurent series. If a, € Wy we will write f € L.

We consider the open unit disc

D={zeW||z| <1}
If y € D and f converges for |[t| = |y| then we have f(y) € Wy.

We define
f7= Za(an)t"q.

Consider the map
7:D—D, 7(z)=0""(29).

We note that |7(x)| = |=|?
Let z € D. Then we have

f7(x) = o(f(r(2))), (1)

whenever one side of this equation makes sense.

Remark: This suggest the following fact which is easily verified: Let
0 € R, such that 0 < ¢ < 1.

If f7 converges for § < [t| < 1, iff f converges for 67 < |t| < 1.

We will also use this in the form. If f? converges for v > ordt > 0, iff f
converges for qu > ordt > 0.

Proposition 1 Let a € T¢, a # 0. We assume that f = a’/a is a rational
function in t.
Then a is the product of a rational function and a unit in W|[t]].

Proof: We know that I'°[1/p] is a field. Then f € I'*[1/p] and our assumption
says that f is in the subring W((¢)) of I'[1/p]. We find primitve polynomials
g,h € WIt] (i.e. the greatest common divisor of the coefficients is 1) such
that

f=g/h,

and g and h have no common divisor.

We prove the Proposition by induction on deg g + deg h. If this is zero we
have a” = ca for some ¢ € Wy, c # 0. By the remark above this implies that
a’ and a converges for 0 < |t| < 1. But we may apply the same remark to



the equation (a7')” = ¢7'a™! and conclude that a™! converges in the same

range. But then Lemma 5.1 of [Kedl] proves the result.

We assume now that degg + degh = d and that the Proposition holds
for numbers smaller that d.

We may assume that g and h have no zeros outside the open unit disc.
Indeed in the opposite case we find a nonconstant primitive polynomial u €
Wt] which has only roots outside the open unit disc and which divides g
or h. Let ¢y be the constant coefficient of u. If ord ¢y > 0 then the Newton
polygon of u would have a negative slope which would imply a zero in D.
Therefore ¢y € W is a unit. We see that u is a unit in W{[t]]. But then by
[MZ] Lemma 31 we may write u = b° /b for some unit b € W{[t]]. Hence in
the equation

a’/a=g/h (2)
we may put the factor u from the right hand side to the left hand side, and
apply the induction assumption.

We will call two elements of W equivalent if the differ by a ¢-th root of
unity.

Let Sq,...,.S, the equivalence classes of roots of h. We write

Si:{'l"l'l,...,’f’iq}

We denote by m,;; the multiplicity of r;; as a root of h. Let m,; the
maximum of the m;; for fixed <. We have m; > 0 and we may assume that
m; = MMy1.

Let e be the polynomial with the roots 7(S;), i = 1,...n where every root
appears exactly with multiplicity m;. Then the roots of e are S;US,U. . .US,,,
where each root appears with multiplicity m;. We note that an element
p € Gal(W/W)) permutes the sets S;. Moreover if p(S;) = Si then the
multiplicities m;; and my; for j = 1,..., ¢ are up to permutation the same.
In particular we have m; = m;. This implies that ¢’ € W{t] and therefore
e € W1t] is also true.

Therefore e is a multiple of the polynomial A. We obtain the equation

(ae)” = ag(e”/h). (3)

Let § > 0 be the smallest number such that a and a=! converge for § <
[t] < 1. We note that by (3) the Laurent series (ae)? converges in the same
range. Hence the remark before the Proposition shows that ae converges for
09 < |t| < 1.

The Proposition will follow if we prove:

Lemma 2 The polynomial e has no roots s with §9 < |s| < 1.
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We begin to show how the lemma implies the Proposition. By the Lemma
e is a unit in the ring of Laurent series converging for 67 < |s| < 1 and
therefore a converges in this domain because ae does. On the other hand we
have the equation
G

a! g
If we apply the same considerations as to the equation (2) we see that also
a~! converges in the range §? < |t| < 1. By the choice of § after (3) this is
only possible if § = 0. But then Proposition 5.1 [K] shows that a is of the
form ct™u with ¢ € Wy and v € W{[t]] a unit. This proves the Proposition.
We prove now the Lemma. Let us assume the existence of a zero s of e
such that
3 < |s| < 1.

We may assume that s = 7(S;) and in particular s = 7(ry;). Since rq; is a
zero of h it is not a zero of g.

Since |r11]? = |s| we have § < |ry1| < 1. Therefore (ae)? converges in ry;
so that the evaluation (ae)?(r1;) makes sense. Note that by our choice of &
the Laurent series a has no zero in 71;. It follows immediately from (3) that
r11 18 not a zero of (ae)?. By (1) we find

(ae)?(rin) = o(ae(r(r11))).

Therefore ae doesn’t vanish in s = 7(ry1). Since 7(rq;) = s for j = 1,...¢
there is no zero of (ae)? among

11,712, --,T1q- (4)

These elements are neither zeros of a and g as we already remarked. It follows
from (3) that these are also not zeros of (e?/h). We see that the order of
zero of e” and h at the elements (4) is the same, namely m;.

Let e; € W(t] be the polynomial of minimal degree divisible by (¢t —s)™.
Then e; divides e. Moreover ef divides h. (Note that also all conjugates of
the elements r1; appear with multiplicity m; as zeros of h) We write:

gey  aef

hey  aey’

If we reduce the fraction on the left hand side by dividing numerator and
denominator by e we see that the sum of the degree of the numerator and
denominator is less thatn deg g + deg h. Therefore we are done by induction.

Q.E.D.



