5) Man betrachte das folgende lineare Gleichungssystem mit Koeffizienten in $\mathbb{R}$:

\begin{align*}
  x_1 + x_2 + 4x_3 + 5x_4 + 6x_5 + 7x_6 &= 0 \\
  x_1 + x_2 + 5x_3 + 6x_4 + 7x_5 + 8x_6 &= 0 \\
  x_1 + x_2 + 6x_3 + 7x_4 + 8x_5 + 9x_6 &= 0
\end{align*}

Die Menge $L$ aller Lösungen $x$ dieser Gleichungen ist ein Untervektorraum von $\mathbb{R}^6$.

Man berechne eine Basis des Vektorraums $L$.

Lösung: Man schreibt die Matrix der Koeffizienten auf:

\begin{align*}
  &1 1 4 5 6 7 \\
  &1 1 5 6 7 8 \\
  &1 1 6 7 8 9
\end{align*}

Man bringt die Matrix mit Zeilenoperationen auf Stufenform (neues Skript S.14):

\begin{align*}
  &1 1 4 5 6 7 \\
  &0 0 1 1 1 1 \\
  &0 0 0 0 0 0
\end{align*} \quad (1)

Das Gleichungssystem mit dieser Koeffizientenmatrix hat den gleichen Lösungsraum $L \subseteq \mathbb{R}^6$. Die Spalten 1 und 3 sind die Pivotspalten. Deshalb bildet die Projektion

\[\pi : \mathbb{R}^6 \rightarrow \mathbb{R}^4 \quad \pi((x_1, x_2, x_3, x_4, x_5, x_6)) \mapsto (x_2, x_4, x_5, x_6)\]

den Unterraum $L \subseteq \mathbb{R}^6$ isomorph auf $\mathbb{R}^4$ ab. Man wählt eine Basis $e_1, e_2, e_3, e_4$ von $\mathbb{R}^4$ (z.B. die Standardbasis). Dann findet man Vektoren $v_1, v_2, v_3, v_4 \in L$, so dass $\pi(v_i) = e_i$.

Die gesuchte Basis von $L$ ist $v_1, v_2, v_3, v_4$. Man berechnet diese 4 Basisvektoren wie folgt:

Es sei $e_1 = (1,0,0,0)$, d.h. $x_2 = 1, x_4 = 0, x_5 = 0, x_6 = 0$. Es sei $(x_1, x_2, x_3, x_4, x_5, x_6) \in L$ und $\pi((x_1, x_2, x_3, x_4, x_5, x_6)) = e_1$. Wegen der zweiten Zeile von (1) gilt:

\[x_3 + x_4 + x_5 + x_6 = 0.\]
Da $x_4 = x_5 = x_6 = 0$ folgt $x_3 = 0$. Dann betrachtet man die Gleichung

$$x_1 + x_2 + 4x_3 + 5x_4 + 6x_5 + 7x_6 = 0.$$  

Wir wissen schon: $x_2 = 1, x_3 = x_4 = x_5 = x_6 = 0$. Also ist $x_1 = -1$. Damit ist $v_1 = (-1,1,0,0,0) \in L$ der Vektor mit $\pi(v_1) = e_1$.

Es sei $e_2 = (0,1,0,0)$, d.h. $x_2 = 0, x_4 = 1, x_5 = 0, x_6 = 0$. Es sei $(x_1, x_2, x_3, x_4, x_5, x_6) \in L$ und $\pi((x_1, x_2, x_3, x_4, x_5, x_6)) = e_2$. Wegen der zweiten Zeile von (1) gilt:

$$x_3 + 1 + 0 + 0 = 0$$

und damit $x_3 = -1$. Aus der ersten Zeile von (1)

$$x_1 + 0 + 4(-1) + 5 \cdot 1 + 0 + 0 = 0,$$

d.h. $x_1 = -1$. Also ist der zweite Basisvektor $v_2 = (-1,0,-1,1,0,0) \in L$. Genauso berechnet man die Vektoren $v_3$ und $v_4$. 