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1 Introduction

Displays of formal p-divisible groups were introduced in [Z2]. They are one
possible extension of classical Dieudonné theory to more general ground rings.
In [LZ] we gave a direct construction of a display for an abelian scheme by
the relative de Rham-Witt complex. In the case where the p-divisible group
of the abelian scheme is local the construction leads to the display of [Z2].
We define here a more general notion of display over a ring R, where a
given prime number p is nilpotent. If R is a perfect field a display is just a
finitely generated free W (R)-module M endowed with an injective Frobenius
linear map F' : M — M, while a display of [Z2] is a Dieudonné module, where
V' acts topologically nilpotent. Our category of displays is an exact tensor
category which contains the displays of [Z2] as a full subcategory. There
is also a good notion of base change for displays with respect to arbitrary
ring morphisms R — R’. Neither the construction of the tensor product
nor the construction of base change is straightforward. Special types of
tensor products are related in [Z2] to biextensions of formal groups. Other
operations of linear algebra as exterior products and duals up to Tate twist
may be performed but we don’t discuss them here, since we don’t use them
essentially and their construction requires just the same ideas. We add that
the exact category of displays is Karoubian [T] and has a derived category.
In many examples we have a display structure on the cohomology of
a projective and smooth scheme which arises as follows: Let p be a fixed
prime number and let R be a ring such that p is nilpotent in R. We denote
by W(R) the ring of Witt vectors and we set Ip = VIW(R). Let X be a
projective and smooth scheme over R. Let W2, /R be the de Rham-Witt



complex. We define for m > 0 the Nygaard complex N"W Q' /R of sheaves
of W(R)-modules:

d d m— dv m d m d
(WQg(/R)[F] — . (WQX/I%)[F] — WQY g — WQX;}% S

Here F indicates restriction of scalars with respect to the Frobenius F' :
W(R) — W(R). We remark that N°W €y, = Wy . These complexes
were considered by Nygaard, Illusie and Raynaud [[-R], and Kato [K] if R is
a perfect field.

Let m be a nonnegative integer and consider the hypercohomology groups

P =H"(X,N'WQx/r)

for i > 0. The structure of the de Rham-Witt complex gives naturally three
sets of maps (compare: Definition 2.2):

1) A chain of morphisms of W (R)-modules

L Lo
. Z‘+1—Z>.PZ'—>...—>P1—>P0.

2) For each i > 0 a W(R)-linear map
a; : Ir Qw(r) P — Piy1.

3) For each i > 0 a Frobenius linear map

F,. P, — F,.

The composition of ¢+ and « is the multiplication Ir ® P; — P;. Moreover we
have the equation:

E—FI(ai( Vn ®ZE)) - n‘leu ne [R7 r e PR (]')

We will call a set of data P = (P, t;, s, F;) with the properties above a
predisplay. The predisplays form an abelian category. The equation (1)
implies:
Fi(u(y)) = pFita(y)

i.e. the Frobenius Fjy becomes more and more divisible by p if it is restricted
to the Nygaard complexes.

We are interested in predisplays, which are obtained by the following
construction. We start with a set of data which are called standard:



A sequence Ly, ..., Ly of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for ¢ = 0,...d:

észHLO@@Ld

We require that the map @;P; is a Frobenius linear automorphism of
Lo®...® Ly
From these data one defines a predisplay P = (P, ¢;, v, F;), with

P=Ur®Ly)®.. UrRL;1)®L; D ... D Ly

for i € Z,1 > 0. The definition of the maps ¢;, i;, F; (compare Definition 2.2)
is not obvious, but we skip it for the moment. We should warn the reader
that the P; for ¢ > d are obviously isomorphic, but these isomorphisms are
not canonical, i.e. they depend on our construction and not only on the
predisplay P.

Definition: A predisplay is called a display if it is isomorphic to a pre-
display associated to standard data.

A decomposition Py = Lo® L1 & . ..PH Ly which is given by standard data
is called a normal decomposition.

If we start with standard data for d = 1 we obtain exactly the 3n-displays
of [Z2], which are called displays in [Me]. In this work we call them 1-displays.

If we assume that the L; are free the map &®; is represented by a block
matrix (A;;), where A;; is the matrix of the Frobenius linear map L; — L;
induced by @®;, where 0 <, j < d. Conversely any block matrix (A4;;) from
GL(W(R)) defines standard data for a display. Over a local ring R it would
be possible to define the category of displays in terms of matrices.

We note that the maps ¢; for a display P are generally not injective unless
the ring R is reduced. In this case the whole display is uniquely determined
by the Frobenius module (P, Fp). Indeed the display property implies that:

P={z € Py| Fy(z) € p'Py} (2)

One has F; = (1/p*)Fy. This makes sense because p is not a zero divisor in
W(R) if R is reduced. Therefore over a reduced ring a display is a special
kind of Frobenius module.



If R = k is a perfect field a display is just the same as a Frobenius
module (P, Fp). Indeed, consider the map Fy : By ® Q — Py®Q. We obtain
inclusions of W (k)-modules:

P()CF(;lP()CP()@Q.

By the theory of elementary divisors we find a decomposition by W (R)-
modules Py = Lo ® L1 & ... & Ly, such that

Fi'Ph=Lo®p 'Li®...®p Ly

Therefore the restriction of p~*F, to L; defines a map ®; : L, — Py, for
1 =0,...,d. These are the standard data for the display associated to the
Frobenius module (Fy, Fp).

If pR = 0 Moonen and Wedhorn [MW] introduced the structure of an
F-zip. It is defined in terms of the de Rham cohomology of the scheme X/R.
As one should expect any display gives rise to an F-zip (compare the remark
after Definition 2.6.).

For an arbitrary projective and smooth variety X/R we can’t expect that
the crystalline cohomology H[7, .(X/W(R)) has a display structure. There-
fore we consider the following assumptions: There is a compatible system
of smooth liftings X,,/W,(R) for n € N of X/R such that the following
properties hold:

(*) The cohomology groups Hj(X”’QéZn/Wn(R)) are for each n, 7 and j

locally free W,,(R)-modules of finite type.
(**) The de Rham spectral sequence degenerates at E)

EY = H (X, QZXn/Wn(R)) = ]I-I[ZJ”(X,L,Q'Xn/Wn(R)).
Theorem: Let X be smooth and projective over a reduced ring R, such
that the assumptions (*) and (**) are satisfied. Let d be an integer 0 < m <
p. Consider the Frobenius module Py = H[}, (X/W(R)) and define P; by the
formula (2).
Then the P; form a display and P; coincides with the hypercohomology of
the Nygaard complex ./\/'iWQ’X/R.

It would follow from the general conjecture made below that this theorem
holds without the restriction m < p.



Finally we indicate how to proceed if the ring R is not reduced. In order
to overcome the problem with the p-torsion in W (R) we use frames [Z1]. A
frame for R is a triple (A, 0, ), where A is a p-adic ring without p-torsion,
o : A — Ais an endomorphism which lifts the Frobenius on A/pA, and
a : A — R is a surjective ring homomorphism whose kernel has divided
powers. Let us assume that X admits a lifting to a smooth formal scheme Y
over Spf A, which satisfies assumptions analogous to (*) and (**). We define
“displays” relative to A which we call windows (see [Z1]). Theorem 5.5 says
that under the conditions made H[}, (X/A,Ox/4) has a window structure
for m < p . There is a morphism A — W(A) — W(R) which allows to pass
from windows to displays. We remark that because of this morphism the
assumptions (*) and (**) for A are stronger than the original assumption for
W (R). In equal characteristic we obtain e.g. the following:

Theorem Let X be smooth and projective over a ring R, such that pR =
0. Let us assume that there is a frame A — R and a smooth p-adic lifting
Y/ Spf A of X, which satisfies the conditions analogous to (*) and (**).

Then there is a canonical display structure on HJ, (X/W(R)) for m < p,
which does not depend on the lifting Y nor on the frame A.

We discuss three examples where the assumptions () and (s*) hold. In
these examples the assumptions made on X in the two preceding theorems
are fullfilled.

Let X be a K3-surface over R. We assume without restriction of gen-
erality that R is noetherian. We denote by 7x/r the tangent bundle of X.
The cohomology group H?*(X,Tx/r) commutes with base change by [M] §5
Cor.3. From the case where R is an algebraically closed field, we deduce
that this cohomology group vanishes. It follows that X has a formal lift-
ing over Spf W(R) resp. Spf A. From the Hodge numbers of a K3-surface
over an algebraically closed field [Del] one deduces that H'(X,Ox) = 0,
HO(X, Qﬁ(/R) =0, H*(X, Q}(/R) =0, H'(X, Q%(/R) = 0. It follows that the
cohomology of X commutes with arbitrary base change and is therefore lo-
cally free [M] loc.cit.. The degeneration of the de Rham spectral sequence
follows now because the Hodge numbers above are zero, because there is no
room for non-zero differentials.

Let X be an abelian variety over R. In this case the assumptions (*) and
(xx) are fullfilled by [BBM] 2.5.2.

Finally let X be a smooth relative complete intersection in a projec-
tive space over R. Then the conditions (%) and (xx) are fullfilled by [De2]



Thm.1.5.

Let p be a prime number. Let R be a ring such that p is nilpotent in R. In
[LZ] Thm. 3.5 we proved a comparison between the crystalline cohomology
and the hypercohomology of the de Rham-Witt complex extending a result
of Mlusie [I] if R is a perfect field. We show here a filtered version of this
comparison, which is the key to the display structure. We conjecture a more
precise comparison, which would lead to a wide generalization of the theorems
above.

Let W, (R) be the truncated Witt vectors. We set Ig,, = VW,_1(R).
This ideal is 0 for n = 1.

Let X/R be a smooth and projective scheme. We consider the crystalline
site Crys(X/W,(R)) with its structure sheaf Ox,w, r). Let us denote by

Ixwar) C Oxyw,(r) the sheaf of pd-ideals. We denote by ]X/W 1ts
m-th divided power. Let

up : Crys(X/Wyo(R))~ — X,

zar

be the canonical morphism of topoi.
The comparison isomorphism [LZ] is an isomorphism in the derived cat-
egory D(X,q) of sheaves of W,,(R)-modules on X,

Run*OX/Wn(R) B— WnQX/R
We will prove a filtered version of this. Let m be a natural number. Let
ImW, 0y /g be the following subcomplex of the de Rham-Witt complex:
m— d d m
PV Wa QS m = PV W Qg = VIV 1QX/I; = W%,

The filtered comparison Theorem 4.6 says that for m < p we have an iso-
morphism in the derived category

R T iy — LWl (3)

We would like to have a similiar comparison theorem for the truncated Ny-
gaard complex ./\/'mWnQ'X/R instead of I™W,Qy p:

d
(anng(/R)[F] — ...

The advantage of the Nygaard complex is that the restriction of the Frobenius
from WQ’X/R to N mWQ'X/R is in a natural way divisible by p™ even if p

d

— (W, Q?/}%)[ F] —>WQX/R—>WQ§7}%
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is a zero divisor. For a reduced ring R the Nygaard complex N IR
is quasiisomorphic to Z"W () IR Unfortunately in general we don’t know
a definition for the Nygaard complex in terms of crystalline cohomology.
Nevertheless we make the conjecture 4.1:

Conjecture: Assume that X/Wn(R) is a smooth lifting of X. Then
the Nygaard complex is in the derived category canonically isomorphic to the
following complex F™€Y :

X /Wa(R)
0 pd pd m—1 d ~m d
IR @wor) Ly = - AR @wa(r) U5 0y = Yoy — -

_ Assume that we have for varying n a compatible system of smooth liftings
X,/ Wi(R). We obtain a formal scheme X = lim X,,. We set:

Xn/Wn(R)

We show the following weak form of the conjecture (Corollary 4.7):

Theorem: Assume that R is reduced and that m < p. Then there is a
natural isomorphism in the derived category of W(R)-modules on X 4,

Moreover we can show in support of our conjecture, that the complexes
NTW,Q /R and F mQXn Wa(r) AT always locally quasiisomorphic on X ;.
The last theorem is closely related to strong divisibility in the sense of
[Fo] 1.3: Assume the assumptions (%) and (%) are satisfied. By the last
theorem the splitting of the Hodge filtration of the formal scheme X defines

a normal decomposition:
H™ (X, F/Qyjwiry) = IrLo @ ... @ IrL; 1 ® L; & ... D Ly

It is obvious from Definition 2.2 that the Frobenius F}; : H™ (X, NVW ) r) —
H™(X, WQ'X/R) is bijective if j is bigger than the dimension. Therefore
Fo® Fy & ... ® F;: induces a bijection:

IRL()@...EB]RLd—)Lo@...@Ld

This is what strong divisiblility asserts.
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2 The Category of Displays

Let R be a ring, and let W(R) be the ring of Witt vectors. We set I =
VW (R). If no confusion is possible we sometimes use the abbreviation I =
Ir. Let ® : M — N a Frobenius-linear homomorphism of W (R)-modules.
We define a Frobenius-linear homomorphism ®:

Yéam  — £0(m)

Definition 2.1 A predisplay over R consists of the following data:
1) A chain of morphisms of W(R)-modules

L Lo
. Z‘+1—Z>.Pi—>...—>P1—>P0.

2) For each i > 0 a W(R)-linear map

a; : Ir Qw(r) P — Piy1.

3) For each i > 0 a Frobenius linear map

EP1—>P0

The following axioms should be fulfilled

(D1) Fori > 1 the diagram below is commutative and its diagonal
Ir ® P; — P; 1s the multiplication.

Ir® P, 2, Py

IR®Lifll LiJ/

In®P_, =% P

For i =0 the following map is the multiplication:

Ir P 25 P, 2 P,

(D2) Fipoi=F,: Ip® P — Py



We will denote a predisplay as follows:
P = (PivbiuoéiaFi)y 1€ Zzo.

Let X be a smooth and proper scheme over a scheme S. Then we obtain
a predisplay stucture on the crystalline cohomology through the Nygaard
complexes N"W,,2x/g which are built from the de Rham-Witt complex as
follows:

d d m— dv m d m
(Wn—IQg(/S)[F] — ... (Wn—lgx/sl)[F] — W’nQX/S - WnQX}FSl e

This is considered as a complex of W,,(Og)-modules. The index [F] means
that we consider this term as a W, (Og)-module via restriction of scalars
F:W,(0g) = W,_1(Os).
Let Is, = VW,_1(Og) C W,,(Os) be the sheaf of ideals. We define three
sets of maps:
Q2 Isn @w,(04) /\/'mWnQ'X/S — /\/’m“WnQ'X/S

By N™W, Qg = Wi Qs

These maps are given in this order by the maps between the following verti-
cally written procomplexes (the index n is omitted):

id
IS®(WQg</s)[F] - (WQg(/s>[F] — (WQg(/s)[F] - WQOX/S

o] | | |

Is @ (W) —— (W m —— WO m —— WO

id ®dV d dv d
id ®d dV d d
Iy ® WOpfl _madt W _, W _PF, Wt
id ®d d d d
Loway? ™ML wapg . wapg _PE w2



The first unlabeled arrows on the left hand side denote the maps V¢ ® w —
£w, where the product is taken in WQY /s (without restriction of scalars).

Definition 2.2 Let S = Spec R be an affine scheme. Let X/S be a smooth
and proper scheme. Then we associate a predisplay. We set:

P, = HYX,N'WQy/s)

The predisplay structure on the P; is easily obtained by taking the cohomology
of the maps (5).

Here we write NmWQ'X/R = limNmWnQ'X/R. The P, coincide with the
cohomology of Rlim RI'(X,N'W,Qx/s) by the proof of [LZ] Prop. 1.13

(compare [BO|] Appendix).

Remark: Let S = Spec k be the spectrum of a perfect field. Then (k) is
isomorphic to W (k) as W (k)-module. The maps of complexes which define
«; and 7; are in this case the maps F and V used by Kato in his definition
of the F-gauges GH(X/S).

Let A/S be an abelian scheme. Then the predisplay structure on the crys-
talline cohomology H'(A/W(R), Oaw(ry) is in fact a 3n-display structure
in the sense of [Z2]. We will introduce additional properties of predisplay
structures which arise in the crystalline cohomology of smooth and proper
varieties.

Let P be a predisplay. Then we have a commutative diagram:

R’LPO

T >

Fipq
P — R

Indeed, let y € P;y1. Then we obtain from (D1) that

a( "1euy) = "y
If we apply Fji; to the last equation and use (D2), we obtain:

Fi(ti(y)) = pFia(y)
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Definition 2.3 A predisplay P = (P;, t;, 4, F;) is called separated if the
map of Py to the fibre product induced by the commutative diagram (6) is
mjective.

Remark: Predisplays form obviously an abelian category. To each predis-
play P we can associate a separated predisplay P*® and a canonical surjec-
tion P — P*?. This is defined inductively: Py = Py and P is the image
of P11 in the fibre product of:

Fsep p
pFr P PO
(2

The functor P — P> to the category of separated displays is left adjoint to
the forgetful functor, but it is not exact.

It is not difficult to prove that a separated predisplay has the following
property: Consider the iteration of the maps a:

[Pk p —%, ®k-lgp S, Sl po (7)

Here the maps a pick up the last factor of I®. The following map is called
the “Verjingung”:

(k) ok _ I
Ve @@ Ve — V(& &) (8)

For a separated display the iteration (7) factors through the Verjiingung:

(B

I?*@ P —— I® P —— Py,

The last arrow will be called agk). In particular this shows that the iteration
(7) is independent of the factors we picked up, when forming c;.

For a separated display the data «;, ¢ > 0 are uniquely determined by
the remaining data. This is seen by the following commutative diagram:

11



I® P,

For a predisplay P the cokernel F;; := Coker «; is annihilated by I. It
is therefore an R-module.

Definition 2.4 We say that a predisplay is of degree d (or a d-predisplay),
if the maps «; are surjective for i > d.

A separated predisplay of degree d is already uniquely determined by the
data:
Pg, PN Pd, Loy .- ldg—1, F(), ceey Fd,Oéo, e, g (9)

For this consider the diagram (x) above for i = d. The data already given
determine a map of I ® P; to the fibre product. This map is ay and the image
is Py.1. Thus inductively all data of the display are uniquely determined.
Conversely assume that we have data (9) which satisfy all predisplay
axioms reasonable for these data. Then we define Py, 1 by the diagram (x)
above. We obtain also the maps ay, ¢4, and F,y;. The axioms for the
extended data are trivially satisfied, except for the requirement that

I® Py —1®FP; — Py

is the multiplication. But this follows easily by composing the diagram (x)
for i = d, with the arrow id ®¢q : [ ® P;11 — I ® P;. Inductively we see that
a set of data (9) satisfying the predisplay axioms may be extended uniquely
to a predisplay of degree d.

12



We may define the twist of a predisplay. Let
P = (P, v, F;)
be a predisplay. Then we define its Tate-twist
P(1) = (P, ), o, F) (10)

as follows: Fori > 1 we set P/ = P,_y,1, = t;—1,0} = o1, F = F;_1. We set
Py =Py = P, Fj = pFy, 1, =1idp,. Finally of : I ® Py — F, is defined to be
the multiplication. If we repeat this n-times we write P(n).

We define a predisplay U = (P}, v;, a;, F;) called the unit display as follows:
Py =W(R), P, =1 for i > 1. The chain of the maps ¢ is as follows:

LI T1... 5T S W(R), (11)

where the last map ¢ is the natural inclusion.
The maps F; : I = P, — W(R) for i > 1 coincide with the map

VT - W(R), Veée

The map Fj is the Frobenius on W(R). The map «g : [ ® W(R) — I is the
multiplication. The maps o; : I ® I — I are the Verjiingung v(?. Since the
“Verjiingung” is surjective the unit display has degree zero.

A 3n-display (P, Q, F, V1) as defined in [Z2] gives naturally rise to data
of type (9) with Py = P, P, = Q, Fy = F, F; = V! and therefore extends
naturally to a predisplay of degree 1 as we explained above. We will make
this explicit later on.

Let R be a reduced ring. Then the multiplication by p is injective on
W (R). Let M be a projective W (R)-module, and F' : M — M be a Frobenius
linear map. Then we set:

Po={x € M| F(x)€p'M}
We obtain maps ‘
F=01/p")F:P,—FPh=M

For «; we take the natural inclusion P,y — P;. For «; we take the maps
I ® P, — IP;, C Py, induced by multiplication. The data (P}, ¢;, ay, F})
constructed in this way are a separated predisplay.

The predisplays we are interested in arise from a construction which we
explain now.

13



Definition 2.5 The following set of data we will call standard data for a
display of degree d.

A sequence Ly, ..., Lq of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i =0,...d:
q)leﬁLOEBEBLd

We require that the map ®;P; is a Frobenius linear automorphism of Ly @
B Ly

From these data we obtain a predisplay in the following manner: We set:
P=IRL)®.. (IQL;1)®L;®... D Ly

for i€ Z,i > 0.
We note that P, = P;.; for ¢ > d. But these identifications are not

part of the predisplay structure we are going to define. They depend on the
standard data!

We define “divided” Frobenius maps:
Fi:P— R
The restriction of F; to [ ® Ly, for k < 7 is Q:Dk, and to L;;; for j > 01is qu)iﬂ».
The map ¢; : Pii1 — P; is given by the following diagram:
TR L)®... 01 ®Li )OI @ Li)®Lip1® ... 0Ly
pl pl multl idl idl (12)
TRLy)D.. ©I R Li-1)® Li ©Li®... 0Ly

The map «; : I ® P, — P, is given by the following diagram:
IRURLy)®.. pIQULi1)®IQL, ®IQLi1®...0I® Ly

yl ul idl multl multl (13)

I®L) &...0 I®Li—1) e(IRL)® Liys &...0 Ly

Here v = v® is the Verjiingung. We leave the verification that P =
(P;, v, oy, Fy) is a separated predisplay to the reader.

14



Definition 2.6 A predisplay is called a display if it is isomorphic to a pre-
display associated to standard data.

Remark: Let us assume that pR = 0. There is the notion of an F-zip
by Moonen and Wedhorn. The relation to displays is as follows. Let P =
(P, ti, oy, F;) be a display over R. We define an F-zip structure on M =
Py/Ir P, by the following two filtrations. Let C? as the image of P; in By/Ir P,
given by the composite of the maps ;. This gives the decreasing “Hodge
filtration”:

L.cClcectlc...cctcet =M.

We set D; = W(R)F,P; + IrPy/IrPy and obtain an increasing filtration,
called the “conjugate filtration”:

O0=D_,CcDycCcDicDyc...CcDsC...CM.
The morphisms F; for ¢ > 0 induce Frobenius linear morphisms:
F; C’i/CiJrl - Di/Difl (14)

These are Frobenius linear isomorphisms of R-modules. Indeed, if we choose
a normal decomposition {L;} we obtain identification:

C'/C =2 L /IgL; and D;/D;_y = W(R)F,L;/IzW (R)F,L;

The two filtrations C" and D. together with the operators (14) form an F-zip
[MW] Def. 1.5.

Let P be the display associated to the standard data (L;, ®;) as above.
Let Q = (Qy, i, o, F;) be a predisplay. Assume we are given homomorphisms
pi » Ly — @Q;. Then we define maps 7;:

P=(IRLy)®.. d(IRQL;1)®L;® ... Ly — Q;
On the summand (I ® L; ;) the map 7; is the composite:
I'® Ly, S, I'®Qi—k N Qr

On the summand L;; the map 7; is the comoposite:

Pitj )
Liyj — Qipj —— @y,

where the last arrow is a compositions of ¢'s.

15



Proposition 2.7 The maps 1; define a homomorphism of predisplays P —
Q if and only if the following diagrams are commutative:

LiL’Qi

POLQO

We omit the verification.

If P=(P,Q,F, V1) is 3n-display in the sense of [Z2], then any normal
decomposition P = Lo ® Ly, () = 1Ly @ L, defines standard data, which
determine this display.

We will now define the tensor product of displays: Assume that P =
(P, 13, o, Fy) and P’ = (P, 1}, o, F!) are displays over R.

19 Y1)

A tensor product 7 = (1, Loi, c(v)i, F;) may be constructed as follows. We
choose normal decompositions

Ph=@®L, PFP=@a®lL,.

More precisely this means, that we fix isomorphisms of P resp. P’ with
standard displays. We obtain:

We denote the restriction of F; : P, — P, to the direct summand L; by ®;.

We obtain data for a standard display K;, ®;,1 > 0, if we set

K= & (L,®L.).

n+m=I|

Then &, K; = Py ® P, and we define Frobenius linear maps

o

q)liKl—>P0®P6,

=Y 0,29,

n+m=l

From the standard data K;, ®; we obtain a display

16



T = (T’ia(z’i:ao’i?é) (15>

We will show that 7 is up to canonical isomorphism independent of the
normal decompositions of P resp. P’.

In order to do this we define bilinear forms of displays. Let 7 be an
arbitrary predisplay. A bilinear form

AN:PxP —T.

consists of the following data.
A is a sequence of maps of W (R)-modules

Aij R’@PJ{ — Litj.
We require that the following diagrams are commutative:

PP, —— Ty,

A / o
F1®F3i lFm'

P0®P6 —>'d TO

/ /
POP —— Ty ROP — T
L®idT ‘ZT id ®L,T T‘Z
/ /
Pii®FP —— Tiyjn Po P, —— Tiyjn

IR®@P,® P —— Ir® T, IR P,®P —— I®Ty;

ai@idl l&hﬁ id ®a3l l&iJrj

/ /
Py ®P, —— Ty PP, — Tijn.

Remark: We will consider also the maps
P, ®P; — T}, for i +j >k,

which are the compositions of \;; and T;,; — T}, the iteration of .
If : + 7 > k we obtain a commutative diagram:
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Pa®P — 1
L@id 1 1 (16)
PP — Ty

We will denote the set of bilinear forms of displays in this sense by
Bil(P x P',T).

We return to the display 7 given by the standard data Kj, ®;. We will now
define maps \;; : P; ® P; — T;,;. For this we write P, ® P according to
the normal decompositions:

PeP=PIicicL,eLl)s( P IeL.eL,)

n<i n<i
m<j m>j
m+n<i+j
o P UeL.eL)e( @ I9L.eL,)
n>i n<i (17)
m<j m>j
n+m<i+j n+m>i+j
o P UeL.eL,)s(@L.oL,).
m>1 n>t
m<j m2j
n+m>i+j
We have six direct sums in brackets, which we denote by Z;, i =1,...,6 in

the order as above.
By definition 7}, ; has the decomposition

Thi=( P IeLol,)e( P L.oL, (18)

n+m<i+j n+m2>i+j

We define \;; : P, ® P} — T;,; as a bigraded map with respect to n,m > 0,
which is on the homogeneous components as follows.
Case Z1: n<i,m<j

IQIQL,®L —I®L,® L,
Ve "nel,el,— V() @l o1,
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Case Zo:n<i,m>j, n+m<i+j

P Uid I L, ®L, —1®L,® L,
Case Zg:n>i, m<jn+m<i+]

p"lid: I®L, QL —I1®L,® L
Case Zy:nm<i,m>j, n+m>i+j

PN I® L, 9L, — I®L,® L,
Case Zs:n>i,m<jn+m>i+j

pPtidiIe L, @ L, — I® L, ® L,
Case Zg:m>1, m>j

id: L, L, — L,®L,,.

Proposition 2.8 The homomorphism \;j : P ® Pj’ — Ti4; defined by Z, —
Zs above define a bilinear form of displays.

Proof: We omit the tedious but simple verification.
Lemma 2.9 The homomorphism

Disj=rPs @ Pj — Ty,
gwen by the sum of \;; is surjective.

Proof: We have to show that all summand of (18) are in the image. Consider
the submodule L, ® L' C T, where n+m > k. Weseti =nand j =k—i=
k —n < m. By Zg this submodule is in the image of P, ® PJ( — T}.. Next
we consider a submodule I ® L,, ® L) C T, where n+m < k. Weset i =n
and j = k —i =k —mn > m. Thus we are in the case Z3 with factor p"~* = 1.
Again the submodule is in the image of P; @ Pj — Tj.. Q.E.D.

Proposition 2.10 Let P and P’ be displays. Let T = (:/;,‘Zi,oii,ﬂ) be the
display (15). Let Q be a separated predisplay. There is a canonical isomor-

phism of abelian groups

Bil(P x P', Q) = Hom(T, Q).
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Proof: Assume that we are given a bilinear form. We set 7 =P ® P’.
The maps T; — @); are constructed inductively. For ¢ = 0 this map is Aqg,
where A denotes the bilinear form. For the induction step to i+ 1 we consider
the diagram

F;

T; Qi Qo
T ”T (19)
Ty —5 T, Qo

We claim that (19) is commutative. By Lemma 2.9 it suffices to show the
commutativity if we compose the diagram with the maps P, ® P, — Tjq,
for s+r = i+1. This amounts to the commutativity of the following diagram

P.® P!

But the diagram is commutative by the definition of a bilinear form. Now
the commutativity of (19) gives a map: Tj41 — Qi Xp,00p @o- It is clear
from the diagram above and Lemma 2.9 that this map factors through ;..
Q.E.D.

Corollary 2.11 The display (15)

T — (7—;7 zia Ooéia FZ)
does not depend up to canonical isomorphism on the normal decompositions
of P and P'. We write
T=PxP

This is clear because of the universal property of 7 proved in the last propo-
sition. Q.E.D.
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Remark: Assume that P and P’ are given by standard data (L;, ®;) and
(L}, ®). Assume we are given bilinear forms of W (R)-modules:

Bij L ® L; — Qiyj-

Composing this with the iterration of ¢, Q;1; — (o, we obtain a bilinear
form

Po® Py = (®:L;) @ (B, L)) — Qo
Let us assume that the following diagrams are commutative:

, CI>Z'®<I);
Lol —% peP

o

Fiyj
Qivj —— Qo

Then the 3;; extend uniquely to a bilinear form
PxP —Q

In [Z2] Definition 18 the notion of a bilinear form of 1-displays was defined.
It is obvious from the formulas there, that a bilinear form on two 1-displays
in the sense of loc.cit. is the same as a bilinear form

PxP —U),

where the right hand side is the twisted unit display (11).

Starting from the normal decomposition of a display P it is easy to write
down the standard data of a candidate for the exterior power /\]‘C P. It comes
with an alternating map ®@*P — A" P. One proves as above that A" P has
the universal property.

We will now define the base change for displays. Let R — S be a
homomorphism of rings. Let P = (P}, ;, o, F;) be a display over R. We will
define a display Ps = (@, ti, o, F;) over S, with the following properties.
There are W (R)-linear maps

P’i—>Qi7

such that the following diagrams are commutative

21



P — @ Qi LI Qo IR®Q; —— Qi
‘| K [ | [0
Py —— Qin P _ B P, Ir® P, N Py

Proposition 2.12 There is a unique display Ps as above which enjoys the
following universal property.
If T = (T;, v, i, F) is an arbitrary display over S and

P—T,

is a set of W(R)-linear morphisms, such that the diagrams above, with Q;
replaced by T; are commutative, then there is a unique morphism of displays
over S

PS—>Ta

such that the following diagrams are commutative:

N,

Qi

T;

The display Ps may be constructed using a normal decomposition of P.
Let Py = &L; be such a decomposition, and let ®; : L, — F, be the
maps induced by F;. Then L;, ®; are standard data for a display over R.
We can define Pg to be the display over S associated to the standard data
W (S) @w(ry L;, with the Frobenius linear maps F @y gy ®; = ..

We will now see that this definition is up to canonical isomorphism inde-
pendent of the normal decomposition chosen. It suffices to see that Pg has
the universal property Proposition 2.12.

The obvious maps P; — ); make the diagrams (20) commutative.
Lemma 2.13 The following W (S)-module homomorphism is surjective

W(S) @wr) P ® Is @w(s) Qi1 — Q.
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Proof: This is clear from the definitions.

Assume that P, — T; is a set of maps as in Proposition 2.12. We
construct inductively maps (); — T;, which are compatible with Fj, ¢;, a;.
Therefore we obtain the desired morphism of displays Ps — 7. Since
Py — Ty is W(R)-linear, we obtain a map

Qo = W(S) ®@wr) Po — To.
Assume we have already constructed W (S)-module homomorphisms
Q] - 7}7

which are compatible with F, . and « for j <1.
Consider the diagram

T, T,

T Tp (21)

Qi+1 — Tp.

The arrow Q;41 — T} is the composition Q;;1 — @Q; — T} and the arrow
F;
Qi1 — Tp is the composition Q1 Qo — To. By Lemma 2.13 we

deduce that (21) is commutative. Thus it induces a map

Qir1 — Ti X, 1m0 To. (22)

It suffices to show that the last map factors through 7;,,. This is seen easily
by composing (22) with the morphism of the lemma.

The uniqueness of the constructed morphism Pg — 7 is obvious. This
proves the proposition. Q.E.D.

3 Degeneracy of some Spectral Sequences

Proposition 3.1 Let 7 : X — Y be a separated and quasicompact mor-
phism. Let K be a complex of of flat 71Oy -modules on X which is bounded
above. We assume that each K° is a quasicoherent Ox-module. Then for
each m the hypercohomology groups R™m K" are quasicoherent Oy -modules.
If M s a quasicoherent Oy -module there is a canonical isomorphism

R(K @10, T M) 2 R K ®p, M (23)

23



Proof: We may assume that Y is affine. Let & = {U;} be a finite affine
covering of X. Let F" = C"(U, K*) be the Cech complex. It is the complex
of global sections of a sheafified Cech complex on Y: F = C (U, K"). The
sheaves in this complex are acyclic with respect to 7, because the cohomology
of an affine scheme vanishes. One concludes [EGA III] Prop. 1.4.10 that
R, K™ are quasicoherent Oy-modules namely the sheaves associated to the
cohomology of F". Since the modules and sheaves involved are flat with
respect to Y the projection formula reduces to the trivial equation:

O(Uv K Koy M) =F Qr(v,0y) F(}/’ M)

Q.E.D.

Let w : X — S be a proper morphism of schemes, such that S is affine. In

this section we consider a bounded complex K of flat 77! (Og)-modules. We

assume that each K is a quasicoherent Oy-module. Moreover we assume
that the following conditions are satisfied:

(i) Rim. K" is a locally free Og-module of finite type for any i and j.

(ii) the spectral sequence of hypercohomology degenerates:

EY = Rin,K' = R'r, K

One can easily see that with these assumptions the simple complex as-
sociated to C"(U, K') as above is quasiisomorphic to the direct sum of its
cohomology groups. It follows that R™m, K commutes with arbitrary base
change for any m. For the same reason the cohomology groups R/7, K* com-
mute with arbitrary base change.

The degeneration of this spectral sequence may be reformulated as fol-
lows. Let us denote the by 02 K" and ¢<" K" the truncated complexes with
respect to the naive truncation. Then the cohomology sequence of

0— 0" - K —o“"K — 0,
splits into short exact sequences:

0 — Rim, (02" K') — Rim, K" — Rim,(0“™K") — 0. (24)

Indeed, take a Cartan-Eilenberg resolution K* — I' by injective sheaves of
abelian groups. Let L' = m,I". This complex comes with a filtration Fil™ L’
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which is induced by the naive filtration of K. The spectral sequence in
question is the spectral sequence of this filtered complex. The condition (24)
is equivalent to the requirement that the maps

HIY(Fil™ L) — HYFil™L)

are injective for each ¢ and m, as one may see easily from the exact coho-
mology sequence. This injectivity may be restated as follows:

d(Fil™ L) A Fil™ L9 = d(Fil™ T LY.

We conclude by [De3| Prop. 1.3.2.
The observation shows that the spectral sequences of hypercohomology
of the truncated complexes =™K and 0<"K" degenerate too.

Proposition 3.2 Let 7 : X — S and K be as in Proposition 3.1. Let
.— My — My — My — ... be a sequence of Og-modules (not necessarily
a complex). We consider the complex

L ...—>KO®OSMOHK1®OSM1—>K2®M2—>...
Then the spectral sequence

EY: Rig L' = R, I

degenerates.

Proof: We assume without loss of generality that K¢ = 0 for ¢ < 0. We
say that a sequence My — M; — ... is m-stationary if it is isomorphic to a
sequence of the form:

My— ... M, 11— M, =M, =...

Because K is bounded it suffices to show the theorem for m-stationary se-
quences. We argue by induction. For m = 0 this is clear from the projection
formula (23). Assume that the proposition holds for r-stationary sequences
with » < m. For an m-stationary sequence we consider the following mor-
phism of complexes:

L —1T (25)
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Ko@M°.. K"2@M™"?2 — K lgMm!l — 5 K™ M™. ..

idJ{ idl l idl
KoM, ..Km2@M™?2 — KMlgM™ —s Km M™...

If we apply the induction assumption to I° we obtain an exact sequence for
each ¢ and the given m.

0 — Rim,(0=™1) — Rim, [ — Rim,(0=™I) — 0. (26)
The morphism of complexes (25) induces a commutative diagram:
Rir,oc=™], —— Rir, L
4
Rir,o=m] —— RIm, I
By our induction assumption (26) it follows that the upper horizontal arrow
is injective.
We have to prove that the following sequences are exact for arbitrary
integers ¢ and n.

0 — Rim,(0="L) — RIm, L — Ri7,(6c<"L") — 0.
We have seen this for n = m. For n > m we have to consider the maps.
Rirm,(0="L) — Rir,(0=™L) — Rix, L

It suffices to show that the first arrow is injective. But this follows from the
beginning of our induction.

Finally we consider the case n < m. By the cohomology sequence it is
sufficient to see that the map

Rim, L — Rim,(c<"L")
is surjective. But this map factors as:
Rim, L' — Rim,(c"™L) — Rim,(c<"L)

We need to show that the second map is surjective. But the complex o<™ L’ is
the tensor product of c=™ K" with an (m—1)-stationary sequence of modules.
Therefore the map is surjective by induction assumption and we are done.

Q.E.D.
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Proposition 3.3 Let T : C — D be a left exact functor of abelian categories
such that C has enough injective objects. Let K be a complex in C which is
bounded below. We assume that the spectral sequences in hypercohomolgy

EY = RTK' = RMTK

degenerates. Let f: K° — K be a homomorphism of complexes. Then
for each integer m the corresponding spectral sequence of hypercohomology
associated to the complex

K(m, f): & gm=2 4 gmt D gm & gomit
degenerates.

We omit the proof because it uses exactly the same arguments as above.

4 Filtered Comparison Theorems for the de
Rham-Witt complex

Let R be a ring such that p is nilpotent in R. We consider a smooth scheme
X over R. We will fix a natural number n. Assume we are given a smooth
lifting X /W,,(R). If X admits a Witt-lift ([LZ] Def.3.3) O — W, (Ox) we
obtain a morphism of complexes

Q2w — Cwnxywam) — Wally)p- (27)

It is shown in [LZ] 3.2 and 3.3, that even if X admits no Witt lift, there is a
natural isomorphism in the derived category DT (X 4., W,(R)) of sheaves of
W, (R)-modules on X:

/W (R)

The aim of this section is to prove a filtered version of this isomorphism.
For typographical reasons we use the abbreviations:

D =Qwamy Vel = Wi,
Let us denote by F™(); TWR) the complex
~0 pd pd Am—1 4 Am 4 FAm+1
[Rﬂ"b ®Wn(R) Qn_>---_>[R,n ®Wn(R) Qn —>Qn —>Qn — ... (28)
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Conjecture 4.1 There is a canonical isomorphism in the derived category
DT (X,ar, Wa(R)) between the Nygaard complex and the complex (28):

N™W, Qg & FY

X /Wn(R)

This question is closely related to the work of Deligne and Illusie [DI]. We
will now see that the complexes in question are always locally isomorphic.

Let us assume we are given a Witt-lift. It induces a map

K Q, — WL
By composition with the Frobenius F' : W,Q0 — Wn_lQ'[ F We obtain a map
F R0 Ow, () Q'n — Wh1 Q).
e@wr— ¢ Th(w)

Using F we obtain a morphism of complexes of F™Q — N™W, Q:

d

pd pd d

o M, M oeart 4, ogn 4,
Fl Fl l (29)
d d m— dv m d
W1 QU W Q! —— W™ —— ...

Let us consider the morphism (29) in the following simple situation:
Let A = R[T},...,Ty) and X = Spec A. We set A = W, (R)[T,... Ty
and X = Spec A. We consider the Witt-lift:

A W, (A)
I, — (1) (30)

It is the unique map of W,,(R)-algebras, which maps T; to its Teichmiiller
representative in W, (A).

Proposition 4.2 For the Witt-lift (30) the induced morphism
FmQ

g war) —— N Wallx/g (31)

is for any m > 0 a quasiisomorphism.
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Proof: We use the W,,(R)-basis of Qi&/Wn(R)

forms. For each weight function & : [1,d] — Zs we fix an order on the set

given by p-basic differential

Supp k = {iy,...,i}, such that
ordyk;, < --- < ord,k;,.

For any ascending partition of Supp k into disjoint intervalls

P:Suppk=ILulLU---UI,
such that I; # ) for 1 <t <[, we have the p-basic differential

é(k,P) — kao (p—ordpkj1 dih) .. (p—ordpkfl dTIl) ] (32>

The order on Supp k is fixed once for all and therefore not indicated in the
notation (compare [LZ] 2.1).
In [LZ] 2.2 we have defined the basic Witt differentials

en(&,k, P) € Wy 5.
They are defined for functions & : [1,d] — Zzo[%]; and £ € VUOW,_,(R),
where u(k) is the minimal nonnegative integer, such that the weight p“(®)k
takes integral values.
In our case the map (27) is the unique W,,(R)-linear map given by
l I
QA/Wn(R) — Wnlly/p-

(33)
é(k, P) — en(1, k, P).

The map F looks as follows

= 1 l
F:Ip ®Wn(R) QA/WTL(R) —_— n—lQA/R,[F]
Vg & é(k, 7)) — 6n71<57pk773)'

For each weight & : [1,d] — Zzo[%], we consider the subgroup Wanq/R(k)
of W, /r» Which is generated by basic Witt-differentials e, (¢, k, P) of fixed
weight k. The complex N™W,Q splits into a direct sum of subcomplexes

N™(k):

m— v m
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Similarly let Q; /Wn(R)(k) C Q4 TWalR) the W, (R)-submodule generated

by the p-basic differentials &(k, P) of fixed integral weight k. Then F"Q) is
the direct sum of the following subcomplexes F™(k):

I @w,ry Q0 (k) LS L Swr) () S Q) — -

It is obvious that for integral weight k the map

F(k) — N™(k) (34)

is an isomorphism of complexes. Therefore the proposition follows if we
show that for k not integral the complexes N (k) are acyclic. This follows
in degrees not equal to m — 1 or m from the corresponding statement for the
de Rham-Witt complex (see [LZ] Proof of thm. 3.5).

For non-integral k& consider a cycle w € Wn,lﬂ%’l(/ﬂ), ie. dVw = 0.
Because of the relation F'dV = d, it follows that w is also a cycle in the de
Rham-Witt complex W,,_1£2" and consequently a boundary, because k is not
integral.

Finally consider a cycle w € W,,Q™(k). It may be uniquely written as a
sum

w= Z en(&p, k,P).

P

By [LZ] Prop. 2.6 w is a cycle, iff P = ( U P’, i.e. iff the first intervall Iy of
the partition P is empty, for all e, ({p, k,P) # 0 which appear in the sum.
Since k is not integral the coefficient &p is of the form &ép = V7p and

d Ven—l(T'Papk7p) - 671(5777 k)p)
Q.E.D.

We make n variable. We set A = R[Ty,..., Ty, A, = Wo(R)[T...Ty).
We extend the Frobenius homomorphism F' : W,,(R) — W,,_1(R) to a map

(bn :An B Anfla
T, — Tl.p_

We denote 6, : A, — W, (A) the W,,(R)-algebra homomorphism, such
that 6, (7;) = [T3].

(35)
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Assume we are given an étale homomorphism A — B of R-algebras.
Then we find a unique set of lifting B,, of B, which are étale over A, and
morphisms

Yp: By — B,y and ¢, : B, — W, (B),
which are compatible with ¢,, and d,,, compare [LZ] Prop. 3.2.

Corollary 4.3 The map &, defines a quasiisomorphism of complexes:

pd pd m—1 d m
@ oy — - = IO .y — DB wam -
g g |
d d m—1 av m
Wn_lQ%/R,[F] —_— ... n_lQB/R,[F] E— WnQB/R...

Proof: For the given number n, we find a number m such that p™W,,(R) = 0.
Let us denote by ¢™ : A,,., — A,, the composite of m morphisms of type
(35). It is clear from the definition that

do™ : Amin — Q,laxn/wn(R)

is zero. Consider the commutative diagram

dy™
Bm+n - Q}BH/WH(R)
T T

d¢
Am+n - Qxléln/Wn(R)

The derivation Ay, — Q- Jwa(r) 18 zero. Since Biin/Amin is étale, the
extension dy™ is zero too.
Consider the commutative diagram
wm
Bern B m

T 7
Amin 5 A,

It induces a morphism of algebras which are étale over A,:

Bm_;’_n ®Am+n7¢m An — Bn (36)
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This is an isomorphism. Indeed since A, — A/pA has nilpotent kernel it
is enough to show that (36) becomes an isomorphism after tensoring with
®a,A/pA. But then we obtain the well-known isomorphism

B/pB ®A/pA,F1“obm A/pA — B/pB
b®ar— b -a.

From the isomorphism (36) we deduce an isomorphism

Bm+n ®Am+n’¢m QAn/R;> QBn/R

b ®@ wr—— YP7(b)-w. (37)

We note that (37) becomes an isomorphism of complexes if we take 1 ® d
as a differential on the left hand side. Hence the first row of (4.3) is obtained
by tensoring the corresponding complex for B, = A, with B, ,.

Let us consider the complex

anlQ%/R,[F} —_— s —> nleA/}%,[F] — WnQA/R —> e, (38)

We consider it as a complex of W,,1,,(A)-modules via F™ : W, ,,,(A) —
W, (A). Then all differentials become linear (compare [LZ] Remark 1.8).

This shows that we obtain the second row of diagram of Corollary 4.3 if
we tensorize (38) with W,y (B)®w,,,.(a),rm. Because of the obvious iso-
morphism ([LZ] (3.2))

Bn+m ®An+m,6 Wn-i—m(A);)Wn-&-m (B) )

the result is the same if we tensorize (38) by

Bn+m ®An+7na5¢m :

Therefore the whole diagram of Corollary 4.3 is obtained from the corre-
sponding diagram for B = A by tensoring with B, 1,,®a4,,, ;n- Since this

tensor product is an exact functor we obtain the corollary from the proposi-
tion. Q.E.D.

Let X/R be a smooth scheme. We assume that R is reduced and p- R =
0. Then we consider still another complex derived from the de Rham-Witt
complex. We set W = WQIX/R and define "W, Qx/ g starting in degree
0.
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PPV, S YW, S VW, S W0 (39)

We recall the relation pd Yw = Vdw of [LZ] 1.17. For varying n we obtain a
procomplex Z™W . Qxpg.

Proposition 4.4 Let R be a reduced ring of char p. The procomplexes
I™W.Q and N™W.Q are isomorphic in the pro-category of the category of
complexes of abelian sheaves on X .

Proof: We have an obvious morphism of procomplexes

NWQ —s T"W.O (40)

Woa 5 Wy Waant S owam L
pmV | pm V| Vi id |

P, Q0 L gy, b L v, 0t S oo L

We have to prove that this induces an isomorphism of proobjects. We set
W = lim W,Q. On W2 the multiplication by p and the Verschiebung are

) —iy—1
injective. Therefore we have an inverse p'VW (2 Py, WQ g

Lemma 4.5 Letn > k > i+ 1. Then there is a map p'VW, Qb — W, _.Q,
which makes the following diagram commutative

inWanX/R - “*leX/R,[F}
7 7 (41)

VWL, PN
X/R X/R,[F]"

Proof of the lemma: Let n > k > i. For & € W,(R) we denote by &
its restriction to W,,_x(R). Then we have a well-defined map
P VWL(R) — W,_(R)
pVE— 3
Indeed, write £ = (zg,...,%,_1). Then

(42)

P VE=(0,...,0,20 ... 2" . ) € Wpi(R).

n—i—1
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Therefore the vector (xg,...,x,—i—1) € W,_;(R) is uniquely determined by
pt Ve We view W, _i(R) as a W, 1(R)-module via

Res

Woi1(R) - Wo(R) — Wyi(R).

Then we obtain a morphism of W, ;(R)-modules because of the following
commutative diagram

PVW(R) - w(R)
! !
PVW.(R) — W i(R).

The existence of the diagram (41) is clearly local for the Zariski-topology on
X.

We begin with the case, where X = Spec A and A = R[T1,...,Ty] is a
polynomial algebra. In this case an element of p'VIW Q! /g May be expressed,
in terms of basic Witt-differentials:

w=Y p Veullpu b, P), pi € V'OW, iy (R). (43)

Note that e, ({p g, k, P) = 0, when u(k) > n.
The terms of the sum (43) are uniquely determined by [LZ] Prop.2.5
because of the direct decomposition

k
Wn+1Qf4/R = @k,PWnHQi;/R(]—?a P).

Using loc. cit. we find:

pi Ve(fp,ka k7 P) = pl V€<§;?,k7 k? P)a (44>
iff p' Vépp = pf V{;,’k, except in the case where k/p is not integral and I, = ().
In the latter case the equality (44) holds, iff p"™' Vép , = p'*t Vg ..
With the lemma above this shows that the following map is well-defined:
P VIV, 0 — an(iJrl)Ql
W Z €n—(i+1) (56,73’ ka P)

This proves the lemma in the case of a polynomial algebra A. Assume now
that A — B is a étale morphism.
The image of the canonical injection
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Woi1(B) @w,or(4) PV W0 Qar — Wi (B) @w,y ) Walasr =~ W1 Qp)/r

coincides with inWnQB/R. This follows from the following commutative
diagram

Wos1(B) @wpyy (), WaQayp ——  WoQgp/r
id®pi\/l inJ/
Woi1(B) @w, oy (4) Was1Qap —— Wi Qp)p.

The top horizontal arrow is given by £ ® w 1" £w and the lower horizontal
arrow is multiplication.
Now we find the desired map by tensoring inWnQA/R — Wh—(i+1)Qu/r:

Wit (B) @w,ar () PV Wolar — Wisi(B) Qw,_y(a),r Wa—+1)Qa/r
vl
pZVWnQB/R B— an(l#l)QB/R-
The composition of the last map with p'V : Wh—i+12B/r — Wh—ifdp g is
just the restriction. This proves the lemma. Q.E.D.

The proposition follows immediately because we obtain an inverse to the
map (40):

d

PPV, 00 L g2y, 0l VI, 0t S wam
l l l lRes
d m—1 d m
Wm0 5 Wi Qo Wasma et S W Q7

The first m vertical maps defined by the lemma are equivariant with respect
to

Wo(R) =5 W (R) = W (R)
The remaining maps are equivariant with respect to W,,(R) — W, _.(R).
The commutativity of the diagram follows, since it is a homomorphic image of
a corresponding diagram for W2 without level. This proves the proposition.

Q.E.D.
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Let X/R be a smooth scheme. Let us denote by Jx/w,r) C Ox/w,(r)
the sheaf of pd-ideals. We denote by J. )[?/114/71 (R) its m-th divided power. Let

Uy, : Crys(X/Wo(R)) — X.ar

be the canonical morphism of sites. We are going to define a morphism in
D(X.,,,) the derived category of abelian sheaves on X,,, for m < p:

Run*j)[(%vn(z{) — I"Wolly/r (45)

In order to define (45) we begin with the case, where X admits an embedding
in a smooth scheme Y/R, such that Y has a Witt-lift: Y /W, (R) and Oy —
W, (Oy).

The left hand side of (45) may be computed with the filtered Poincaré
lemma [BO] Theorem 7.2: Let D be the divided power hull of X in Y.
Let Ip C Op be the pd-ideal. The pd-de Rham-complex QD/Wn(R) has the

following subcomplex Fil™Q)p JWa(R):

m| o d  r[m—1] & d < d
]/[3] D/Wn(R) ]1[) ]QE/WTL(R) - --‘]DQD/MI/H(R) - QD/Wn(R) s (46)

Then the left hand side of (45) is isomorphic to the hypercohomology of (46).
The Witt-lift defines a morphism

Of/ E— Wn(OY) — Wn(OX)

It maps the ideal sheaf of X C Y to the ideal sheaf Iy = VW,-1(0Ox) C
W,(Ox). Since Ix is endowed with divided powers, we obtain

Op — W,(0Ox), (47)

mapping Ip to Ix. The homomorphism (47) induces a map of the pd-de
Rham complexes

QD/Wn(R) — an(X)/Wn(R) — W, Qx/r.

Taking into account that [ )[?] = p"~1Ix for h < p, we obtain the desired
morphism from (46) to the complex Z™W,Q if m < p:

P WL g — - W S Wy —
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We note that IXWanX/R = VWn_lﬁlX/R follows from the formula
Vindwy ...dw,) = Vnd Vw...dVw,.

Hence we obtain a morphism

The independence of the last arrow from the embedding of X into a Witt
lift (Y,Y) is proved in a standard manner: Let X < Y’ be an embedding
into a second Witt lift (Y’,Y”). Then we obtain a Witt lift of the product
Y Xspecr Y : Indeed, Y X Spec Wi (R) Y is a lifting of Y x Y and the two given
Witt lifts induce a morphism:

Oy Qw,(r) Oy — Wi(Oy) Qw,,(r) Wn(Oy+) — W, (Oy & Oy).

If P denotes the pd-hull of X in Y X Spec Wi (R) Y’. We obtain a commutative
diagram

Fil™ 2w, )

T

ImW, Q% /R

/

Filme/Wn(R)

Since the vertical arrow induces by [BO] the identity on Ruy,.J- )[{%Vn( R)
the independence of (45) of the chosen Witt lift follows.
If X admits no embedding in a smooth scheme Y which has a Witt lift,

one can proceed by simplicial methods [I] or [LZ] §3.2, but we omit the details
here.

Theorem 4.6 For each m < p and n the map in DV (X, 4, Wh(R))

18 a quasisomorphism.
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Proof: Clearly the question is local for the Zariski-topology on X. We
may therefore assume that X = Spec B, where the R-algebra B is étale over
R[T},...,Ty]. From the discussion above we know that any Witt-lift of B
leads to the same morphism (49). We choose a Frobenius lift {B,, },en of the
algebra B as in the corollary 4.3. We begin with the reduction to the case
B = R[T\,...,Ty]. Let J be the kernel of B,, — B. Then J = p"~'I;B,,
where Ip = VW, _1(R) C W,(R). Hence we have to show that the following
morphism of complexes induces a quasiisomorphism:

— d m—1 d m d N
p 11R90n/wn(3) - "‘IRQBn/Wn(R) QBn/Wn(R)

l l I e

PR e VW W,

We choose a number s, such that p*W,,(R) = 0. We consider the groups
in the first complex as B, , modules via ¢* : B, s — B,. As shown in the
proof of Corollary 4.3 we obtain a complex of B, ,-modules. The same is
true if we consider the groups in the second complex as B, -modules by
V*: Byys — B, — W, (B).

We obtain the diagram above from the corresponding diagram for B = A
by tensoring with B, s®a4,,. .. Since B, is étale over A, ,, we have reduced
our statement to the case where B = R[T},...,T,] and where the Witt-lift
is a standard one.

In the case of a polynomial algebra we have a decomposition of the de
Rham Witt complex according to weights [LZ] 2.17.

Because the operator V' is homogenous, we have a similar decomposi-
tion for the complex Z™W,4/g. In fact, by [LZ] Prop. 2.5 an element of
"IV, Q) for [ < m—1 may be uniquely written as a sum of elements
of the following types

en(pm Ve K Iy, ..., 1) for k integral

en(pm Ve K Iy, ..., 1) for Iy # 0, k not integral

en(pm Tt VE K Iy, ... 1)) for Iy = 0, k not integral.

Here ¢ € W,,_1(R) for k integral and £ € V“(k)_lwn_u(k)(R) for k noninte-
gral. Clearly the elements of the first type span a subcomplex of Z"W,,Q4/r
which is isomorphic to the complex in the first row of (50). Indeed, the p-
basic differentials of this complex are mapped to basic Witt-differentials of
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the first type above. The last two types of Witt-differentials above span an
acyclic subcomplex because of the formula

den(pm_l_l Vé-a k7 ‘[07 s 7Il) - en(pm_l_l Vé-a k7 ¢7 -[07 LI Il)?

for Iy # 0 and k not integral. The exactness of the non integral part at
Wan/R follows in the same way. Q.E.D.

Let X,,/W,(R) be a compatible system of smooth liftings of X/R for
n € N. The Theorem 4.6 provides an isomorphism in the derived category
between Z™W,{x, g and

(51)
We know by Proposition 4.4 that {Z"W,{x g} is isomorphic to the procom-
plex {N"W,Qx/r}. The same argument shows that the procomplex (51) is
quasiisomorphic to {me'Xn /Wn(R)}nE - Passing to the projective limit we
obtain:

Corollary 4.7 Let R be a reduced ring. Let X/R be a smooth and proper
scheme. Assume that X, /W, (R) is a compatible system of smooth liftings
of X. Then there is for each number m < p a natural isomorphism in the
derived category D™ (X.arw(r)):

where X = lim X,, in the sense of EGA I Prop. 10.6.3.

This is a weak form of the Conjecture 4.1 which asserts this for every level
separately.

5 Display Structure on crystalline cohomol-
ogy

Let R be a ring such that p is nilpotent in R. Let (A, 0, a) be a frame for R
[Z1]. This means that A is a torsion free a p-adic ring with an endomorphism
o : A — A, which induces the Frobenius endomorphism A/pA — A/pA.
The map o : A — R is a surjective ring homomorphism, such that the ideal
a = Ker « has divided powers.
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Definition 5.1 An A-window consists of
1) A finitely generated projective A-module F,.

2) A descending filtration of Py by A-submodules

...PyLZwCPC---CPCP Ch. (52)

3) o-linear homomorphisms

EP1—>P0

The following conditions are required.

(i) aP; C Piy1 and the factor module Piyq/aP; is a finitely generated pro-
jective R-module E;yy fori > 0. We set Ey = Py/aP,.

(ii) The inclusions P11 — P; induce injective R-module morphisms
= By — By — -+ — Ey,
such that E; 1 is a direct summand of E;.
(11i) aP; = Py if i is big enough.
(v) Fi(x) = pFiiqi(x) for x € Py
(v) The union of the images F;(P;) fori € Zxq generate Py as an A-module.

A window is called standard if it arises in the following way. Let Ly, ..., Lq
be finitely generated projective A-modules. Let

d
oL — PL;
§=0

be o-linear homomorphisms, such that the determinant of &y ®--- @ P, is a
unit. Then we set for ¢ > 0

P=dlog®ad 'Li®.. ®al, 1 ®L, D ® Ly.
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We define F; on this direct sum as follows: The restriction of F; to a® *L,
for k < resp. L for k > 1 to is defined by

Fi(ax) = ;i(f,zq)k(x) for 0 <k<i, v€Ly, aca™*
Fi(x) = p®p(z) for i <k x € L.

It is clear that (P;, F;) form a window. )
Each window is isomorphic to a standard window. Indeed, let Ey = ©L;
be a splitting of the filtration (52) in the definition:

Ez' = @jZiLj'

Let L; be a finitely generated projective A-module which lifts L;. We find
homomorphisms L; — P; which make the following diagrams commutative:

It follows from the lemma of Nakayama that ©&L; — F, is an isomorphism,
since it is modulo a. By induction we obtain

P=dLy® - ®ali 1 ®L; & & Ly. (53)

We set ®; = F;|L;. The condition (v) implies that &®; : ®L; — ®L; is a
o-linear epimorphism and therefore an isomorphism.

Remark: A window (F;) is of degree d, if P41 = aP; for i > d. To
give a window of degree d it is enough to give only the modules Fy, ..., P,.
The axioms may be formulated in the same way for this finite chain of mod-
ules. The axiom (v) then requires that the union of Fy(Py), Fi(Py) ..., Fy(FPy)
generates P as an A-module.

We will now see that an A-window induces a display over R. There
is a natural ring homomorphism 6 : A — W/(A), such that for the Witt-
polynomials w,, there is the identity

w,(0(a)) = 0"(a), a€ A.
Consider the composite ring homomorphism.

w:A—W(A) — W(R).
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We have by [Z1] Prop. 1.5:

w(o(a)) =  Tsx(a) for ae A
%(UTfl)) = V'x(a) for a€a.

The last equation makes sense because s(a) € VIW(R) for a € a.

It is clear that a datum (L;, ®;) for a standard window over A induces the
datum (W (R) @wa) Li, ' ® ®;) for a standard display over R. We will show
that the resulting display does not depend on the decomposition Py = ®L;
we have used.

We give an invariant construction of a display (Q;, ¢, «;, F;) from a win-
dow (P, F;). The display comes with morphisms 7; : P, — @); such that the
following diagrams commute

P, —= Q Py —= Qi1 Py —/— Qo
LT e
Pii 5 Qi a® b —— Igr Qwr) Qi P —— Q.

We construct @); and 7; inductively, such that the diagrams (54) commute.
We set Qg = W(R) ®,.4 Py and we let 75 : Py — Qo be the canonical map.

Assume that 7, : P, — Q) was constructed for k& < i. Then we consider
the following commutative diagrams:

F;

P,—=Q; Qo
d
F;
v QO Q’L QO
S
Fiyy ]R®Q‘L>Q
Py Py ¢ 0

We obtain a morphism to the fibre product
(W(R) ®4 Piy1) ® (Ir ® Qi) — Qi XF,,Qop Qo- (55)
We define @Q;;1 as the image of (55). This gives a map P4 jiasy Qir1- We

define ¢ : Q;y1 — Q; and Fjy1 @ Qi1 — Qo and o : [ ® Q; — Q11 as
the canonical maps determined by these data. A routine verification shows
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that this construction gives the same result as the construction via standard
windows.

Moreover the following universal property holds. Let (Q, ¢;, af, F!) be a
display over R and let 7/ : P; — @)} be maps such that the diagrams (54) for
7/ commute. Then the maps 7/ are the composition of 7; and a morphism of
displays (Q;, v, i F;) — (Q%, ik, o, FY).

Let A % R,0,a as before. Let X — SpecR be a scheme which is
projective and smooth. Let ) EN Spf A be a smooth pA-adic formal scheme,
which lifts X. We set A, = A/p™ and Y,, = ) Xgpra Spec A,,. For big n the
map o factors through A, =3 R. The kernel a,, inherits a pd-structure. We
consider the crystalline topos (X/A)eys. Let Tx/a, C Oxya, be the pd-ideal
sheaf. We are interested in the cohomology groups:

HY(X, ) = tim Y (X A, T ). (56)

C
n

Remark: It would be more accurate to consider the cohomology groups
of Rlim RT'(X/A,, j)[("}lln) But under the Assumptions 5.2 and 5.3 we are

going to make these groups will coincide.
By [BO] 7.2 the groups H! (X /An,j)[(n/in) are the hypercohomology

crys

groups of the following complex F'il [m}Q'Yn AL

agﬂ} ®An Qg)/n/An — agn_l] ®An Q%/n/An e — an®An an_/in — Q%/An e (57)
We will make the following assumptions:

Assumption 5.2 The cohomology groups H9(Y,, Q@n/An) are for each n lo-
cally free A,-modules of finite type.

Assumption 5.3 The de Rham spectral sequence degenerates at Fy
EY = HY(Y,, Q’;n/An) = HPTI(Y,, Q'Yn/An).

Since Y,, is quasicompact and separated by assumption the cohomology
sheafs R™ f,,.0)y, /a, are quasicoherent. From the assumption we see that
these sheaves are locally free of finite type. Hence the complex R f,.{)y. /A,
is quasiisomorphic to the direct sum of its cohomology groups. This im-
plies that the cohomology groups R™ f,,.{2y /a,, commute with arbitrary base
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change. The same applies to the cohomology groups R?f,,. Qf,n A By Propo-
sition 3.2 and the projection formula (Proposition 3.1) we obtain a degener-
ating spectral sequence

B = HI(Y,, Q4 1a,) @4, a1 SHY(Y,, Fill™0;, ), )

[
HE(X/ A, T )

If we pass to the projective limit we obtain a degenerating spectral sequence

By = ™o HI(Y, Q) = HIL(X/A, T (58)

crys

The groups involved have no p-torsion.
We set X = X Xgpec g Spec R, where R = R/pR. By [BO] 5.17 there is a
canonical isomorphism

X/A OX/A> crys(X/A OX/A) (59>

The absolute Frobenius on X and ¢ on A induce an endomorphism on the
right hand side of (59) and therefore an endomorphism

crys (

F:H., (X/A Oxja) = H, o (X/A Ox/a).
Lemma 5.4 Let p™ be the mazimal power of p which divides p™/m! Then
the image of the following composition

crys(X/A jX/A) crys(X/A> OX/A) crys(X/A OX/A)

is contained in pl™

crys(X/A OX/A>

Proof: The argument is well known [K], but we repeat it in the generality we
need. We may replace A by A,,. We embed X into a smooth and projective
A,-scheme Z, such that there is an endomorphism o : Z — Z which lifts
the absolute Frobenius modulo p and which is compatible with ¢ on A,,. We
may take for Z the projective space. Consider the pd-hull D of X in Z.
It is also the pd-hull of X in Z. Therefore o extends to D /A, and to the
pd-differentials €2p,4,. We obtain by [BO] an isomorphism

H' (X, Qpa,) = Hiyyo(X/A, Ox/a,),

crys
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which is equivariant with respect to the action of o on the left hand side and
F' on the right hand side.
Consider the morphisms

X —>D—Z

Let I(X) be the ideal of X in Z and Jp be the ideal of X in D. Consider
the diagram

(02, 1(X)) — (Op, Ip)

AN
(Oz,1(X)) —=(Op, Ip)
The composite x maps I(X) to p- Op. This follows because
o(z) =2 modp for z € Oy. (60)

If z € I(X) the image of z? in Jp becomes divisible by p, because we have
divided powers. Therefore the induced map op on the divided power envelope
maps Jp to pOp. Therefore

O'(jgm}) c pmop.
For z € Oy we find from (60) that in QlD/An:
do(z) =0 mod p.

The composite map of the lemma is induced by a map of complexes:

N TE 0, ——
al al (61)
QOD/An QZD/An E— o s o o

The image of this map lies in pl™ - Q'D/An = plml A4, ®HAH QD/An. The last
equality follows since by [BO] 3.32 the sheaf Op is flat over A,,. The hyper-
cohomology of the last complex is by the projection formula

p™A, @ RU(X,Qpja,) = p™A, @R ys(X/A,, Oxya,)
= pl" A, @ RI'(Y,, Q. a,)

45



But the cohomology of the last complex is p™H! (Y, Q. a, ),
sumed that the cohomology is locally free. This shows that (6
the hypercohomology through p™H,,,.(X/A,, O X/An) = m] [
Q.E.D.

since we as-
) factors on

1
(Y, Q'Yn/An).

Theorem 5.5 Let R be a ring, such that p is nilpotent in R. Let X be a
scheme which is projective and smooth over R. Let A — R be a frame. We
assume that X lifts to a projective and smooth p-adic formal scheme )/ Spf A
such that the assumptions 5.2 and 5.3 are fullfilled. Then for each number
n < p the canonical maps

(X/A, T —

£ (X/A, T = = HE (X/A, Ox)a)

crys crys X/A crys

are injective. The A-modules P, = H. (X/A, X/A) for m < n together

crys
with the maps
1

—F=F,:P,—F
pm
gwen by Lemma 5.4 form a window of degree n.
Proof: We consider a number m < n. Then we have j}gl/A j[n/i,
al™. We write Fil[m}ﬂ'y/A = lim Fil[m]Q'Yn/An. Then we find a canonical

n

isomorphism
Py = H'(X, Fill™Qy)0) = HEy (XA, T ) (62)

From the degenerating spectral sequence (58) we obtain the injectivity of
P,, — P,,_1, since we have injectivity on the associated graded groups.

In the following considerations m,n can[b]e arbitrary natural number,
m

without the restriction m < n < p. Then ley/A will be the complex ley/A
ang,/A — amlei,/A — = aQS)”/A — QY4 —
Consider the following morphism:
a® H"(X, FilmQ'y/A) — H*(X, aFilmQ'y/A). (63)

We have for aF'il™(Y), , a degenerating spectral sequence as (58). Therefore
the right hand side of (63) is a subgroup of H"™(X, Fil™ Qy/A)
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We claim that the induced inclusion is an equality
aH" (X, Fil™y, 4) = H" (X, aFil™Qy, ). (64)

This equality holds for m = 0 by the projection formula. Indeed, consider
the canonical map:
Fil™Qy 4 — ang,/A — 0.

The kernel is the following complex C:

OﬁamilQij/A—)--.HﬂQg;AlHQS)n/A—)....

This complex C' is of the same nature as Ful™(), /A but with less ideals
involved. By an induction we may assume that

aH"(X,C) = H"(X, aC).
By the projection formula we find
aH"(X,a™05,,) = a" M HM(X,Q5,,).
The assertion (64) follows from the diagram

H"(X,aC) —— HY(X, aFil™;,,,) —— H"(X,a™'Q) )

| UT ||T (65)

ol"(X,C) —— all*(X, Fil™), ,) —— aH"(X,a™5, ;)

The upper line is a short exact sequence by a spectral sequence argument

as above. The lower line is a complex. The first arrow is injective and the

second surjective but it is a priori not exact in the middle term. One sees

that the upper and lower line in (63) must be isomorphic. This proves (65).
We have already seen that the following maps are injective

H" (X, aFdl™Qy,,4) — H" (X, FilmHQ'y/A) — H"(X, Fil™y, 4).
Therefore we obtain an exact sequence
0 — H"(X, aFil™Qy, ,) — H*(X, Fil"™'Qy,),) — H'(X, 07" Q) — 0.

Since by (64) the map a @ H" (X, Fil™y/a) — H" (X, aF4l™Yy, ,) is surjec-
tive, we see that

Py = H"(X, Fil™Yy,,) and E,, = H"(X, 07"y, z)
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fullfill the conditions (i)-(iii) for a window without any restriction on m and
n. We note that for fixed n we have P, ; = aP,, for m > n. As explained
after the definition of a window, we can obtain a decomposition

P,=a"Lo®a" L1 & - -®a™"L,,

with the convention that a* = A if k£ < 0.
Concretely we can find the liftings L; as follows. We consider the maps:

H" (X, Fil™y,)4) — H'(X, 027Qy,4) — H"7™(X,Q5)

Then L, is obtained by splitting the last surjection. This construction gives
isomorphisms:

Ly, = H"™(X, 3 4)

We now impose the condition m < n < p of the theorem. By lemma 5.4
and (62) the Frobenius endomorphism F': Py — P, is divisible by p™ when

restricted to P,,. We set .
¢, = —FL,..
pm

The assertion that {P,,} is a window is then equivalent with the condition
that

S0P BigLi — DioLi

is a o-linear isomorphism, or in other words that det(®} ;) is a unit in

W (A). Clearly it suffices to show that for any homomorphism R — k to a
perfect field k the image of det(®®;) by the morphism

AZW(R) —W(k)—k

is a nonzero. The compositum map A — W (k) respects the Frobenius and
induces a map on crystalline cohomology

HZ"yS<X/A7 OX/A) — H, (Xk/W(k)v OXk/W(k))

crys

which respects the Frobenius. It is induced by the base change map for de
Rham cohomology.

H" (X, Qy/4) = H"(Xk, Qy g wiiywn)-
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The special decomposition we have chosen
H"(X, Q) = &L,
induces a similar decomposition
H" (X, Wy oww) = H (X, €5,4) ®a W(k) =®L; @4 W (k).

Therefore we have reduced our assertion to the case R = k a perfect field and
A = W(k). This case was proved by Mazur (Compare [Fo] p.91 and Kato
[K] Prop.2.5). We give an argument in the case n < p — 2 which is based on
the comparison Corollary 4.7 but doesn’t use gauges.

For any complex A" of abelian sheaves on X consider the exact sequence
induced by the naive filtration.

0—=0s A4 —-A —04A —0,

where 7 is an arbitrary integer. If n + 1 <17 we obtain an isomorphism
H'(X,A)=H"(X,04A).
We apply this to the Nygaard complex N, Ik and to the de Rham-
Witt complex Wy ;. For i < m —1 the operator [, (5) induces clearly a
bijection of the truncated complexes
E, : agiNmWQ'X/k — oWy,
Therefore if n +1 <7 < m — 1 we obtain a bijection
F, - H”(X,NmWQX/k) — H"(X, W)

We set m = n + 2. Since m < p by assumption (and because k is reduced)
there are canonical isomorphisms in the derived category:

NmWQX/k = fmﬂy/w(k) = FilmQy/W(k)

But since m > n the map F,, is identified with the linearization of ®®;. This
says that the last map is a Frobenius linear isomorphism. Q.E.D.

Remark: The proof shows that Hp,()) with its Hodge filtration is
strongly divisible (compare [Fo] 1.2 Prop.) for n < p — 2. If we knew that
N mWQ'X/k and F™"Qy we) are quasiisomorphic, the last argument would
imply that H},()) is strongly divisible without restriction on n. We note
also that the last argument works directly over any reduced ring k.
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Corollary 5.6 Let X be a smooth and projective scheme over a ring R such
that p s nilpotent in R.
Let us assume that there is a frame A — R and a smooth and projective
p-adic lifting Y/ Spf A of X, which satisfies the conditions of the theorem.
Then we obtain for n < p by base change a display structure of degree
n on Hp, (X/W(R),Ox/wry). This display structure is independent of the

frame A and the formal lifting Y we have chosen if p- R = 0.

Proof: For a given frame A the independence of the lifting ) is clear,
because the window structure is purely defined in terms of the crystalline
cohomology of X/A.

If we have a morphism of frames B — A and a formal lifting Z of X to
B, then we set ) = Z4. Then the window associated to ) is obtained from
the window associated to Z by base change (one should think in terms of
decompositions (53)). Therefore the induced displays are the same.

If p-R =0and A" and A” are 2 frames, we obtain a new frame A’ xp A" —
R. Then ¢’ x 0" is an endomorphism of A’ x g A” because ¢’ and ¢” induce the
same endomorphism on R. If )/ Spf A" and )"/ Spf A” are formal liftings,
we obtain a formal lifting )’ x, )" of X over A’ xg A”. Therefore we obtain
the same display structure by base change.

Theorem 5.7 Let R be a reduced ring of characteristic p. Let X/R be
a smooth projective scheme. Assume that there is a compatible system of
smooth and projective liftings Y,,/W,(R). We assume that the assumptions
5.2 and 5.3 are satisfied with A,, = W, (R)
Then there is a display structure on Hp,, (X/W(R), Ox/wry) for n <p,
where
Py = H"(X, N W /) = Hly, (X)W (R), Ty )

Proof: The second equality is the filtered comparison theorem. If we
had a p-adic lifting Y/ Spf W(R), the theorem would follow from the last
one because W(R) — R is a frame. The slightly more general statement
follows by the same reasoning as the last theorem. Q.E.D.

We make the following conjecture:

Conjecture 5.8 Let R be a ring such that p is nilpotent in R. Let X/R be
a smooth projective scheme. Let us assume that the crystalline cohomology
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groups HY, (X/W,(R)) are locally free Wy, (R)-modules fori >0 andn > 1,
and that the de Rham spectral sequence

EP? = HY(X, Q) = HPH(X, Qy )

degenerates.
Then the canonical predisplay struture on P, = H"(X,N"WQx/r) is a
display structure.
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