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1 Introduction

De Jong-Oort purity states that for a family of p-divisible groups X → S over
a noetherian scheme S the geometric fibres have all the same Newton polygon
if this is true outside a set of codimension bigger than 2. A more general result
was first proved in [JO] and an alternative proof is given in [V1]. We present
here a short proof that is based on the fact that a formal p-divisible group
may be defined by a display ([Z1], [Me2]). There are two other ingredients of
the proof which have been known for a long time. One is the boundedness
principle for crystals over an algebraically closed field ([O], [V1], [V2]) and
the other is the existence of a slope filtration for a p-divisible group over a
non-perfect field ([Z2]). The last fact was already mentioned in a letter of
Grothendieck to Barsotti [G]. The boundedness property is also an important
ingredient in the proof given by Vasiu in [V1].

We discuss in detail some elementary consequences of the display structure.
The other two ingredients can be found in the literature above. Therefore we
discuss them only briefly. I thank W. Messing for pointing out the correct
formulation of Proposition 1 below. I also thank the referees of this paper for
many helpful suggestions.

2 Frobenius Modules

We fix a prime number p. Let R be a commutative ring such that p is nilpotent
in R. The ring of Witt vectors with respect to p is denoted by W (R). We
write IR = VW (R) for the Witt vectors whose first component is 0. The Witt
polynomials are denoted by wn : W (R)→ R. The truncated Witt vectors of
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length n are denoted by Wn(R). If pR = 0 the Frobenius endomorphism F of
the ring W (R) induces an endomorphism F : Wn(R)→Wn(R).

Definition 1. A Frobenius module over R is a pair (M,F ), where M is a
projective finitely generated W (R)-module of some fixed rank h and F : M →
M is a Frobenius linear homomorphism such that detF = pdε locally for
the Zariski topology on R, where ε : detM → detM is a Frobenius linear
isomorphism and d ≥ 0 is some integer. We call h the height of the Frobenius
module and d the dimension.

This definition implies that the factorization detF = pdε exists even glob-
ally, but we will never use this. Since the kernel of w0 : W (R) → R is in the
radical of W (R), there is always a covering SpecR =

⋃
i SpecRfi

such that
W (Rfi)⊗W (R) M is a free W (Rfi)-module for each i. Therefore we will often
consider the case where M is a free W (R)-module. If we choose a basis of
M we may view detF as an element of W (R). Then (M,F ) is a Frobenius
module iff detF = pdη for some unit η ∈W (R). In a question that is local on
SpecR we will consider detF as an element of W (R) without futher notice.

In this article a display over R is a 3n-display in the sense of [Z1]. The
displays of [Z1] are called nilpotent displays. If P = (P,Q, F, F1) is a display
over R then (P, F ) is a Frobenius module over R.

Let X be a p-divisible group over R and assume that p is nilpotent in R.
If we evaluate the Grothendieck-Messing crystal of X at W (R) we obtain a
finitely generated locally free W (R)-module MX , which is endowed with a
Frobenius linear map F : MX → MX . If X is the formal p-divisible group
associated to a nilpotent display P, then (MX , F ) = (P, F ) is a Frobenius
module. The pair (MY , F ) is also a Frobenius module if Y is an extension of
an étale p-divisible group by X.

If we assume, moreover, that R is a complete local noetherian ring (MX , F )
is a Frobenius module for an arbitrary p-divisible group X over R. Indeed if
the special fibre of X has no étale part, then (MX , F ) comes from a display
and is therefore a Frobenius module. Since X is an extension of an étale p-
divisible group by a p-divisible group with no étale part in the special fibre,
we see that (MX , F ) is a Frobenius module in general.

By these remarks, any (MX , F ) appearing in this work are Frobenius mod-
ules.

We add that Lau [L] in a forthcoming paper will associate a display to
any p-divisible group over a ring R, where p is nilpotent. Thereby he obtains
a functor from p-divisible groups to Frobenius modules. If we could use this
functor it would be more satisfying then the remark above.

The following lemma is mainly a motivation for the definitions we are
going to make:

Lemma 1. Let P and P ′ be displays over a ring R of the same height and
dimension. Let α : P → P ′ be a homomorphism.

Locally on SpecR the element detα ∈W (R) satisfies an equation
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Fdetα = ε · detα,

where ε ∈W (R)∗ is a unit.

Proof: We choose normal decompositions

P = L⊕ T, Q = L⊕ IRT
P ′ = L′ ⊕ T ′, Q′ = L′ ⊕ IRT ′.

Without loss of generality we may assume that L,L′, T, T ′ are free W (R)-
modules. We choose identifications

L 'W (R)l ' L′, T 'W (R)t ' T ′.

Then operators F1 and F ′1 are given by invertible block matrices with coeffi-
cient in W (R):

F1

(
x

V y

)
=
(
X Y
Z W

)(
Fx
y

)
,

F ′1

(
x

V y

)
=
(
X ′ Y ′

Z ′ W ′

)(
Fx
y

)
.

The block matrices are invertible by the definition of a display. We also rep-
resent α by a block matrix

α

(
x

V y

)
=
(

A B
V C D

)(
x

V y

)
Since α commutes with the operators F1 and F ′1, we obtain(

X ′ Y ′

Z ′ W ′

)(
FA p FB
C FD

)
=
(

A B
V C D

)(
X Y
Z W

)
. (1)

We see that
F

(
A B

V C D

)
=
(

FA FB
pC FD

)
has the same determinant as (

FA p FB
C FD

)
.

But then taking determinants in (1) gives the result. Q.E.D.

Proposition 1. Let R be a noetherian ring such that SpecR is connected.
We assume that pR = 0. Let α : P → P ′ be a homomorphism of displays of
the same height h and the same dimension d.

If detα 6= 0, then there is a nonnegative integer u such that locally on
SpecR the following equation holds:

detα = puε, where ε ∈W (R)∗, u ∈ Z≥0.
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Proof: If the number u exists locally, it is clearly a locally constant function.
Therefore the question is local. We may replace SpecR by a small affine
connected neighborhood.

We set η = detα. By the last proposition we obtain

F η = ζ · η for some ζ ∈W (R)∗. (2)

We write η = V t

ξ, such that w0(ξ) 6= 0. We claim that (2) implies:

F ξ = F t

ζ · ξ. (3)

To verify this we may assume that t > 0. We obtain

FV t

ξ = ζ V t

ξ = V t

( F
t

ζξ).

Since pR = 0, the operators F and V acting on W (R) commute. Therefore
we deduce (3).

Let w0(ξ) = x and w0( F t

ζ) = e ∈ R∗. We apply w0 to equation (3) and
obtain

xp = ex. (4)

Since the product
x(xp−1 − e) = 0

has relatively prime factors, it follows that

D(x) ∪D(xp−1 − e) = SpecR,
D(x) ∩D(xp−1 − e) = ∅.

Hence by connectedness either D(x) = SpecR or D(x) = ∅. In the first case x
is nilpotent. But then we have x = 0, by iterating the equation (4). This is a
contradiction to our choices. Therefore D(x) = SpecR and x is a unit. Then
ξ is a unit too. We obtain

F t

η = F tV t

ξ = ptξ.

But by (2), F
t

η may be expressed as the product of η by a unit. This proves
the result. Q.E.D.

Definition 2. A homomorphism as in the proposition is called an isogeny of
displays.

Let R be a ring such that pR = 0. Assume that the ideal of nilpotent elements
of R is nilpotent. Let α : P → P ′ be a homomorphism of nilpotent displays of
the same height and dimension. By the functor from the category of nilpotent
displays to the category of formal p-divisible groups ([Z1] 3.1) we obtain from
α a morphism φ : X → X ′ of p-divisible groups. It follows from Proposition 66
and Proposition 99 of [Z1] that α is an isogeny iff φ is an isogeny of p-divisible
groups.
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Since pR = 0 the Frobenius endomorphism on W (R) induces a Frobenius
endomorphism on the truncated Witt vectors F : Wn(R)→Wn(R). Therefore
we may consider truncated Frobenius modules. We are going to prove a version
of Proposition 1 for truncated Frobenius modules.

Definition 3. Let R be a ring such that pR = 0. A truncated Frobenius mod-
ule of level n, dimension d, and height h over R is a finitely generated pro-
jective Wn(R)-module M of rank h equipped with a Frobenius linear operator
F : M →M such that locally on SpecR the determinant has the form

detF = pdε,

where ε : detM → detM is a Frobenius linear isomorphism.

A Frobenius module M over R induces a truncated Frobenius module, if we
tensor it by Wn(R).

Definition 4. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h. A morphism of Frobenius modules
α : M → N is called an isogeny if there is a natural number u < n such that
the determinant of α has locally on SpecR the form

Fd

detα = puε, ε ∈Wn(R)∗.

The number u is called the height of the isogeny.

Proposition 2. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h over a ring R such that SpecR is
connected and pR = 0.

Let u ≥ 0 be an integer such that n > u + d. Let α : M → N be a
homomorphism of Frobenius modules such that

Fd

detα /∈ V u+1Wn−u−1(R). (5)

Then α becomes an isogeny if we truncate it to level n− d:

α[n− d] : M [n− d]→ N [n− d].

Proof: We may assume that M and N are free Wn(R)-modules. We choose
isomorphisms

detM 'Wn(R) ' detN

and view θ := detα as an element of W (R). Then we obtain a commutative
diagram

detM θ−−−−→ detN

pdτMF

y ypdτNF

detM θ−−−−→ detN,
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where τM , τN ∈Wn(R)∗ are units. We obtain

pdτN
F θ = θpdτM . (6)

Using pd = V dF d in Wn(R), we can divide (6) by V d. We then obtain an
equality in Wn−d(R):

Fd+1
θ[n− d] = Fd

θ[n− d]ρ. (7)

Here θ[n − d] denotes the image of θ by the natural restriction Wn(R) →
Wn−d(R) and ρ ∈Wn−d(R)∗ is a unit.

On the other hand we may write by assumption:

Fd

θ = V u1
σ, (8)

where u1 ≤ u, and w0(σ) = s0 6= 0. Clearly we may assume u = u1. Since
n− d > u we obtain from equation (7)

sp0 = s0e

for some unit e ∈ R∗. As in the proof of Proposition 1 (see: (4)) we conclude
that s0 is a unit. Then σ is a unit too. From (8) we obtain

Fd+u

θ = puσ.

We truncate this equation to Wn−d(R) and use (7) to obtain

Fd

θ[n− d] = puε

for some unit ε ∈Wn−d(R)∗. Q.E.D.
Let n > u be natural numbers. It is clear that a morphism of displays

α : P → P ′ is an isogeny of height u, iff the map of the truncated Frobenius
modules α[n] : (P [n], F )→ (P ′[n], F ) is an isogeny of height u.

3 Proof of Purity

For the proof of the purity theorem of de Jong and Oort for p-divisible groups
we need to recall a few facts on completely slope divisible p-divisible groups
(abbreviated: c.s.d. groups) from [Z2] and [OZ] Definition 1.2. We will use
truncated Frobenius modules of p-divisible groups over any scheme U . These
are locally free Wn(OU )-modules.

Lemma 2. Let Y be a c.s.d. group over a normal noetherian scheme U over
F̄p. Let n be a natural number. Then there is a finite morphism U ′ → U ,
such that the truncated Frobenius module MY [n] of Y over U ′ is obtained by
base change from a truncated Frobenius module over F̄p, i.e. we can find a
Frobenius module N over F̄p such that there is an isomorphism of Frobenius
modules

Wn(OU ′)⊗Wn(OU ) MY [n] 'Wn(OU ′)⊗W (F̄p) N (9)
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Proof: This is an immediate consequence of [OZ], Proposition 1.3, since it
says that this is true if we take for U ′ the perfect hull of the universal pro-étale
cover of U . Another proof is obtained by substituting in the proof of loc.cit.
Frobenius modules. Q.E.D.

Proposition 3. Let T be a regular connected 1-dimensional scheme over Fp.
Then any p-divisible group X with constant Newton polygon over T is isoge-
nous to a c.s.d. group.

Proof: This follows from the main result of [OZ], Thm. 2.1. for any normal
noetherian scheme T . But under under the assumptions made the proof is
much easier (compare [Z2], proof of Thm. 7). Indeed let K = K(T ) be the
function field of T . Then we find over K an isogeny to a c.s.d. group:

XK →
◦
Y . (10)

Let
◦
G be the finite group scheme that is the kernel of (10) and let G ⊂ X

be its scheme theoretic closure. We set Y = X/G. Using the fact that X has
constant Newton polygon one proves that Y is c.s.d. Q.E.D.

The third ingredient is the boundedness principle, which seems to have
been known for a long time [M].

Proposition 4. Let k be an algebraically closed field of characteristic p. Let
h be a natural number. Then there is a constant c ∈ N with the following
property:

Let M1 and M2 be Frobenius modules of height ≤ h over k. Let n ∈ N
be arbitrary and let ᾱ : M1/p

nM1 → M2/p
nM2 be a morphism of truncated

Frobenius modules that lifts to a morphism of truncated Frobenius modules
M1/p

n+cM1 →M2/p
n+cM2. Then ᾱ lifts to a morphism of Frobenius modules

α : M1 →M2.

A weaker version of this is contained in [O], where the existence of the constant
c is asserted only for given modules M1 and M2. But one can show that for
given modulesN1 resp.N2 in the isogeny class ofM1 resp.M2, there are always
isogenies N1 →M1 resp. N1 →M1 whose degrees are bounded by a constant
depending only on h. This is another well-known boundedness principle. As
an alternative to this proof the reader may use the much stronger results
discussed in the introduction of [V2].

Theorem 1. (de Jong-Oort) Let R be a noetherian local ring of Krull di-
mension ≥ 2 with p · R = 0. Let U = SpecR \ {m}, the complement of the
closed point. A p-divisible group X over SpecR that has constant Newton
polygon over U has constant Newton polygon over SpecR.

Proof: It is not difficult to reduce to the case that R is complete, normal
of Krull dimension 2 with algebraically closed residue class field k = R/m



10 Thomas Zink

([JO]). Then U is a 1-dimensional regular scheme. We obtain by Proposition
3 a c.s.d. group Y over U and an isogeny

α : Y → X|U , (11)

Let d be the dimension of X let u be the height of α and let c be the number
from Proposition 4. We choose a natural number n > c+ u+ d. After a finite
extension of R we may assume by Lemma 2 that the truncated Frobenius
module of Y is constant

MY [n] 'Wn(OU )⊗W (F̄p) N, (12)

where N is a Frobenius module over F̄p. In particular the Newton polygons
of N and Y must be the same by the boundedness principle applied to the
field K̄, where K is the field of fractions of R.

Combining (11) and (12) gives an isogeny of height u of truncated Frobe-
nius modules

Wn(OU )⊗W (F̄p) N →Wn(OU )⊗RMX [n]. (13)

By the normality of R we have Γ (U,Wn(OU )) = Wn(R). Taking the global
section of (13) over U we obtain a morphism of truncated Frobenius modules

Wn(R)⊗W (F̄p) N →MX [n]. (14)

We know that (14) is an isogeny over K of height u. Therefore Proposition 1
is applicable to the morphism (14). We obtain therefore an isogeny of height
u of truncated Frobenius modules over R:

Wn−d(R)⊗W (F̄p) N →MX [n− d],

It is clear that the base change of an isogeny of truncated Frobenius modules
is again an isogeny. Making the base change R→ k we obtain an isogeny:

Wn−d(k)⊗W (F̄p) N →Wn−d(k)⊗W (R) MX [n− d] = MXk
[n− d].

The boundedness principle shows that Xk and N have the same Newton
polygon. Q.E.D.
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