LA-Probeklausur am 26.1.2017

1) Man betrachte die Vektoren in \mathbb{R}^3 :

$$s_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 $s_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$ $s_3 = \begin{pmatrix} -2 \\ -3 \\ -5 \end{pmatrix}$ $s_4 = \begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix}$ $s_5 = \begin{pmatrix} 2 \\ 6 \\ 8 \end{pmatrix}$

Man finde alle Teilmengen von $\{s_1, s_2, s_3, s_4, s_5\}$, die eine Basis des Vektorraumes $\mathcal{L}(s_1, s_2, s_3, s_4, s_5)$ sind.

2) Es V ein K-Vektorraum der Dimension n. Es sei $U \subset V$ ein Unterraum der Dimension d < n.

Man beweise, dass es n-d Unterräume $H_1, \ldots, H_{n-d} \subset V$ gibt, so dass $\dim_K H_i = n-1$ für $i \in [1, n-d]$ und so dass

$$U = H_1 \cap H_2 \cap \ldots \cap H_{n-d}.$$

3) Man betrachte die folgende Matrix aus $M(3 \times 3, \mathbb{R})$.

$$\begin{pmatrix}
7 & 0 & -24 \\
0 & 2 & 0 \\
-24 & 0 & -7
\end{pmatrix}.$$
(1)

Man finde eine Basis aus Eigenvektoren aus \mathbb{R}^3 für diese Matrix, so dass die Basis bezüglich des Standardskalarprodukts auf \mathbb{R}^3 orthogonal ist.

4) Man berechne den Abstand der folgenden beiden affinen Unterräume A_1 und A_2 des \mathbb{R}^4 :

$$A_1 = \left\{ \begin{pmatrix} 3 \\ 5 \\ 4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\}, \quad A_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\}.$$

5) Man betrachte die Matrix

$$A = \begin{pmatrix} -1 & 0 & -7 & 1 \\ -1 & -4 & 10 & 1 \\ 0 & -6 & -5 & 6 \\ -1 & -11 & 4 & 8 \end{pmatrix} \in M(4 \times 4, \mathbb{R}).$$

Was sind die Eigenwerte dieser Matrix und wie groß ist die Dimension der Haupträume? (Man benutze, dass \mathbf{e}_1 in einem invarianten Unterraum liegt.)

6) Es seien $\underline{u},\underline{v},\underline{w}\in\mathbb{R}^2$ Vektoren. Man beweise die Relation:

$$\det(\underline{u},\underline{v})\underline{w} + \det(\underline{v},\underline{w})\underline{u} + \det(\underline{w},\underline{u})\underline{v} = 0$$

7) Es sei $f:V\to V$ ein Endomorphismus eines endlich erzeugten K-Vektorraums. Es sei $m\geq 1$, so dass $\operatorname{Ker} f^m=\operatorname{Ker} f^{m+1}$. Man beweise, dass $\operatorname{Im} f^m=\operatorname{Im} f^{m+1}$.

Alle Lösungen müssen begründet werden!