LA Probeklausur am 9.7.13

1) Man berechne die Determinante der folgenden Matrix:

$$A = \begin{pmatrix} 8 & 7 & 7 & 7 & 7 & 7 & 7 \\ 7 & 8 & 7 & 7 & 7 & 7 & 7 \\ 7 & 7 & 8 & 7 & 7 & 7 & 7 \\ 7 & 7 & 7 & 8 & 7 & 7 & 7 \\ 7 & 7 & 7 & 7 & 8 & 7 & 7 \\ 7 & 7 & 7 & 7 & 7 & 8 & 7 \\ 7 & 7 & 7 & 7 & 7 & 7 & 8 \end{pmatrix}.$$

2) Es sei V ein endlich erzeugter Vektorraum mit einer nichtausgarteten Bilinearform $B: V \times V \to K$. Es sei $W \subset V$ ein Unterraum, so dass $B(w_1, w_2) = 0$ für alle $w_1, w_2 \in W$.

Man beweise, dass $2 \dim W < \dim V$.

3) Es sei (V, <, >) ein drei dimensionaler orientierter euklidischer Vektorraum. Es sei d ein Vektor der Länge 1. Es sei ϕ die Drehung um d (d.h. $\phi(d) = d$) um dem Winkel α im positiven Drehsinn.

Man zeige, dass für alle $v \in V$:

$$\phi(v) = \cos \alpha \, v + \langle d, v \rangle (1 - \cos \alpha) d + \sin \alpha (d \times v). \tag{1}$$

Hinweis: Das orthogonale Komplement W von $\mathbb{R}d$ ist ein orientierter 2-dimensionaler Euklidischer Vektorraum. Man schreibe die Matrix einer Drehung von W um den Winkel α in einer orthonormalen Basis.

4) Man finde die Sylvestersche Normalform der folgenden symmetrischen Matrix:

$$\left(\begin{array}{ccccc}
3 & 2 & 2 & 3 \\
2 & 1 & 1 & 2 \\
2 & 1 & 0 & 2 \\
3 & 2 & 2 & 0
\end{array}\right)$$

5) Es sei $f:V\to V$ ein Endomorphismus eines endlich erzeugten Vektorraums. Es sei $v\in V$ und $v\neq 0$. Es sei $d\geq 1$ die größte natürliche Zahl, so dass die Vektoren

$$v, f(v), \ldots, f^{d-1}(v)$$

linear unabhängig sind. Dann gibt es eine Relation:

$$a_0v + a_1f(v) + \dots + a_{d-1}f^{d-1}(v) + f^d(v) = 0, \quad a_i \in K.$$

Man beweise, dass jede Nullstelle des Polynoms

$$T^d + a_{d-1}T^{d-1} + \ldots + a_1T + a_0$$

ein Eigenwert von f ist.

6) Man betrachte das folgenden lineare Gleichungssystem mit Koeffizienten aus \mathbb{R} :

$$x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 6x_6 = 0$$

$$x_1 + 2x_2 + 3x_3 + 5x_4 + 6x_5 + 7x_6 = 0$$

$$2x_1 + 4x_2 + 6x_3 + 9x_4 + 11x_5 + 13x_6 = 0$$

Die Menge L aller Lösungen \underline{x} dieser Gleichungen ist ein Untervektorraum von \mathbb{R}^6 .

Man berechne eine Basis von L. Man finde einen Komplementärraum, der eine Basis hat, die aus Standardvektoren besteht.

7) Wir betrachten auf dem Euklidischen Vektorraum \mathbb{R}^3 die symmetrische Bilinearform:

$$B(\underline{x},\underline{y}) = {}^{t}\underline{x} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix} \underline{y}, \quad \underline{x},\underline{y} \in \mathbb{R}^{3}.$$

Man finde eine orthonormale Basis des Euklidischen Vektorraums \mathbb{R}^3 , in der die Gramsche Matrix von B Diagonalform hat.