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1 Frobenius Modules

Definition 1 Let p be a fixed prime number. A frame (A, σ) is a pair such
that A is a ring without p-torsion, and σ is an endomorphism of A such that

σ(a) = ap mod pA

Examples: Let R is a reduced ring of characteristic p. Then we set
A = W (R) and we take for σ the Frobenius endomorphism of W (R).

Let (A, σ) be a frame. Then we extend σ to the power series ring A[[t]]
by setting σt = tp. We obtain a new frame (A[[t]], σ).

Let k be a perfect field. We define σ on W (k)[[t]] as above. Consider the
ring W (k)[[t]][t−1]. This is a Dedekind ring (in fact a principal ideal domain)
and its completion in the prime ideal generated by p is a Cohen ring Γ for
K = k((t)). Then σ extends canonically to Γ. We obtain a frame (Γ, σ).
This is the frame which concerns us.

Let M,N be A-modules. Let F : M → N be a σ-linear map. We denote
its linearization by :

F ] : A⊗σ,AM → N.
a⊗m 7→ aFm

Definition 2 A Frobenius module over A is a finitely generated projective
A-module M of some rank r, equipped with a σ-linear endomorphism F :
M →M , such that the map

∧rF ] : A⊗σ,A ∧rM → ∧rM,
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is of the form psu, where s is some number and u : A ⊗σ,A ∧rM → ∧rM is
an isomorphism.

If M is free and we compute detF in some basis of M , then the last require-
ment says that detF = psε for some unit ε ∈ A. We will write s = ordp detF .

Our aim is to prove the following deep theorem of de Jong:

Theorem 3 Let M and N be Frobenius modules over W (k)[[t]]. Let

φ : M ⊗W (k)[[t]] Γ→ N ⊗W (k)[[t]] Γ

be a morphism of Frobenius modules. Then we have φ(M) ⊂ N .

For technical resons a slight generalization of definition 1 is comfortable:
A quasi Frobenius module is an A-module M as in the definition equipped
with a σ-linear homomorphism:

F : M →M [
1

p
],

such that for a suitable integer m ≥ 0 the pair (M, pmF ) is a Frobenius
module. For brevity we will write M(m) = (M, pmF ).

In the category of (quasi) Frobenius modules we may form tensor products
and exterior products:

Let (M1, F1) and (M2, F2) Frobenius modules. Then (M1⊗AM2, F1⊗F2)
is a Frobenius module. Indeed, let ri be the rank of Mi for i = 1, 2. We have
to show that ∧r1F ]

1 ⊗ ∧r2F
]
2 = pm(isomorphism). But this question is local

for the Zariski topology on SpecA. Thus we may take basis of the modules
involved and consider determinants. Let Xi be the matrix of F ]

i for i = 1, 2
Then our result follows from the formula:

detX1 ⊗X2 = (detX1)r2(detX2)r1

This may be verified by reducing it to the case where A is an algebraically
closed field, and where X1 has triangular form.

The Frobenius module U = (A, σ) is called the unit Frobenius module.
Indeed there is a canonical isomorphism of Frobenius modules:

M1 ⊗ U ∼= M1
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If (M,F ) is a Frobenius module of rank r, then we may form the exterior
products (∧nM,∧nF ), for any integer n ≥ 0. One verifies that this is a
Frobenius module by using the following formula for a square matrix X of
size r:

det∧nX = (detX)

 r − 1
n− 1



In the category of quasi Frobenius modules we have an internal Hom:
Let (M1, F1) and (M2, F2) be quasi Frobenius modules. Indeed we define a
σ-linear operator F on HomA(M,N)⊗Q. If φ : M → N is a A-linear map,
then Fφ is given by the following commutative diagram:

A×σ,A (M1 ⊗Q)
F ]1−−−→ (M1 ⊗Q)

1A⊗φ
y yFφ

A×σ,A (M2 ⊗Q)
F ]2−−−→ (M2 ⊗Q)

We note that F ]
1⊗Q is an isomorphism. One checks that (HomA(M1,M2), F )

is a quasi Frobenius module. Clearly Fφ = φ, iff φ : M1 → M2 is a homo-
morphism of quasi Frobenius modules. If (M2, F2) = (A, σ) we set

(M̂1, F̂ ) = (HomA(M1, A), F ),

and call this the dual Frobenius module. The natural perfect pairing

( , ) : M̂1 ×M1 → A (1)

satisfies the relation:

(Fm̂, Fm) = σ(m̂,m)

The submodule AFM ⊂ M is a Frobenius submodule since it is isomorphic
to (A⊗σ,AM,σ⊗F ). Clearly the pairing (1) induces a pefect pairing between

AFM̂1 and AFM1.
The usual isomorphism:

M̂1 ⊗M2 → HomA(M1,M2)

becomes an isomorphism of Frobenius modules.
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Definition 4 A homomorphism α : M1 → M2 of quasi Frobenius modules
of the same rank r is called an isogeny if ∧rα is of the form psu, where s ≥ 0
is an integer, and u : ∧rM1 → ∧rM2 is an isomorphism.

Proposition 5 Let φ : (A, σ) → (B, σ) be a homomorphism of frames. We
assume that pA is a prime ideal of A contained in the radical of A, and that
p is not a unit in B.

Let α : (M1, F1) → (M2, F2) be a homomorphism of Frobenius modules
over A. If α⊗ idB is an isogeny (respectively an isomorphism), then α is an
isogeny (respectively an isomorphism).

Proof: The A-modules M1 and M2 have the same rank r. It suffices to show
that ∧rα is an isomorphism. Consider the commutative diagram:

∧rM1
∧rα−−−→ ∧rM2

∧r detF1

y y∧r detF2

∧rM1
∧rα−−−→ ∧rM2

(2)

We write detFi = paiui, where ai are numbers, and ui are σ-linear isomor-
phisms. If we tensor the diagram with B we obtain a1 = a2. Hence the
diagram remains commutative if we replace detFi by ui. We divide ∧rα
by the maximal possible power of p, and call the resulting homomorphism
β. This power is bounded because it is bounded over B. If we divide the
morphisms in the diagram (2) by the maximal power of p and consider the
result modulo p, we obtain a commutative diagram:

L1
β̄−−−→ L2

ū1

y yū2

L1
β̄−−−→ L2

(3)

We set Ā = A/pA. The maps ui are Frobenius linear isomorphisms of Ā-
modules. It suffices to show that β̄ is an isomorphism. Take an open subset
Spec Āf ⊂ Spec Ā such that there are isomorphisms Li ∼= Āf . Then we may
write: β̄(x) = ρx for all x ∈ Āf and some ρ ∈ Āf . We note that ρ 6= 0.
Indeed, since Ā is an integral domain ρ = 0 would imply that β̄ = 0. But
then contrary to our assumption β would be divisible by p.
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We write ūi(x) = εix
p, where εi ∈ Āf are units for i = 1, 2. Because the

last diagram is commutative we have:

ε2ρ
p = ρε1

Since Ā is an integral domain we may divide this equation by ρ. We obtain
that ρ is a unit. Q.E.D.

Remark: Let us fix an integer s > 0. We consider a finitely generated
projective A-module M with a σs-linear endomorphism F : M → M . The
definition of a Frobenius module may be given in this situation. Everything
done in this section remains true for these more general Frobenius modules.

Remark: In the theorem of de Jong one can replace the Frobenius mod-
ules by slightly more general objects. To see this we prove:

Lemma 6 Let M be a finitely generated torsion free W [[t]]-module. We set

M1 = {m ∈M ⊗W [[t]] W [[t]](p) | psm ∈M for some number s}

Then M1 is a free W [[T ]]-module.

Proof: Using that W [[t]] is UFD one shows that M1 = M , if M is free.
If M is not free we find a free W [[t]]-module N of the same rank as M such

that M ⊂ N ⊂M⊗W [[t]]W [[t]](p). Here we use that the last W [[t]](p)-module
is free. Since N1 = N we find that M1 ⊂ N .

By definition N/M1 has no p-torsion and therefore depthW [[t]] N/M1 ≥ 1.
But since W [[t]] is regular of dimension 2, this implies that the cohomological
dimension of M1 is zero. This proves the lemma. Q.E.D.

Let M be a torsion free W [[t]]-module. Let F : M → M be a σ-linear
map such that F ⊗ Q is an isomorphism. Since σ operates on W [[t]](p) the
map F extends to a map F : M1 →M1, which induces an isomorphism when
tensored with Q. Hence there is an a ∈ W [[t]] and an integer m ≥ 0, such
that a detF = pm. Since W [[t]] is factorial this implies that detF = pu(unit).
Therefore (M1, F ) is a Frobenius module. In this sense the pair (M,F ) differs
not much from a Frobenius module. One sees easily that de Jong’s theorem
holds if the pair (M,F ) is of this more general type, if it holds for Frobenius
modules. We will work exclusively with Frobenius modules.
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2 Convergent Wittvectors

Let A be a ring such that pA = 0, and let ν : A → R ∪ {∞} be a val-
uation. Then we define for a nonnegative integer n and a Witt vector
ξ = (x0, x1, . . . ) ∈ W (A):

ν(ξ, n) = −min{ν(xi)/p
i | i = 0, . . . n} ∈ R ∪ {−∞}

This is an increasing function in n.

Proposition 7 Let ξ, η ∈ W (A). Then we have:

ν(ξ + η, n) ≤ max{ν(ξ, n), ν(η, n)}
ν(ξη, n) ≤ max{ν(ξ, l) + ν(η, n− l) | l = 0, . . . n} (4)

If in one of these inequalities there is a strict maximum on the right hand
side, we have an equality.

Proof: The addition in W (A) is defined by universal polynomials with in-
tegral coefficients:

Sn(X0, . . . Xn, Y0, . . . Yn)

If we give to the variables Xi and Yi the weight pi the polynomial Sn is a
homogenous polynomial of degree pn. Hence Sm is a sum of monomials of
the following type:

M(X0, . . . Xm, Y0, . . . Ym) =
+
− Xα0

0 · . . . ·Xαm
m Y β0

0 · . . . · Y βm
m ,

such that
m∑
i=0

piαi +
m∑
i=0

piβi = pm.

We set ξ = (x0, x1, . . . ), and η = (y0, y1, . . . ). Let us assume that−ν(xi)/p
i ≤

c and −ν(yi)/p
i ≤ c for some constant c, and i = 1, . . . , n. Then we find for

a monomial M appearing in Sm for m ≤ n:

−ν(M(x0, . . . xm, y0, . . . ym))/pm =

1
pm

(
∑m

i=0 p
iαi(−ν(xi)/p

i) +
∑m

i=0 p
iβi(−ν(yi)/p

i) ≤ c
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This shows the first inequality of the proposition.
Let us now assume that ν(ξ, n) > ν(η, n). Let m be the smallest index

such that −ν(xm)/pm = ν(ξ, n) = c. We write in Wm+1(A):

(x0, . . . , xm−1, 0) + (y0, . . . , ym−1, 0) = (z0, . . . , zm−1, zm)

By the first inequality we find −ν(zi)/p
i < c. We have the following universal

relation in Wm+1(A):

(a0, a1, . . . , am)(0, . . . , 0, b) = (a0, . . . , am−1, am + b)

Using this we obtain:

(x0, . . . , xm) + (y0, . . . , ym) = (z1, . . . , zm−1, zm + xm + ym)

We find ν(zm + xm + ym)/pm = −c. Hence the first inequality is an equality.
Now we turn to the second inequality. The assumption pA = 0 implies

the following relation in W (A):

V i [a] V
j

[b] = V i+j([ap
j

][bp
i

])

Therefore we obtain:

ξη = (
∑
i

V i [xi])(
∑
j

V j [yj]) =
∑
i+j≤n

V i+j [xp
j

i y
pi

j ]modV n+1

Hence ν(, n) applied to the last sum equals ν(ξη, n). We set ωij = V i+j [xp
j

i y
pi

j ].
Then we find:

ν(ωij, n) = − 1

pi+j
ν(xp

j

i y
pi

j ) = −ν(xi)/p
i − ν(yj)/p

j ≤ ν(ξ, i) + ν(η, j)

Applying the first inequality to the sum of the ωij we find the result. More-
over if there is a pair (l, k) of nonnegative integers with l+ k ≤ n, such that
−ν(xl)/p

l − ν(yk)/p
k is strictly maximal among these pairs then:

ν(ξη, n) = −ν(xl)/p
l − ν(yk)/p

k

If for some l the number ν(ξ, l) + ν(η, n− l) is strictly maximal we find that
−ν(xl)/p

l − ν(yn−l)/p
n−l is strictly maximal. Hence the second inequality is

an equality in this case. Q.E.D.
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Definition 8 A Witt vector ξ = (x0, x1, . . . ) ∈ W (A) is called convergent if
there exists constants C1, C2 ∈ R, such that for all n we have:

ν(xn)/pn ≥ −C1 − C2n

Equivalently we could say that ξ is convergent, if there are constants C1, C2,
such that

ν(ξ, n) ≤ C1 + C2n

We obtain immediately:

Corollary 9 The subset W c(A) ⊂ W (A) of convergent Witt vectors is a
ring.

This subring is stable by Frobenius and Verschiebung. Indeed, with the
convention ν(ξ, n) = 0 for n < 0 we have the following obvious formulas:

ν( V ξ, n) = 1
p
ν(ξ, n− 1), ξ ∈ W (A)

ν( F ξ, n) = pν(ξ, n)
ν(pξ, n) = ν(ξ, n− 1)

(5)

Proposition 10 Let C be a quadratic h × h matrix with coefficients in
W c(A). Let y ∈ W (A)h be a vector such that for some number r > 0

Cy = F ry.

Then we have y ∈ W c(A)h.

Proof: We write the equation in coordinates:

h∑
k=1

clkyk = F ryl, l = 1, . . . , h.

We show a statement which is a little more precise: Let M ≥ 0 be a constant
such that for all l, k:

ν(clk, 0) ≤M, ν(clk, n) ≤Mn for n ≥ 1.
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Then for all k = 1, . . . , n we have:

ν(yk, 0) ≤M, ν(yk, n) ≤Mn for n ≥ 1. (6)

We show this by induction beginning with n = 0. We choose i such that
ν(yi, 0) is maximal among ν(yk, 0) for k = 1, . . . , h. Then we choose j such
that ν(cijyj, 0) is maximal among ν(cikyk, 0) for k = 1, . . . , h. We compute :

prν(yi, 0) = ν( F ryi, 0) ≤ ν(cijyj, 0) =
ν(cij, 0) + ν(yj, 0) ≤ ν(cij, 0) + ν(yi, 0)

This implies:

(pr − 1)ν(yi, 0) ≤ ν(cij, 0) ≤M.

Next we assume n ≥ 1 and ν(yk, u) ≤Mu for 1 ≤ u < n. Again we choose
i such that ν(yi, n) is maximal among ν(yk, n), and j such that ν(cijyj, n) is
maximal among ν(cikyk, 0). Then we obtain:

prν(yi, n) = ν( F ryi, n) ≤ ν(cijyj, n) ≤ max
u+v=n

{ν(yj, u) + ν(cij, v)} (7)

First we assume that the maximum is taken for a pair u, v with u 6= 0 and
v 6= 0. Then we obtain by induction:

prν(yi, n) ≤Mu+Mv ≤Mn

Hence in this case we are done.
Assume now that u = 0. Then we obtain:

prν(yi, n) ≤ ν(yj, 0) + ν(cij, n) ≤ (n+ 1)M

This gives ν(yi, n) ≤ nM .
Finally for v = 0 the inequality (2) reads:

prν(yi, n) ≤ ν(yj, n) + ν(cij, 0) ≤ ν(yi, n) +M

This implies ν(yi, n) ≤M/(pr − 1) ≤ nM . Q.E.D.
We set:

Å = {x ∈ A | ν(a) ≥ 0}

Then W (Å) ⊂ W (A) consists of the Witt vectors ξ ∈ W (A), such that
ν(n, ξ) ≤ 0 for all numbers n. We have

W (Å) ⊂ W c(A) ⊂ W (A)
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Corollary 11 With the notations of proposition 10 we assume that the co-
efficients of C are in W (Å). Then we have y ∈ W (Å).

Proposition 12 Let ξ = (x0, x1, . . . ) ∈ W c(A) such that x0 ∈ A is a unit.
Then ξ is a unit in W c(A).

Proof: There is an element η ∈ W (A) such that ξη = 1. We have to show
η ∈ W c(A). We choose a constant C, such that

−ν(ξ, 0) ≤ C ν(ξ, n) ≤ nC for n ≥ 1
ν(η, 0) ≤ C ν(η, 1) ≤ C

(8)

This choice is possible since the first component of the Witt vector ξ is not 0.
We show by induction that ν(η, n) ≤ 2nC. Indeed, we have the inequality:

ν(η, n) + ν(ξ, 0) ≤ max{0; ν(η, l) + ν(ξ, n− l), 0 ≤ l ≤ n− 1} (9)

The opposite inequality would lead by proposition 7 to a contradiction:

0 = ν(1, n) = ν(ξη, n) = ν(η, n) + ν(ξ, 0) > 0

Using the inequalities (8) and the induction assumption ν(η, l) ≤ 2lC for
2 ≤ l ≤ n− 1 we find from (8):

ν(η, n) ≤ C + max{0;C + nC, 2lC + (n− l)C}

For n ≥ 2 the right hand side is ≤ 2nC. Q.E.D.

Corollary 13 Let L be a perfect field and ν : L → R ∪ {∞} a valuation.
Then W c(L) is a dicrete valuation ring with residue field L and prime element
p. Moreover the Frobenius F on W (L) induces an automorphism of W c(L).

Proof: This follows because pW c(L) = VW c(L), from Bourbaki AC Chapt
VI §3 n06 Proposition 9. Q.E.D.

With the notation of the last corollary let R = {k ∈ L | ν(k) ≥ 0} be
the valuation ring for ν. Recall that the units in W (R) are the Witt vectors
whose first components are units in R. We will see that a non-zero element
ξ ∈ W (K) may be written non-uniquely in the form:

ξ =

ρ∑
i=0

pri [k−1
i ]ωi (10)
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Here 0 ≤ r0 < r1 < . . . is an increasing sequence of nonnegative integers.
The ki are a sequence of elements in L such that

ν(k0) < ν(k1) < . . .

The ωi are units in W (R) and ρ is a nonnegative integer or ∞.
If ξ is given by the expression (10) we have:

ν(ξ, n) = { −∞ if n < r0

ν(ki) if ri ≤ n < ri+1

First this is shown in the case of a single summand on the right hand side of
(10). The general case follows from the proposition 7.

The existence of a decomposition (10) is easy. We take r0 maximal such
that ξ ∈ pr0W (L). Let ξ = pr0η. Let k−1

0 be the first component of the
Witt vector η. Then we may write: η = [k−1

0 ](1, z1, z2, . . . ). Let zs be the
first component which is not in R. We set ω0 = (1, . . . , zs−1, 0, . . . ), and
ξ1 = (0, . . . , 0, zs, . . . ). Then we find:

ξ = pr0 [k−1
0 ]ω0 + pr0 [k−1

0 ]ξ1

We proceed with ξ1 as with ξ.
Let K = k((t)) be the field of Laurent polynomials over a perfect field

k. Let ν be the discrete valuation, such that ν(t) = 1. Let Γ be the p-adic
completion of W (k)[[t]][t−1] as before. Explicitly we have:

Γ = {
∑
m∈Z

amt
m | am ∈ W (k), lim

m→−∞
ordp(am) =∞}

As above a Laurent series in f ∈ Γ may be written in the form

f =

ρ∑
i=0

prit−migi (11)

where gi are units in W (k)[[t]], and ri, mi are integers such that:

0 ≤ r0 < r1 < r2 < . . .
m0 < m1 < m2 < . . .

Then we have the natural map:

δ : Γ→ W (k((t)))
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It is the identity on W (k) and maps t ∈ Γ to the Teichmüller representative
in [t] ∈ W (k((t))). If we apply δ to the equation (11) we obtain an expression
of the form (10), which we can consider in W (k((t))perf ) the Witt ring of the
perfect hull. This proves the formula:

ν(δ(f), n) = { −∞ if n < r0

mi if ri ≤ n < ri+1

We set ν(f, n) = ν(δ(f), n).
From the last formula we obtain easily:

ν(f, n) = min{a ∈ Z | taf ∈ W (k)[[t]] + pn+1Γ}

A more elementary way to say this is: Let f =
∑

i∈Z amt
m ∈ Γ be a Laurent

series. Then ν(f, n) is the minimal number l such that:

ordp am ≥ n+ 1 for m < −l

We set Γc = δ−1W c(k((t))). Using the last characterization of ν(n, f) one
proves easily:

Proposition 14 Let f =
∑

i∈Z amt
m ∈ Γ, where am ∈ W (k), be a Laurent

series. Then the following conditions are equivalent:

(i) f ∈ Γc

(ii) There are constants C1, C2 ∈ R such that ν(f, n) ≤ C1 + nC2 for all
nonnegative intgers n.

(iii) There are real constants C and ε > 0, such that ordp ai ≥ −εi + C for
sufficiently small integers i.

(iv) The Newton polygon of f has a negative slope.

We introduce on W (k) the absolute value |a| = p− ordp a. Then the condi-
tion (iii) says that there is a constanst η < 1 such that

lim
i→−∞

|ai|ηi = 0

Indeed choose η > p−ε. This implies that
∑

i∈Z aiz
i converges in a small

annulus η < |z| < 1, where z is in the algebraic closure of the field of
fractions of W (k).
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Let us now assume that k is algebraically closed. Let Kperf be the perfect
closure of K = k((t)). Then Kperf has the powers tα for α ∈ Z[1

p
], 0 < α < 1

as a K-vector space basis. Since Γ → W (Kperf ) is unramified with residue
field extension K → Kperf it follows that an arbitrary element ξ ∈ W (Kperf )
has a unique expression as a convergent sum:

ξ =
∑

0<α<1

[tα]δ(fα), (12)

where fα ∈ Γ. The convergence means that for any given number m we
have fα ∈ pmΓ for almost all α. This implies that for fixed n we have
ν(n, fα) = −∞ for almost all n. We note that fα ∈ pmΓ for all α implies
ν(n, ξ) = −∞ for n < m. Clearly we have:

ν(n, [tα]δ(fα)) = α + ν(n, fα)

These numbers are different for different α. The remarks above and the
proposition 7 then show:

ν(n, ξ) = max
α
{α + ν(n, fα)}

Hence ξ ∈ W c(Kperf ) implies that all fα are in Γc. Conversely, if we have
ν(n, fα) ≤ C1 + nC2 uniformly in α this implies ξ ∈ W c(Kperf ).

Proposition 15 Let Γ be the Cohen ring for K = k((t)). Let Kperf be the
perfect closure of K. Then the natural map:

W c(Kperf )⊗Γc Γ→ W (Kperf ) (13)

is injective.

Proof: Obviously the p-adic completion of Γc is Γ and the p-adic completion
of W c(Kperf ) is W (Kperf ). Therefore the p-adic completion of the left hand
side of (13) is W (Kperf ). Hence it suffices to show that W c(Kperf ) ⊗Γc Γ is
separated in the p-adic topology.

Let us first assume that k is algebraically closed. We have shown that
decomposition (12) provides an injection of Γc-modules:

W c(Kperf )→
∏
α

Γc
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It suffices to show that (
∏

α Γc) ⊗Γc Γ is p-adically separated. This follows
since the following natural map is injective:

(
∏
α

Γc)⊗Γc Γ→
∏
α

Γ (14)

This is standard: Consider an arbitrary finitely generated Γc-submoduleM ⊂
Γ. We obtain a commutative diagram:

(
∏

α Γc)⊗Γc M
ι−−−→

∏
αM

π1

y yπ2

(
∏

α Γc)⊗Γc Γ −−−→
∏

α Γ

By reduction to the case M = Γc one sees that ι is an isomorphism. Clearly
π2 is injective. On the other hand any element of

∏
α Γc⊗Γc Γ is in the image

of π1 for some finitely generated submodule M . This proves that (14) is
injective.

Next we consider the case where k is not algebraically closed. Let k̄ be
the algebraic closure. We set L = k̄((t)) and denote the corresponding ring
of Laurent series by ΓL. Then we have an injection:

ΓcL ⊗Γc Γ→ ΓL (15)

Indeed, let ui, i ∈ I be a basis of k̄ as a vector space over k. Consider an
arbitrary Laurent series in ΓL:

f =
∑
m∈Z

cmt
m, cm ∈ W (k̄).

We write cm =
∑

i∈I am,i[ui] as a p-adically convergent sum. Then cm ∈
pnW (k̄), iff am,i ∈ pnW (k) for all i ∈ I. We set gi =

∑
m∈Z am,it

m. We see
that f ∈ ΓcL implies gi ∈ Γc for all i ∈ I. Therefore we obtain an injection:

ΓcL →
∏
i∈I

Γc

This shows the injectivity of (15) as above.
Finally we consider the maps:

W c(Lperf )⊗Γc Γ = W c(Lperf )⊗ΓcL
(ΓcL ⊗Γc Γ) −−−→ W c(Lperf )⊗ΓcL

ΓLy
W (Lperf )

14



The first arrow is injective by (15) and the second arrow is injective by (13)
in the case where k is algebraically closed. Q.E.D.

Corollary 16 Let M and N be Γc-modules, such that N is torsion free.
Let φ : M → N ⊗Γc Γ be a homomorphism of Γc-modules. Let φ̃ : M ⊗Γc

W c(Kperf ) → N ⊗Γc W (Kperf ) be the W c(Kperf )-linear morphism induced
by φ. Then the natural injection:

(Imφ ∩N)⊗Γc W
c(Kperf )→ Im φ̃ ∩ (N ⊗Γc W

c(Kperf )

is bijective.

Proof: We may assume that φ : M → N ⊗Γc Γ is injective. Then the map:

φ̃ :M ⊗Γc W
c(Kperf )→ N ⊗Γc Γ⊗Γc W

c(Kperf )→ N ⊗Γc W (Kperf )

is injective too. Clearly it suffices to show that the inclusion:

φ−1(N)⊗Γc W
c(Kperf ) ⊂ φ̃−1(N ⊗Γc W

c(Kperf ))

is an equality.
Consider the injection:

M/φ−1(N)→ (N ⊗Γc Γ)/N

If we tensor this with ⊗ΓcW
c(Kperf ), we obtain two injections:

M ⊗W c(Kperf )/φ−1(N)⊗W c(Kperf )
↓

(N ⊗ Γ)⊗W c(Kperf )/N ⊗W c(Kperf )→ N ⊗W (Kperf )/N ⊗W c(Kperf )

All tensor products in this diagram are taken over Γc. This proves the result.
Q.E.D.

3 The slope filtration over W c(L)

In this section L will be a perfect field with a valuation ν. Then W (L) respec-
tively W c(L) is a discrete valuation rings whose maximal ideal is generated
by p. We will denote the Frobenius automorphism of these rings by σ.
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Let (M,F ) be a Frobenius module over W (L). Up to isogeny (M,F ) is
a direct sum of isoclinic Frobenius modules. This implies in particular that
M has a filtration by F -invariant submodules:

0 = M0 ⊂M1 ⊂ . . . ⊂Mm, (16)

such that Mi/Mi−1 is a Frobenius module isoclinic of slope τi. Moreover we
may arrange τ1 > . . . > τm. Then the filtration is unique. We will show that
such a filtration exists for Frobenius modules over W c(L).

Let (M,F ) and (N,F ) be quasi Frobenius modules over W (L). Let
λ1, . . . , λh be the slopes of M with multiplicities, where h = rankW (L)M , and
let µ1, . . . , µl, be the slopes of N with multiplicties where l = rankW (L)N .
One obtains easily:

The slopes of M ⊗N with multiplicities are:

λi + µj, i = 1, . . . , h, j = 1, . . . , l

The slopes of HomW (L)(M,N) with multiplicites are:

µj − λi, i = 1, . . . , h, j = 1, . . . , l

The slopes of ∧kM with multiplicities are:

λi1 + . . .+ λik ,

where the indices run through all tuples, such that 1 ≤ i1 < . . . < ik ≤ h.

Before we turn our attention to Frobenius modules over W c(L) we prove
a general result:

Lemma 17 Let R → R′ be an injective ring homomorphism. Let M be a
finitely generated projective R-module, and let N ′ ⊂ M ⊗R R′ be a direct
summand of constant rank r.

Then there is a unique direct summand N ⊂M such that N ′ = N⊗RR′ if
and only if there is a direct summand L ⊂

∧rM such that L⊗RR′ =
∧rN ′.

Proof: Let X be the Grassmannian of rank r submodules of M and Y be
P(
∧r M̂), where M̂ = HomR(M,R).

16



The operation
∧r induces the Plücker morphism X → Y which is a closed

immersion [Sém. Cartan] 1960/61 Exp. XII prop.2.2. Corresponding to N ′

and L we obtain a commutative diagram.

X −→ Y
↑ ↑

SpecR′ −→ SpecR
(17)

The lemma says that there is an arrow SpecR→ X which yields a commu-
tative diagram when inserted into (17). As X → Y is a monomorphism this
arrow is unique if it exists. Therefore the question of existence is local on
SpecR. We may assume that SpecR→ Y factors through an affine open set
SpecA ⊂ Y . Let us denote by SpecB ⊂ X the preimage of SpecA. Then
we obtain from (17) a commutative diagram of rings:

B
π←−−− A

v

y yu
R′ ←−−− R

(18)

We want to show that there is w : B → R making the diagram commutative.
Since R → R′ is injective, we have u(Ker π) = 0. But this suffices for the
existence of w since π is surjective. This proves the lemma. Q.E.D.

We prove a slight generalization of Bourbaki Algèbre Chapt II, §8 N0 7
Théorème 1:

Corollary 18 Let S be a local ring, and G be a set of endomorphisms of S.
We denote by R = SG the ring of invariants. Let M be a finitely generated
free R-module. Assume we are given a direct summand N ′ of the S-module
M ⊗R S, such that gN ′ ⊂ N ′ for each element g ∈ G.

Then there is a unique direct summand N of the R-module M , such that
N ′ = N ⊗R S.

Proof: We note that R is a local ring too. The uniqueness follows as in
lemma 17. This lemma also shows that we may assume that N ′ is of rank
1. Let e1, . . . , er be a basis of M , and let n be a generator of N ′. Then we
write:

n = a1e1 + . . .+ arer, (19)

17



where ai ∈ S. Since S is local we may assume without loss of generality that
a1 = 1. By assumption there is for each g ∈ G an element λ(g) ∈ S, such
that

g(n) = λ(g)n

Inserting for n the right hand side of (19) and comparing the coefficients
gives λ(g) = 1 and g(ai) = ai. But this implies ai ∈ R. Then Rn ⊂ N is the
desired direct summand. Q.E.D.

Let (M,F ) be a quasi Frobenius module over W c(L).

Proposition 19 Let

τ1 > τ2 > . . . > τm

be the slopes of the quasi Frobenius module (M,F ). Then M has a unique
filtration by quasi Frobenius submodules:

0 = M0 ⊂M1 ⊂ . . . ⊂Mm

such that Mi/Mi−1 is a nonzero isoclinic quasi Frobenius module of slope τi
for i = 1, . . .m.

For the proof we need another lemma:

Lemma 20 Let (M,F ) be a quasi Frobenius module over W c(L). Let λ =
r/s where r and s > 0 are integers.

(i) Assume that all slopes of (M,F ) are bigger or equal to λ. Then there
is a quasi Frobenius module (N,F ) which is isogenous to (M,F ), and
such that F sN ⊂ prN .

(ii) Assume that all slopes of (M,F ) are less or equal to λ. Then there is a
quasi Frobenius module (N,F ) which is isogenous to (M,F ), and such
that prN ⊂ F sN .

(iii) Assume that (M,F ) is isoclinic of slope λ. Then there is a quasi
Frobenius module (N,F ) which is isogenous to (M,F ), and such that
F sN = prN .
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Proof: The corresponding statement is true for M ′ = W (L)⊗W c(L) M .
In the case (i) we find a submodule of finite index N ′ ⊂ M ′ such that

F sN ′ ⊂ prN ′. We set N = N ′∩M⊗Q. Then we find F sN ⊂ prN ′∩M⊗Q =
prN . The other cases are similiar Q.E.D.

Remark: We note that F sN ⊂ prN , if and only if prN̂ ⊂ F sN̂ holds for
the dual module. This follows because F sN̂ is the dual module to F sN with
respect to the pairing:

(N ⊗Q)× (N̂ ⊗Q)→ W c(L)⊗Q

Proof (of proposition 19): To prove the proposition we may change M in
its isogeny class. Let τ1 = τ = r/s be the highest slope. Then we find
M ⊂ N ⊂ M ⊗ Q such that prN ⊂ F sN . Let N ′ = W (L) ⊗W c(L) N . Let
N ′1 ⊂ N ′ the isoclinic part of slope τ1 (compare (16)).

We have to show that there is a direct summand N1 ⊂ N , such that
N ′1 = W (L)⊗W c(L)N1. Applying lemma 17 we may assume that N ′1 has rank
1. We set Φ = prF−s : N → N . Let n be a generator of N ′1. Then we find:

Φn = un,

for some unit u ∈ W (L).
Let us assume that L is algebraically closed. Then we may write u =

aσs(a−1). Then we find Φ(an) = an. Then proposition 10 shows that
an ∈ N . This proves the proposition in the case where L is algebraically
closed. In the general case this shows that there is a direct summand
N̄1 ⊂ W c(L̄)⊗W c(L) N , such that W (L̄)⊗W (L) N

′
1 = W (L̄)⊗W c(L̄) N̄1. Since

the left hand side of the last equation is invariant by the Galois group of
L̄/L, so is the direct summand N̄1 ⊂ W c(L̄) ⊗W c(L) N . Hence this direct
summand descents to a submodule N̄1 ⊂ N , by corollary 18. Q.E.D.

Proposition 21 Let M , N be Frobenius modules over W c(L). Assume that
M is isoclinic of slope λ, and that all slopes of N are less of equal to λ. Let

α : M ⊗W c(L) W (L)→ N ⊗W c(L) W (L)

be a homomorphism of Frobenius modules. Then we have α(M) ⊂ N .

Proof: We set U = (W c(L), σ). Tensoring α with the dual quasi Frobenius
module M̂ , we obtain a morphism U⊗W c(L)W (L)→ N⊗W c(L)M̂⊗W c(L)W (L)
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of quasi Frobenius modules. Twisting this morphism by U(`), i.e. replacing
F by pmF we obtain a morphism of Frobenius modules.

Hence we may assume without loss of generality that M = U(`). Since
the slopes of N are less or equal to `, we find an isogeny N → N ′. such that
p`F−1N ′ ⊂ N ′.

We set n = α(1) ∈ N ′ ⊗W c(L) W (L). Then we have p`F−1n = n. By
proposition 10 we find n ∈ N ′. This shows α(M ⊗ Q) ⊂ N ⊗ Q. But this
suffices since:

(N ⊗Q) ∩ (W (L)⊗W c(L) N) = N.

Indeed, this follows because x ∈ W (L) is in W c(L), iff px ∈ W c(L). Q.E.D.

Proposition 22 Let M and N be Frobenius modules over Γc. Assume that
N is isoclinic of slope λ. Suppose we are given a morphism of Frobenius
modules

φ : M ⊗Γc Γ→ N ⊗Γc Γ,

such that φ⊗Q is surjective. We set E = φ−1(N)∩M and consider the map
ψ : E → N induced by φ. Then the map ψ ⊗ Q is surjective too. Assume
moreover that the map M → N ⊗Γc Γ induced by φ is injective. Then all
slopes of M are less or equal to λ.

Proof Let φ0 : M → N⊗Γc Γ be the restriction of φ. Clearly we may assume
that this map is injective. If we tensor φ0 by ⊗ΓcW

c(Kperf ) we obtain by
proposition 15 an injection:

φ1 : M ⊗Γc W
c(Kperf )→ N ⊗Γc (Γ⊗Γc W

c(Kperf ))→ N ⊗Γc W (Kperf )

Let µ be the highest slope of M ⊗Γc W
c(Kperf ), and consider the first step

in the slope filtration M(µ) ⊂M ⊗Γc W
c(Kperf ). Then M(µ) is a Frobenius

module which is isoclinic of slope µ. Consider the injection

M(µ)→ N ⊗Γc W (Kperf ) (20)

induced by φ1. If µ 6= λ the map M(µ) ⊗W c(Kperf ) W (Kperf ) → N ⊗Γc

W (Kperf ) would be zero. This contradicts the injectivity of (20). Hence all
slopes of M are less or equal to λ.
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It follows from proposition 21 that φ1 maps M(λ) to N ⊗Γc W
c(Kperf ).

Looking for the slope decomposition over W (Kperf ) we find that the map
M(λ)⊗Q→ N ⊗ΓcW

c(Kperf )⊗Q is surjective. This shows that Im(M ⊗Γc

W c(Kperf )) ∩ (N ⊗Γc W
c(Kperf ) has the same rank as N . It follows by

corollary 16 that Im(M) ∩N has the same rank as N . Q.E.D.
De Jong’s proof of theorem 3 depends on to further results which are

not related to convergent Witt vectors. They will be proved in the next two
sections. We state them here, and deduce de Jong’s theorem.

Theorem 23 Let M be a Frobenius module over W [[t]]. Let N c ⊂M ⊗W [[t]]

Γc be a F -invariant direct summand. Then there is a unique Frobenius sub-
module N ⊂M , such that N c = N ⊗W [[t]] Γc.

Corollary 24 Let (M1, F ) and (M2, F ) be Frobenius modules over W (k)[[t]].
Assume we are given a morphism

φc : (M1 ⊗W [[t]] Γc, F )→ (M2 ⊗W [[t]] Γc, F )

Then there is a morphism φ : (M1, F )→ (M2, F ) such that φc = φ⊗ Γc.

Proof: This follows from the last theorem applied to the graph of φc:

N c ⊂ (M1 ⊗W (k)[[t]] Γc, F )⊕ (M2 ⊗W (k)[[t]] Γc, F )

We obtain a Frobenius submodule N ⊂ M1 ⊕ M2. By proposition 5 the
projection N → M1 is an isomorphism, because it becomes an isomorphism
over Γc. Q.E.D.

Finally we will show in the last section:

Proposition 25 Let M → N be a homomorphism of quasi Frobenius mod-
ules over W [[t]]. Assume M ⊗W [[t]] Γ is isoclinic of slope λ and that all slopes
of N ⊗W [[t]] Γ are less or equal to λ. If the map

M ⊗Q→ N ⊗Q

is injective, then it admits an F -equivariant retraction.

Proof (of de Jong’s theorem): We note first that it is enough to prove
that φ(M ⊗Q) ⊂ N ⊗Q. Indeed for this it suffices to check that

(N ⊗Q) ∩ (N ⊗W [[t]] Γ) = N. (21)
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For this we may assume N = W [[t]]. Since W [[t]] is UFD we see that
W [[t]](p)/W [[t]] has no p-torsion. Since Γ/W [[t]](p) has no p-torsion we con-
clude that (21) holds.

Let N̂ be the quasi Frobenius module dual to N . Let us denote by U
the unit Frobenius module. Then we have in the category of quasi Frobenius
modules over W [[t]]:

Hom(M,N) ∼= Hom(M ⊗ N̂ , U)

This shows that we may a assume that N = U(`), which is a rank one
Frobenius module of slope `.

Consider the map φ̆ : M → N ⊗W [[t]] Γ. Dividing by the kernel we may
assume that this map is injective. Indeed, let M ′ be the factor of M by this
kernel. If M ′ is not free we consider the free module M ′

1 given by lemma 6.
For a suitable integer a we obtain an injective map paφ̆ : M ′

1 → N ⊗W [[t]] Γ.

We assume now that φ̆ is injective. Let us introduce the notation M c =
M ⊗W [[t]] Γc and N c = N ⊗W [[t]] Γc. The map

M c → N ⊗W [[t]] Γ (22)

induced by φ̆ is injective too. Indeed, by theorem 23 the kernel would be
defined over W [[t]]. Therefore it is zero because φ̆ is injective. If we a apply
proposition 22 to the morphism (22), we obtain that all slopes of M c are less
or equal to λ. Moreover Ec = M c ∩N c is a Frobenius submodule of rank 1
and slope ` of M c.

By theorem 23 there is a Frobenius submodule E ⊂ M , such that Ec =
E ⊗W [[t]] Γc. If we apply corollary 24 to the map Ec → N c we obtain that

φ̆(E) ⊂ N .
Since the slopes of M c are less or equal to ` the Frobenius submodule

E ⊂M has by proposition 25 a complement E ′ up to isogeny, i.e. we find an
injection of Frobenius modules E ⊕ E ′ → M whose cokernel has p-torsion.
But then we conclude φ̆(E ′) ⊂ N by induction on the rank of M . Q.E.D.

4 Proof of theorem 23

The proof of this theorem seems to require some basic facts about non-
archimedian analytic functions for its proof. It would be interesting to give
a completely elementary proof.
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We fix a perfect field k, and denote by W = W (k) the ring of Witt
vectors. We gather a few facts for Laurent series over the non-archimedian
field WQ = W ⊗Q. For the proofs we refer [Güntzer] or [Lazard]. We denote
by Ω the algebraic closure. We set |a| = p− ordp a for a ∈ Ω.

Definition 26 Let I be a nonempty interval of nonnegative real numbers.
We denote by L(I) the set of all formal Laurent series∑

n∈Z

ant
n, an ∈ WQ(k)

such that for all ρ ∈ I \ 0

lim
|n|→∞

|an|ρn = 0,

and if 0 ∈ I then an = 0 for n < 0. An element of L(I) is called a Laurent
series convergent in I.

It is not difficult to see that L(I) has a natural ring structure. In contrast
the set L of all formal Laurent series is not a ring. If I = {ρ} is a single
point we write L(ρ) = L(I). One checks immediately that this is a Banach
algebra with the norm:

||f ||ρ = max
n∈Z
|an|ρn,

where f denotes the Laurent series f =
∑

n∈Z ant
n. If g ∈ L(ρ) is a second

Laurent series, we have

||fg||ρ = ||f ||ρ||g||ρ.

Let f ∈ L(I) for arbitrary I. A root (or I-root) of f will be an element
z ∈ Ω such that |z| ∈ I, and

∑
n anz

n = 0.
The following theorem (loc.cit.) is a consequence of the theory of Newton

polygons.

Theorem 27 Assume that a nonzero f ∈ LI has only finitely many I-roots.
Then there is a unique monic polynomial P ∈ WQ(k)[t] whose roots in Ω
have absolute values in I, and a unit u in the ring L(I) such that

fu = P

In particular f ∈ L(I) is a unit, iff f 6= 0 and has no I-roots.
If the interval I is compact, then an arbitrary f ∈ L(I) has only finitely

many roots.
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This theorem implies that for a compact intervall L(I) is a principal ideal
domain. If ρ is transcendental then there are no elements z ∈ Ω with |z| = ρ.
Therefore L(ρ) is a field (see [Güntzer] Lemma 2).

We will use the following notation for certain rings of Laurent series:

D = L([0, 1)), Aη = L([η, 1)), for 0 < η < 1. (23)

We set A = ∪ηAη. We have Γc ⊂ A. One can show that Γc ⊗ Q consists
exactly of the Laurent series f ∈ A such that |an| is bounded, but we don’t
need this result.

The Frobenius on WQ(k) extends to an endomorphism σ of the abelian
group of formal Laurent series:

σ(
∑
n∈Z

ant
n) =

∑
n∈Z

Fant
pn

We have σ(A) ⊂ A and moreover the restriction of σ to A is a ring homo-
morphism.

Lemma 28 Assume that a nonzero f ∈ L satisfies an equation σuf = cf
for some number u ≥ 1, and for some c ∈ WQ(k). Then we have f ∈ WQ(k)
and c ∈ W (k)∗.

Proof: We set q = pu. The assertion follows by comparing the coefficients
in the equation: ∑

n∈Z

Fuant
nq =

∑
n∈Z

cant
n

Q.E.D.

The following proposition goes back to Dwork (see [Katz]).

Proposition 29 Let k be algebraically closed. Let (M,F ) be a Frobenius
module over W [[t]].

The D-module M ⊗W [[t]] D possesses a basis {d1, . . . , dr} which satisfies
F ndi = paidi for suitable integers n > 0, a1, . . . , ar ≥ 0.

Proof:M/tM with the operator F is an F -crystal over k. Hence there are
elements e1, . . . , er ∈ M/tM which form a basis of M/tM ⊗W K and such
that the following equations

F nei = paiei, i = 1, . . . r
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hold for suitable integers n > 0 and a1, . . . , ar ≥ 0. Let us choose arbitrary
liftings e′1, . . . , e

′
r ∈M of these elements. We write:

F ne′i = paie′i + txi

for suitable xi ∈M . Inductively we find for each number N :

FNne′i = pNaie′i +
N∑
j=1

p(N−j)aitp
n(j−1)

F n(j−1)(xi) (24)

Consider for fixed i the sequence:

fi,N = p−NaiFNne′i (25)

By the last equation we obtain the congruence:

p−NaiFNne′i = p−(N−1)aiF (N−1)ne′i mod p−Naitp
n(N−1)

M (26)

We choose an isomorphism M ∼= W [[t]]r. Clearly sequence fi,N converges in
the t-adic topology to an element ẽi of WQ[[t]]r = M ⊗W [[t]] WQ[[t]].

Both sides of (26) differ by a vector with components p−Naitp
n(N−1)

pi,

where pi ∈ W [[t]]. Since ||p−Naitpn(N−1) ||ρ = pNaiρp
n(N−1)

converges to zero
whenever ρ < 1 the components of the sequence fi,N converge in the Banach
algebra L(ρ). Since this is true for any ρ < 1, we find ẽi ∈M ⊗W [[t]] D.

From the equation p−aiF nfi,N = fi,(N+1) we obtain:

F nẽi = pai ẽi.

It remains to be shown that the elements ẽi for i = 1, . . . , r form a basis
of M ⊗D, or equivalently that ẽ1 ∧ . . . ∧ ẽr is a basis of

∧rM ⊗W [[t]] D. By
the lemma below there exists generator y ∈

∧rM such that Fy = p`y, for
some number `. We write:

ẽ1 ∧ . . . ∧ ẽr = y ⊗ f, f ∈ D (27)

Applying F u to this equation gives an equality of the form:

pi(ẽ1 ∧ . . . ∧ ẽr) = pjy ⊗ σu(f),
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for some numbers i and j. We deduce pj−iσu(f) = f . By lemma 28 we find
i = j and f ∈ WQ.

It remains to verify that ẽ1 ∧ . . . ∧ ẽr 6= 0. But by construction we have
ẽi = e′imod t and hence {ẽ1, . . . , ẽr} gives a basis of the k-vector space

M ⊗W [[t]] D/tM ⊗W [[t]] D = M/tM ⊗W K

Therefore ẽ1 ∧ . . . ∧ ẽr is not zero. Q.E.D.

Lemma 30 Let k be algebraically closed. Let (M,F ) be a Frobenius module
over W [[t]] of rank 1. Then there is an element m ∈M , such that Fm = p`m
for some number `.

Proof: We fix an isomorphism M ∼= W [[t]]. We set F1 = λ. By assumption
λ = p`η for some unit η ∈ W [[t]]. By the next lemma we find a unit u ∈ W [[t]]
such that σ(u)η/u = 1. This implies Fu = σ(u)p`η = p`u. Q.E.D.

Lemma 31 Let η ∈ W [[t]] be a unit. Then there is a unit x ∈ W [[t]] which
solves the equation

σ(x)/x = η

Proof: We write the equation modulo p:

xp−1 − η = 0 mod p

This has a solution in the algebraically closed field k, which lifts by Hensel’s
lemma to a solution in k[[t]].

Hence we obtain a solution mod p. Let us assume by induction that we
have a solution x mod pn:

σ(x) = xη mod pn

It is enough to show that x lifts to a solution mod pn+1. We set σ(x)− xη =
pnξ for ξ ∈ W [[t]]. We have to find ρ ∈ W [[t]], such that

σ(x+ pnρ)− (x+ pnρ)η = 0 mod pn+1

This amounts to finding a solution of the following congruence:

ρp − ρη + ξ = 0 mod p
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This congruence is an algebraic equation over k[[t]] which we can solve by
Hensel’s lemma as above. Q.E.D.

We have a cartesian diagram of rings:

W [[t]] → Γc

↓ ↓
D → A

(28)

Below we formulate de Jong’s theorem 23 for the arrow D → A:

Lemma 32 Let k be algebraically closed. Let (M,F ) be a Frobenius module
over W [[t]]. Let N ′ ⊂M ⊗W [[t]] A be an F -invariant direct summand, which
is free of rank 1. Then there is a free direct summand N ⊂ M ⊗W [[t]] D of
rank 1, such that N ′ = N ⊗D A.

Proof: By proposition 29 there exists a basis {d1, . . . , dr} of M ⊗W [[t]] D
such that for suitable numbers u and ai:

F udi = paidi

Let n be a generator of N ′. We can write in M ⊗W [[t]]A = M ⊗W [[t]]D⊗DA:

n =
r∑
i=1

di ⊗ hi, hi ∈ A (29)

Since N ′ is invariant by F we obtain:

F un =
r∑
i=1

di ⊗ paiσu(hi) = hn

for some h ∈ A. Comparing coefficients we find that paiσu(hi) = hhi. Then
we obtain:

paiσu(hi)hj = pajσu(hj)hi (30)

Assume we have chosen j such that hj is not identically zero. We choose
η such that all Laurent series hi and σu(hi) are in Aη. Then we choose a
transcendental ρ such that η < ρ < 1.

We set q = pu. One sees easily that σu induces a homomorphism of fields
σu : L(ρ)→ L(ρ1/q). Therefore we obtain in L(ρ1/q) the equation:

σu(hj)σ
u(hih

−1
j ) = σu(hi)
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We divide equation (30) in the field L(ρ1/q) by σu(hj)hj:

pajhih
−1
j = paiσu(hi)σ

u(hj)
−1 = paiσu(hih

−1
j ).

By lemma 28 we obtain hih
−1
j = λi ∈ WQ, where λi = 0 if ai 6= aj. We set

f = hj and rewrite (29) as follows:

n =
r∑
i=1

λidi ⊗ f (31)

We may replace in the basis d1, . . . , dr the element dj by
∑r

i=1 λidi. Then we
may write n = dj ⊗ f . Since An is a direct summand of ⊕ri=1Adi, it follows
that f is a unit in A. Hence N = Ddj is the direct summand we wanted.
Q.E.D.

Proof (of theorem 23): Let (M,F ) be a Frobenius module over W (k)[[t]].
Let N c ⊂ M ⊗W (k)[[t]] Γc be an F -invariant direct summand. Then we have
to show that there is a unique Frobenius submodule N ⊂ M such that
N c = N ⊗W (k)[[t]] Γc.

Let us begin with the uniqueness. If N exist then N1 = N c ∩M is by
lemma 6 another Frobenius submodule, which fullfills the theorem and con-
tains N . Since N → N1 becomes an isomorphism over Γc it is by proposition
5 an isomorphism. Therefore N is unique.

Let B = W [[t]](p) the localization in the prime ideal generated by p. We
set M ′ = M ⊗W (k)[[t]] B. It is equivalent to show that there is a direct
summand N ′ ⊂ M ′ as B-module such that N ′ ⊗B Γc = N c. Then we have
N ′ = M ′ ∩ N c, and therefore N ′ is F -invariant. By lemma 17 we may
therefore assume that N c has rank 1.

Moreover we may assume that k is algebraically closed. Indeed, let k̄ be
the algebraic closure of k. We denote by B̄ etc. the objects corresponding
to k̄. Then the Galois group G = Gal(k̄/k) acts on B̄ and the invariants
are B. If N̄ ′ ⊂ M ′ ⊗B B̄ exists it is stable by G because it is uniquely
determined. Therefore we may apply corollary 18. Hence we assume that k
is algebraically closed, and N c is of rank 1.

By lemma 32 we find a free direct summand N ′ ⊂M ⊗W [[t]] D of rank 1,
such that N c ⊗Γc A = N ′ ⊗D A. Therfore it suffices to show the following
general lemma: Q.E.D.

If we localize the cartesian diagram (28) by the multiplicatively closed
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system S = W [[t]] \ pW [[t]] we obtain a cartesian diagram:

B → Γc

↓ ↓
M → A

(32)

Lemma 33 Let M be a finitely generated free B-module. Let N c ⊂M⊗BΓc

be a direct summand of rank 1, and let N ′ ⊂M ⊗BM be a direct summand,
which is free of rank 1 as an M-module. We assume that N c ⊗Γc A =
N ′⊗MA. Then there exists a unique direct summand N ⊂M , which induces
N c and N ′.

Proof: Let f ∈ M be an element which becomes a unit in A. We claim
that f is a unit in M. To see this we may assume f ∈ D. By assumption f
is a unit in L([ρ, 1)) for some ρ. By theorem 27 we may write in L([0, ρ]):

fu = P

In L(ρ) we obtain u = P/f . The right hand side of this equation converges
in [ρ, 1). We conclude that u converges in [ρ, 1) too, and finally u ∈ D.
Therefore we find in M the equation f(u/P ) = 1.

Let nc respectively n′ be generators of N c respectively N ′ . Let e1, . . . , er
be a basis of the B-module M . Then we write

nc = e1 ⊗ g1 + . . .+ er ⊗ gr
n′ = e1 ⊗ f1 + . . .+ er ⊗ fr

where gi ∈ Γc, and fi ∈ M. Since Γc is a local ring we may assume without
generality that g1 = 1.

By assumption there is a unit h ∈ A, such that n′ = hn. We conclude that
f1 = h, and by the assertion shown above that f1 is a unit in M. dividing
by f1 we may assume that f1 = h = 1. Then we see from the diagram (32)
that fi = gi ∈ B Q.E.D.

5 Proof of proposition 25

We will now prove proposition 25 in its dual version:

Proposition 34 Let k be algebraically closed. Let M → N be a morphism
of quasi Frobenius modules over W (k)[[t]], such that N is isoclinic of slope λ
and all slopes of M are bigger or equal to λ.

If the map M⊗Q→ N⊗Q is surjective, it has an F -equivariant section.
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Proof: We set λ = r/s, where r and s > 0 are integers. We set U = p−rF s.
We may assume that UM ⊂M , UN = N , and that the cokernel of the map
M → N is annihilated by a power of the maximal ideal of W [[t]]. Indeed,
we set B = W [[t]](p), M

′ = M ⊗W (k)[[t]] B, and N ′ = N ⊗W (k)[[t]] B. Let
M ′

0 ⊂ M ′ ⊗ Q be a finitely generated (free) B-submodule which is mapped
surjectively to N ′0 = N ′, and such that M ′

0 ⊗ Q = M ′ ⊗ Q. We set M ′
1 =∑∞

i=0 U
iM ′

0 and N ′1 =
∑∞

i=0 U
iN ′0. Then M ′

1, N ′1 are both U -invariant and
finitely generated over B. The map M ′

1 → N ′1 is surjective. Finally we
consider M1 = M ′

1 ∩ (M ⊗ Q), and N1 = N ′1 ∩ (N ⊗ Q). These W (k)[[t]]-
modules are free by lemma 6. Then we have UM1 ⊂ M1, and UN1 = N1

because N1 is isoclinic of slope λ. Finally the map M1 → N1 becomes
surjective if we tensor it with Q and also if we tensor it with B. Hence the
cokernel is annihilated by a power of the maximal ideal of W (k)[[t]].

We define X and Y by the exact sequence:

0→ Y →M → N → X → 0

We deduce an exact sequence:

0→ (Y/tY )⊗Q→ (M/tM)⊗Q→ (N/tN)⊗Q→ 0

Then Y/tY is a U -invariant submodule of M/tM , and Ȳ = (Y/tY )⊗Q∩
(M/tM) is U -invariant too. Let us consider the cokernel N̄ :

0→ Ȳ →M/tM → N̄ → 0

The operator U acts on N̄ . On the other hand N̄ is isoclinic of slope λ, since
N̄ ⊗Q = N/tN ⊗Q is. This shows that U induces an σs-linear isomorphism
on N̄ . By Dieudonné’s classifiction of isocrystals we have a U -equivariant
section N̄ →M/tM . Its image Ē lifts by the lemma below to a U -invariant
direct summand E of M . Then the U -equivariant map:

Y ⊕ E →M (33)

is an isogeny modulo t. Therefore it is an isogeny by proposition 5 and
the first remark after it. We find that E → N is an isogeny, and hence
E ⊗Q→ N ⊗Q is an isomorphism. This shows that M ⊗Q→ N ⊗Q has
an U -equivariant section β. But then

1

s

s−1∑
i=0

F−iβF i
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is the desired F -equivariant section. Q.E.D.
Finally we have to prove that Ē lifts. We fix an integer s > 0, and we

consider the endomorphism τ = σs of W (k)[[t]].

Lemma 35 Let P be a finitely generated projective W (k)[[t]]-module and U :
P → P be a τ -linear endomorphism. We set P0 = P ⊗W (k)[[t]]W (k) = P/tP .
Then U induces a τ -linear endomorphism U : P0 → P0 of the W (k)-module
P0.

Let E0 be a direct summand of P0, such that U induces a τ -linear iso-
morphism.

ϕ0 : E0 −→ E0.

Then there exists a direct summand E ⊂ P , which is uniquely determined by
the following properties:

(i) U(E) ⊆ E.

(ii) E lifts E0.

(iii) U : E → E is a τ -linear isomorphism.

We prove this in a more general situation: Let A be a commutative ring
and a ⊂ A an ideal, which consists of nilpotent elements. We set A0 = A/a
and more generally we denote for an A-module M the A0-module M/aM
by M0. Let τ : A → A be a ring homomorphism, such that τ(a) ⊂ a, and
such that there exists a natural number r with τ r(a) = 0. We denote by
τ0 : A0 → A0 the ring homomorphism induced by τ .

We will apply this to the ring A = W (k)[[t]]/(tm) for an arbitrary natural
number m, the endomorphism τ induced by τ on W (k)[[t]], and the ideal
a = tA. Therefore it is enough to prove the following proposition:

Proposition 36 Let P be a finitely generated projective A-module and ϕ :
P → P be a τ -linear endomorphism. Then ϕ induces a τ0-linear endomor-
phism ϕ0 : P0 → P0 of the A0-module P0.

Let E0 be a direct summand of P0, such that ϕ0 induces a τ0-linear iso-
morphism.

ϕ0 : E0 −→ E0.

Then there exists a direct summand E ⊂ P , which is uniquely determined by
the following properties:
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(i) ϕ(E) ⊆ E.

(ii) E lifts E0.

(iii) ϕ : E → E is a τ -linear isomorphism.

(iv) Let C be an A-module, which is equipped with a τ -linear isomorphism
ψ : C → C. Let α : (C,ψ) → (P, ϕ) be an A-module homomorphism
such that α ◦ ψ = ϕ ◦ α. Let us assume that α0(C0) ⊂ E0. Then we
have α(C) ⊂ E.

Proof: By our assumption on r we have an isomorphism

A⊗τr,A P = A⊗τr,A0 P0.

We define E to be the image of the A-module homomorphism

(ϕr)# : A⊗τr,A0 E0 −→ P. (34)

It follows immediately that ϕ(E) ⊂ E.
Let us prove that E is a direct summand of P . We choose a A0-submodule

F0 ⊂ P0, which is complementary to E0:

P0 = E0 ⊕ F0.

Then we lift F0 to a direct summand F of P . We consider the map induced
by (34)

(ϕr)# : A⊗τr,A0 E0 −→ P/F. (35)

By assumption the last map becomes an isomorphism, when tensored with
A0⊗A. Hence we conclude by the lemma of Nakayama that (35) is an iso-
morphism. We see that E is a direct summand:

P = E ⊕ F

Applying Nakayama’s lemma to the projective and finitely generated
module E, we obtain that:

ϕ# : A⊗τ,A E −→ E

is an isomorphim.
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Therefore we have checked the properties (i) − (iii). The last property
follows from the commutative diagram:

A⊗τr,A0 E0
// E // P

A⊗τr,A0 C0

1⊗α0

OO

∼ // C

α

OO

Q.E.D.
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