Algebraische Geometrie, Übungen 1

1) Es sei X eine G-Topologie. Es sei

$$\bigcup_{i \in I} U_i = X$$

eine Überdeckung, die wir mit \mathcal{U} bezeichnen. Wir setzen voraus, das es ein $s \in I$ gibt, so dass $U_{\kappa} = X$.

Es sei P eine abelsche Prägarbe auf X und \check{C} ihr Cech-Komplex. Man betrachte die Abbildung

$$\varkappa^m : \check{C}^m \to \check{C}^{m-1}, \quad m \ge 1,$$

die definiert ist durch

$$(\varkappa^m s)_{i_0\dots i_{m-1}} := s_{\kappa i_0\dots i_{m-1}}, \quad s \in \check{C}^m.$$

Man beweise die Identität

$$(\partial^{m-1} \circ \varkappa^m + \varkappa^{m+1} \circ \partial^m)(s) = s, \quad m \ge 1.$$

2) Es sei A ein kommutativer Ring mit 1. Es sei $f \in A$. Wir definieren das folgende multiplikativ abgeschlossen System.

$$S(f) = \{ s \in A \mid \text{exist. } a \in A, \ t \in \mathbb{N}, \text{ so dass } as = f^t \}.$$

Es sei M ein A-Modul. Man beweise, dass die kanonische Abbildung (Vorlesung)

$$M_f \to M_{S(f)}$$

ein Isomorphismus von A-Moduln ist.

Es sei $g \in A$ ein weiteres Element, so dass $D(f) \subset D(g)$. Man beweise, dass $S(g) \subset S(f)$. Man folgere, dass S(f) nur von der Menge D(f) abhängt und dass die Zuordnung $D(f) \mapsto M_{S(f)}$ eine Prägarbe ist.

3) Es sei A ein nullteilerfreier Ring und K sein Quotientenkörper. Dann gilt $A_f \subset K$. Für ein Primideal $\mathfrak{p} \subset A$ sei $A_{\mathfrak{p}} \subset K$ die Menge aller Brüche (a/s) wo $a, s \in A$ und $s \notin \mathfrak{p}$. Man beweise, dass

$$A_f = \bigcap_{\mathfrak{p} \in D(f)} A_{\mathfrak{p}}.$$