Übungen Algebraische Geometrie 10

1) Es sei X ein Schema. Man nennt $x \in X$ einen allgemeinen Punkt von X, wenn X in jeder offenen nichtleeren Teilmenge $U \subset X$ enthalten ist. Man beweise, dass X höchstens einen allgemeinen Punkt besitzen kann.

Es sei $X = \mathbb{P}^1_K$ oder $X = \operatorname{Spec} A$, wo A ein nullteilerfreier Ring ist. Man beweise, dass es in diesen Fällen allgemeine Punkte gibt.

2) Es sei X ein Schema und $x \in X$. Wir betrachten die Abbildung topologischer Räume $\iota_x : x \to X$. Es sei V eine Garbe von $\kappa(x)$ -Vektorräumen auf x oder was das gleiche ist ein $\kappa(x)$ -Vektorraum. Man beweise, dass $\iota_{x,*}V$ eine quasikohärente Garbe auf X ist. Wenn $x \in X$ ein allgemeiner Punkt ist, so gilt

$$\iota_{x,*}V(U) = V$$

für jede nichtleere offenen Menge $U \subset X$.

Es sei $X = \operatorname{Spec} A$ mit dem allgemeinen Punkt η wie in Aufgabe 1. Es sei M ein A-Modul und $\mathcal{M} = M^{\sim}$. Man beschreibe den Adjunktionsmorphismus

$$\mathcal{M} \to \iota_{\eta,*}\iota_{\eta}^*\mathcal{M}$$

durch einen A-Modulhomomorphismus. Was ist die Abbildung auf den Halmen?

3) Es sei $\eta \in \mathbb{P}^1_K$ der allgemeine Punkt. Es sei \mathcal{L} eine invertierbare Garbe (= lokal frei vom Rang 1). Dann ist $\iota^*_{\eta}L = L_{\eta}$ ein $\kappa(\eta)$ -Vektorraum V der Dimension 1. Es sei $\mathcal{V} = \iota_{\eta,*}V$. Der Adjunktionmorphismus $L \to \mathcal{V}$ ist eine Injektion von Garben. Es sei $I \subset \mathcal{V}$ eine weitere $\mathcal{O}_{\mathbb{P}^1}$ -Untermodulgarbe, die invertierbar ist.

Man beweise, dass I + L und $I \cap L$ invertierbar sind.

Es sei $x \in \mathbb{P}^1_K$ ein abgeschlossener Punkt. Es sei $M \subset V = \mathcal{V}_x$ ein freier $\mathcal{O}_{\mathbb{P}^1,x}$ Untermodul vom Rang 1.

Man beweise, dass es eine invertierbare Garbe $L' \subset \mathcal{V}$ gibt, so dass $L'_x = M$ und so dass für alle Punkte $y \neq x$ gilt, dass $L'_y = L_y$.

4) Es sei $L \subset \mathcal{O}_{\mathbb{P}^1_K} \oplus \mathcal{O}_{\mathbb{P}^1_K}$ eine invertierbare Untergarbe. Man beweise $\deg L \leq 0$. Dazu finde man eine Abbildung

$$\mathcal{O}_{\mathbb{P}^1_K} \oplus L \to \mathcal{O}_{\mathbb{P}^1_K} \oplus \mathcal{O}_{\mathbb{P}^1_K},$$

deren Kokern eine Wolkenkratzergarbe ist.