Algebraische Geometrie, Übungen 3

1) Es seien \mathbb{N}^{opp} die natürlichen Zahlen mit die umgekehrten Ordnung \leq . Es sei R ein kommutativer Ring und es sei $f \in R$. Es sei M ein R-Modul. Man betrachte das folgende induktive System (M_n, ϕ_{ji}) :

$$M_n = M$$
, für alle $n \in \mathbb{N}$,

und $\phi_{ji}: M_i \to M_j$ ist die Multiplikation mit f^{j-i} . Man konstruiere einen Isomorphismus

$$\lim_{\to} (M_n, \phi_{ji}) \to M_f$$

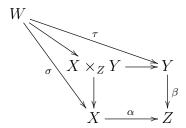
2) Es seien stetige Abbildungen topologischer Räume gegeben.

$$X \xrightarrow{\alpha} Z \xleftarrow{\beta} Y$$

Es sei $X\times_Z Y$ ihr Faserprodukt. Es sei W ein topologischer Raum und es seien $W\stackrel{\sigma}{\to} X$ und $W\stackrel{\tau}{\to} Y$ zwei stetige Abbildungen, so dass

$$\alpha \circ \sigma = \beta \circ \tau.$$

Man beweise, dass es genau eine stetige Abbildung $W \to X \times_Z Y$, so dass folgendes Diagramm kommutativ ist.



3) Eine offene Einbettung topologischer Räume $i:U\to X$ ist ein Homöomorphismus auf eine offene Teilmenge von X. Gegeben sei eine zweite offene Einbettung $j:U\to Y$. Konstruieren Sie topologischen Raum Z und stetige Abbildungen $X\stackrel{\alpha}{\to} Z$ und $Y\stackrel{\beta}{\to} Z$, so dass α und β offene Einbettungen sind, $Z=\alpha(X)\cup\beta(Y),\ \alpha\circ i=\beta\circ j$ und folgende Eigenschaft erfüllt ist:

Wenn $\alpha(x) = \beta(y)$ so existiert ein $u \in U$ mit i(u) = x und j(u) = y. Man nennt das die Zusammenklebung längs U.

4) Es sei $\iota:U\to X$ eine offene Einbettung. Es sei F eine Garbe auf U. Man konstruiere eine Garbe E auf X, deren Halme in Punkten $x\in X$, $x\notin U$ leer sind, und so dass es einen Isomorphimus $\iota^{\bullet}E\cong F$ gibt.

Man beweise, dass für eine Garbe ${\cal G}$ auf ${\cal X}$ eine kanonische Bijektion existiert

$$\operatorname{Hom}_X(E,G) \cong \operatorname{Hom}_U(F,\iota^{\bullet}G).$$