Übungen Algebraische Geometrie 8

1) Es sei K ein Körper und $K[T_1,T_2]$ ein Polynomring. Es sei $X=\operatorname{Spec} K[T_1,T_2]$. Es sei $s\in\operatorname{Spec} K[T_1,T_2]$ der Punkt welcher dem Primideal $(T_1,T_2)\subset K[T_1,T_2]$ entspricht. Wir nehmen zwei Exemplare $(X_1,s_1)=(X_2,s_2)=(X,s)$. Man verklebe die beiden Schemata X_1 und X_2 durch den kanonischen Isomorphismus

$$X_1 \setminus \{s_1\} \xrightarrow{\sim} X_2 \setminus \{s_2\}$$

zu einem Schema Z. Man finde zwei affine offene Teilmengen von Z, deren Durchschnitt nicht affin ist. Insbesondere ist Z kein affines Schema.

2) Es sei $j:U\to X$ eine offene Menge in einem topologischen Raum X. Es sei F eine Garbe abelscher Gruppen auf X. Man definiere die Abbildung $F\to j_*(F_{|U})$. Es sei $V\subset U$ eine offene Teilmenge. Es sei $\kappa:V\to X$. Man definiere eine Abbildung

$$\rho: j_*(F_{|U}) \to \kappa_*(F_{|V}).$$

Es sei $x \notin U$. Dann ist die Abbildung ρ_x der Halme im Punkt x eine Isomorphismus. Man beachte, dass es eine offene Menge $U' \subset X$ gibt, so dass $U' \cup U = X$ und $U' \cap U = V$.

Es sei U' so gewählt. Man beweise, dass die folgende Sequenz von Garben exakt ist:

$$0 \to F \to j_*(F_{|U}) \oplus j_*'(F_{|U'}) \xrightarrow{\rho - \rho'} \kappa_*(F_{|V}) \to 0.$$

3) Es sei $U_0 = \operatorname{Spec} R[X]$ und $U_1 = \operatorname{Spec} R[Y]$. Es sei $U_0 \cup U_1 = \mathbb{P}^1$ die projektive Gerade. Man beweise, dass die Schemamorphismen $U_i \to \mathbb{P}^1$ affin sind. Es sei F eine quasikohärente Garbe auf X. Wir sind im Fall der Aufgabe 2 mit $X = \mathbb{P}^1$, $U_0 = U$, $U_1 = U'$. Man zeige, dass die Kohomologiegruppen $H^i(\mathbb{P}^1,?)$ null sind, wenn i > 0 und ? eine der Garben $j_*(F_{|U}), j'_*(F_{|U'}), \kappa_*(F_{|V})$.

Man folgere, dass die Kohomologiegruppen $H^i(\mathbb{P}^1, F)$ gleich den Kohomologiegruppen des folgenden Komplexes abelscher sind:

$$F(U_0) \oplus F(U_1) \to F(U_0 \cap U_1).$$

4) Es sei R ein Ring. Es sei M endlich erzeutgter R-Modul. Man beweise, dass die Menge aller $\mathfrak{p} \in \operatorname{Spec} R$, so dass $M_{\mathfrak{p}} \neq 0$ abgeschlossen ist.