Algebraische Geometrie II, Übung 6

1) Es sei $j:U\to X$ ein offenes Unterschema eines Schemas X. Zeigen Sie, dass das inverse Bild $j^*\mathcal{F}$ eines injektives \mathcal{O}_X -Moduls \mathcal{F} ein injektiver \mathcal{O}_U -Modul ist.

Benutzen Sie den Funktor $j_!$.

2) Es sei A ein Ring. Wir betrachten $f: \mathbb{P}^d_A \to \operatorname{Spec} A$. Es sei \mathcal{F} eine quasikohärente Garbe auf \mathbb{P}^d_A . Man beweise, dass es eine Familie $\{m_\lambda\}_{\lambda \in I}$ von ganzen Zahlen m_λ gibt und $\mathcal{O}_{\mathbb{P}^d}$ -Modulhomomorphismen $\alpha_\lambda: \mathcal{O}_{\mathbb{P}^d}(m_\lambda) \to \mathcal{F}$, so dass

$$\bigoplus_{\lambda \in I} \mathcal{O}_{\mathbb{P}^d}(m_\lambda) \to F$$

surjektiv ist.

Hinweis: Es sei U_i eine offene Menge der Standardüberdeckung von \mathbb{P}^d_A . Dann findet man Schnitte $s_{\lambda} \in \mathcal{F}(U_i)$, die den \mathcal{O}_{U_i} -Modul $\mathcal{F}_{|U_i}$ erzeugen. Man beweist, dass man $m_{\lambda} \in \mathbb{Z}$ existiert, so dass man s_{λ} zu einem globalen Schnitt von $\mathcal{F}(-m_{\lambda})$ fortsetsen kann.

3) Es sei \mathcal{F} ein lokal freier \mathcal{O}_X -Modul auf einem Schema X, der lokal endlich erzeugt ist. Es sei G ein lokal endlich erzeugter \mathcal{O}_X -Modul und $\alpha: G \to F$ ein surjektiver Homomorphismus. Man zeige, dass der Kern von α lokal endlich erzeugt ist. Es sei $f: X = \mathbb{P}^d_A \to \operatorname{Spec} A$ der projektive Raum über einem beliebigen Ring.

Man beweise, dass es eine exakte Sequenz von \mathcal{O}_X -Moduln gibt

$$\ldots \to \mathcal{L}_i \to \ldots \to \mathcal{L}_1 \to \mathcal{L}_0 \to \mathcal{F} \to 0.$$

so dass jedes \mathcal{L}_i eine endliche direkte Summe von Garben der Form $\mathcal{O}_X(m)$, mit m < 0 ist. Es sei $K_i = H^d(X, \mathcal{L}_i)$. Man beweise, dass man einen Komplex freier endlich erzeugter A-Moduln erhält:

$$\ldots \to K_i \to \ldots \to K_1 \to K_0 \to 0 \ldots$$

Wir bezeichnen mit $H_i(K_i)$ die Homologie an der Stelle K_i . Man beweise, dass

$$H_i(K_{\cdot}) = H^{d-i}(X, \mathcal{F}).$$

Es sei M ein A-Modul und $\mathcal{M} = \tilde{M}$. Man beweise, dass

$$H_i(K_{\cdot} \otimes_A M) = H^{d-i}(X_{\cdot} \mathcal{F} \otimes_{\mathcal{O}_X} f^* \mathcal{M}).$$