Algebraische Geometrie III, Übung 1

- 1) Es sei A ein noetherscher Ring. Es sei $\mathfrak{a} \subset A$ ein Ideal. Beweisen Sie, dass $D(\mathfrak{a})$ genau dann dicht in Spec A ist, wenn \mathfrak{a} in keinem minimalen Primideal von A enthalten ist.
- 2) Es sei A ein Ring. Es sei $\mathfrak{a} \subset A$ ein endlich erzeugtes Ideal. Es sei $\pi: \tilde{X} \to X = \operatorname{Spec} A$ die Aufblasung in $V(\mathfrak{a})$.

Es sei $A \to B$ eine A-Algebra, so dass das Ideal $\mathfrak{a}B \subset B$ von einem Nichtnullteiler erzeugt wird. Man beweise das der Morphismus Spec $B \to X$ über einen Morphismus Spec $B \to \tilde{X}$ faktorisiert.

3) Es sei A eine glatte Algebra über einem algebraisch abgeschlossenen Körper k. Es sei $P \in X = \operatorname{Spec} A$ ein abgeschlossener Punkt. Es seien $x_1, \ldots, x_m \in A$ reguläre Parameter im Punkt P. Es sei $\pi: \tilde{X} \to X$ die Aufblasung in P.

Man zähle alle abgeschlossenen Punkte $Q \in \pi^{-1}(P)$ auf. Man gebe für jeden der lokalen Ringen $\mathcal{O}_{\tilde{X},Q}$ reguläre lokale Parameter an.

4) Es sei A eine glatte Algebra über k. Es sei $x_1, \ldots x_m \in A$, so dass $V(x_1, \ldots, x_m) \subset X = \operatorname{Spec} A$ eine glatte Untervarietät ist.

Man beweise, dass die Aufblasung X von X in dem Ideal (x_1, \ldots, x_m) glatt ist.

Bemerkung: Es sei $P \in V(x_1, ..., x_m)$ ein abgeschlossener Punkt. Dann kann man $x_1, ..., x_m$ zu einem regulären Parametersystem von $\mathcal{O}_{X,P}$ ergänzen.