Algebraische Geometrie III, Übung 2

1) Wir nennen ein Schema X integral, wenn X reduziert ist und wenn es einen Punkt $\eta \in X$ gibt, so dass der Abschluss der Teilmenge $\{\eta\} \subset X$ gleich X ist.

Es sei A ein Ring und S = Spec A. Es sei X integral mit dem allgemeinen Punkt η ein S-Schema, d.h. ein Morphismus $X \to S$ ist gegeben. Es sei Y ein separiertes S-Schema. Es seien $f_1, f_2 : X \dashrightarrow Y$ zwei rationale Abbildungen über S, deren Einschränkungen auf Spec $\kappa(\eta)$ übereinstimmen. Man beweise, dass $f_1 = f_2$.

2) Mit den Bezeichnungen von 1) sei A noethersch. Es seien X,Y integral mit den allgemeinen Punkten $\eta \in X$ und $\zeta \in Y$, separiert und v.e.T. über S. Es sei $f:X\to Y$ ein Morphismus von Schemata, der birational ist.

Wir nehmen an, dass es einen Morphismus $s: Y \to X$ gibt, so dass $f \circ s = \mathrm{id}_Y$. Man zeige, dass f ein Isomorphismus ist.

- 3) Mit den Voraussetzungen von 2) sei V der Definitionsbereich von f^{-1} . Man beweise, dass $f:f^{-1}(V)\to V$ ein Isomorphismus ist. (Man kann 2) benutzen.)
- 4) Es sei R ein Ring. Es sei $\mathbb{A}_R^{d+1} = \operatorname{Spec} R[T_0, \dots, T_d]$ und $\mathbb{P}_R^d = \operatorname{Proj} R[X_0, \dots, X_d]$. Wir haben eine kanonische Abbildung definiert

$$\varkappa: \mathbb{A}_R^{d+1} \setminus V(T_0, \dots, T_d) \to \mathbb{P}_R^d.$$

Man beweise, dass $\varkappa^{-1}(D_+(X_i)) = D(T_i)$, wo $i = 1, \ldots, d$.