Algebraische Geometrie III, Übung 4

1) Es sei $\alpha: Y \to X$ eine eigentlicher Morphismus 2-dimensionaler noetherscher Schemata, die irreduzibel sind und die allgemeinen Punkte η_Y und η_X besitzen. Es sei $\alpha(\eta_Y) = \eta_X$.

Man beweise, dass $\alpha^{-1}(\eta_X) = \eta_Y$.

(Hinweis: Es sei $\zeta \in Y$ ein Punkt, so dass $\alpha(\zeta) = \eta_X$ und $\zeta \neq \eta_Y$. Es sei $D \subset Y$ der Abschluss von ζ . Man beweise, dass alle Punkte in $\alpha(D) \setminus \{\eta_X\}$ abgeschlossen in X sind.)

2) Es sei $\alpha: Y \to X$ eine eigentlicher surjektiver Morphismus 2-dimensionaler regulärer noetherscher Schemata. Y und X mögen allgemeinene Punkte η_X und η_Y besitzen.

Nach ZMT (EGA III.4.4.1) gibt es eine offene nichtleere Menge $U \subset X$, so dass die Einschränkung von α auf $\alpha^{-1}(U)$ endlich ist. Es sei $Q \in U$ ein abgeschlossener Punkt und es seien D_1 und D_2 , die sich in Q eigentlich schneiden. Man beweise die Formel

$$[\kappa(\eta_X) : \kappa(\eta_Y)](D_1 \cdot D_2)_Q = \sum_{P \in \alpha^{-1}(Q)} [\kappa(P) : \kappa(Q)](\alpha^*(D_1) \cdot \alpha^*(D_2))_P.$$

3) Es sei $A \subset B$ ein Ringhomomorphismus.

Man zeige, dass $\operatorname{Spec} B \to \operatorname{Spec} A$ eigentlich ist, wenn Beine endliche A-Algebra ist.

Man nehme an, dass $\operatorname{Spec} B[T] \to \operatorname{Spec} A[T]$ abgeschlossen ist. Man zeige, dass Bganz über A ist.

(Hinweis: Es sei $b \in B$. Man muss zeigen, dass b ganz über A ist. o.B.d.A. b nicht nilpotent. Es sei $A' \subset B_b$ die A-Unteralgebra, welche von b^{-1} erzeugt wird. Man betrachte das kommutative Diagramm

$$\operatorname{Spec} B[T] \longrightarrow \operatorname{Spec} A[T]$$

$$\uparrow \qquad \qquad \uparrow$$

$$\operatorname{Spec} B_b \stackrel{\psi}{\longrightarrow} \operatorname{Spec} A'$$

wobei die vertikalen Pfeile T auf b^{-1} abbilden. Man folgere, dass die untere Pfeil ψ abgeschlossen und dann sogar surjektiv ist. Man folgere, dass b^{-1} eine Einheit in A' ist. Folglich gilt $b \in A'$ und läßt sich daher als Linearkombination der b^{-i} mit Koeffizienten in A schreiben.)

4) Es sei K ein Körper. Es sei $\mathbb{P}^2_K = \operatorname{Proj} K[T_0, T_1, T_3]$. Es sei $F \in K[T_0, T_1, T_2]$ ein homogenes Polynom vom Grad d und $G \in K[T_0, T_1, T_2]$ ein

homogenes Polynom vom Grad e. Es sei $F\neq 0$ und $G\neq 0$. Wir betrachten die effektiven Cartierdivisoren $D=V_+(F)$ und $E=V_+(G)$. Man beweise

 $(D \cdot E) = ed$, Satz von Bezout.