
The universal extension

Let R be a unitary ring. We consider functors from the category of
R-algebras to the category of abelian groups. We write Homab for homo-
morphisms of functors which respect the group structure and a bare Hom
for homomorhisms of the set-valued functors.

Let M be an R-module. Then we define the functor M :

M(T ) = M ⊗R T, where T is an R− algebra,

with the additive group structure on the right hand side.
Let G = SpecA be a finite locally free group scheme. Let G∗ = SpecA∗

be its Cartier dual. Let J ⊂ A∗ be the ideal of the neutral element. We set

ωG∗ = J/J2.

Proposition 1. There is a canonical isomorphism:

Homab(G,M) ∼= HomR-mod(ωG∗ ,M).

Proof: We start with a homomorphism u : G→M . If we regard u as a
morphism of set-valued functors u is just an element of M(A) = A ⊗R M .
Let ξ : A⊗RM be the element which corresponds to u.

Let us denote εA : A → R and εA∗ : A∗ → R the augmentations which
correspond to the neutral elements in G resp. G∗. The kernel of εA∗ is J .
We will denote by 1A ∈ A and 1A∗ ∈ A∗ the unit elements. If we regard 1A
as the structure map 1A : R→ A then it is dual to εA∗ : A∗ → R.

The condition that the group homomorphism u maps the unit element in
G to the zero element in M is

εA ⊗ idM (ξ) = 0

Moreover we use the natural isomorphism

A⊗RM → HomR-mod(A∗,M)

η 7→ η̆.

On checks in general that

(εA ⊗ idM )(η) = η̆(1A∗).

Therefore the condition that u respects neutral elements translates into

(1) ξ̆(1A∗) = 0.

In other words ξ̆ annihilates the first summand of the decomposition

A∗ = R⊕ J.

Conversely let us start with an element ξ̆ : A∗ →M which satisfies (1). It
corresponds to a morphism u : G→M which respects unit elements. Then
the Proposition follows if we prove that u is a group homomorphism, iff ξ̆
anihilates J2.
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The condition that u is a homomorphism is equivalent to the commuta-
tivity of the following diagram:

(2)

G×G u×u−−−−→ M ×M

mG

y y+

G
u−−−−→ M

Here mG denotes the multiplication of G. We have

Hom(G×G,M×M) = M(A⊗RA)⊕M(A⊗RA) = (A⊗RA⊗RM)⊕(A⊗RA⊗RM).

The morphism u× u corresponds on the right hand side of these equations
to an element ξ1 ⊕ ξ2 which is described as follows:

We define maps

p1, p2 : A⊗RM → A⊗R A⊗RM.

where p1(a⊗m) = a⊗ 1A ⊗m and p2(a⊗m) = 1A ⊗ a⊗m. Then we have

ξ1 = p1(ξ), ξ2 = p2(ξ).

Let us denote by ∆ : A → A ⊗R A the comorphism of the multiplication
mG. We set ∆M = ∆ ⊗ idM . Then the commutativity of (2) is equivalent
with the equation:

∆M (ξ) = ξ1 + ξ2.

The last equation takes place in A⊗RA⊗RM . We want to rewrite it as an
equation in the isomorphic module HomR-mod(A∗ ⊗R A∗,M). The element

ξ1 corresponds to ξ̆⊗ εA∗ and the element ξ2 to εA∗⊗ ξ̆. Taking into account
that ∆ is dual to the multiplication mA∗ : A∗ ⊗R A∗ → A∗ we obtain the
following form of the condition that u is a group homomorphism

(3) ξ̆ ◦mA∗ = ξ̆ ⊗ εA∗ + εA∗ ⊗ ξ̆.

But the right hand side is zero on J ⊗ J which means that ξ̆(J2) = 0.
Conversely the last equation implies the condition (3). Q.E.D.

For a functor X : (R-Alg)→ (ab) we consider its completion X̂ : AugR →
(ab) on the category of augmented nilpotent algebras, which is given by

X̂(A) = Ker(X(A)→ X(R))

We will now restrict ourselves to the case, where G is a local finite group
scheme, i.e. the augmentation ideal of G is nilpotent. Then Hom(Ĝ, M̂) =
Hom(G,M).

From now on we shall work with functors on AugR. Then we write simply
M and mean the completion. We shall also assume that p is nilpotent in R.

The functors F : AugR → (ab), with F (R) = 0 form an abelian category.
Unless otherwise stated exact sequences and extensions are meant in this
category.

Theorem 2. Let G be a formal p-divisible group over R. Then there is a
locally free and finite R-module U and an extension

(4) 0→ U → L→ G→ 0
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such that for any extension

0→M → E → G→ 0

where M is an R-module, there is a uniquely determined R-module homo-
morphism U →M which sits in a morphism of exact sequences

0 −−−−→ U −−−−→ L −−−−→ G −−−−→ 0y y y
0 −−−−→ M −−−−→ E −−−−→ G −−−−→ 0.

The extension (4) is called the universal extension of G. It commutes with
base change R→ R′ to another ring.

In other words, the map induced from the connecting homomorphism of
(4).

(5) HomR-mod(U,M)→ Homab(U,M)→ Ext1(G,M)

is an isomorphism.
To explain the argument in [Messing] for this Theorem we need a category

of sheaves. Let us denote by SR the situs whose underlying category are the
representable functors on AugR and whose coverings are flat morphisms
SpecA1 → SpecA2. (There is no localization with respect to SpecR.)

It is known that the Cech cohomology H i(A1 → A2,M) = 0 for i ≥ 1.
This shows that there is no difference between extension of G by M in the
category of functors or in the category of sheaves. The situs is only needed
to make the sequence

(6) 0→ G(pn)→ G
pn→ G→ 0

exact, which is not true in the category of functors.
Proof of Theorem 2: We fix a natural number n such that pnR = 0.

Then for each N ∈ NilR. We define a map sN which makes the following
diagram commutative

G(N )

pn

��

sN

zzvvv
vv

vv
vv

0 // M ⊗R N // E(N ) // G(N ) // 0.

Let ξ̄ ∈ G(N ). We choose an element η ∈ E(N ) which maps to ξ by
E(N )→ G(N ). Then we define

sN (ξ) = pnη.

Because pn(M ⊗R N ) = 0 this definition is independent of the choice of
η and therefore functorial in N . We obtain a morphism s : G → E. If
s′ : G → E is any other morphism making the diagram commutative we
obtain a morphism s− s′ : G→M . This morphism has to be zero because
pnM = 0 but the group G is p-divisible. The restriction of the section s to
G(pn) is a well defined map

Ext1(G,M)→ Homab(G(pn),M).

To see that this is an isomorphism we have to use sheaves.
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Indeed in the category of abelian sheaves we obtain from (6) the exact
Ext-sequence

Hom(G,M)→ Hom(G(pn),M)→ Ext1(G,M)
pn→ Ext1(G,M).

We have shown by construction of s above that the last arrow is zero. But
in this calculus we see it directly from the fact, that pnM = 0. Since
Hom(G,M) = 0 we obtain an isomorphism

Hom(G(pn),M)→ Ext1(G,M).

Combining this with Proposition 1 we obtain (5).
Finally we have to prove the compatability with base change. If F is a

functor on NilR we denote by F ′ its restriction to NilR′ .
Now the universal extension is characterized by the property that it sits

in a commutative diagram of functors

0 −−−−→ G(pn) −−−−→ G
pn−−−−→ Gy y yid

0 −−−−→ U −−−−→ L −−−−→ G −−−−→ 0,

where the arrow G(pn)→ U is the universal map of Proposition 1. It follows
from this Proposition that G′(pn) → U ′ is the universal arrow for G′(pn).
Considering the base change of the above diagram to R′ we obtain therefore
the universal extension over R′. Q.E.D.

Let us consider a surjection of rings π : S → R with kernel a. We assume
that p is nilpotent in S and that a is endowed with divided powers γ, but
we do not assume that the divided powers are nilpotent nor that the ideal
a is nilpotent. We fix a natural number n, such that pnS = 0.

Let E be a strictly prorepresentable abelian functor on AugS . For each
nilpotent S-algebra N , which is endowed with nilpotent divided powers δ,
we have the Grothendieck-Messing exponential, which is an isomorphism

exp : LieE(N )→ E(N )

If E is moreover a formal group we have LieE(N ) = N ⊗S tE .
For an arbitrary nilpotent algebra N the algebra a ⊗S N inherits a pd-

structure γ̃ from a which is uniquely determined by

γ̃m(a⊗ x) = γm(a)⊗ xm.

Clearly γ̃ is a nilpotent divided power structure and therefore we have the
isomorphism

exp : LieE(a⊗S N )→ E(a⊗N ),

which is functorial in E and in N .
If E is a strictly prorepresentable formal group we obtain an exact se-

quence

(7) a⊗S N ⊗S tE → E(N )→ E(N/aN )→ 0.

This sequence is also left exact if N is a flat S-module because then we have
a⊗S N = aN .
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Let H be a p-divisible group over S. Let V be a finitely generated locally
free S-module. Assume we are given an extension

(8) 0→ V → E → H → 0.

It is obvious that E is a finite dimensional formal group and therefore strictly
prorepresentable.

The exponentials for E and H give us an exact sequence:

(9) ((V ⊕ a⊗S tE)/(a⊗S V ))⊗S N → E(N )→ H(N/aN )→ 0.

Morover this sequence is left exact if N is a flat S-module.
We will now start with a p-divisible formal group G on S. If we mention

sheaves it will be always sheaves on SS . We take a universal extension of G:

0→ U → L→ G→ 0,

where U is a finite locally free S-module. We will write G0 = π•G for the
base change to R. The base change of U is the functor associated to the
R-module U0 = U ⊗S R. Let ρ̄ : G0 → H0 be a morphism of p-divisible
groups over R.

Because the universal extension commutes with base change by Theorem
2 we obtain a uniquely determined diagram

0 −−−−→ U0 −−−−→ L0 −−−−→ G0 −−−−→ 0

τ̄

y yµ̄ yρ̄
0 −−−−→ V 0 −−−−→ E0 −−−−→ H0 −−−−→ 0,

such that τ̄ is induced by an R-module homomorphism U0 → V0 which we
denote by the same letter. We note that it is very important to distinguish
between arbitrary morphisms U0 → V 0 and those which are induced by
R-module homomorphisms U0 → V0.

Theorem 3. There is a unique morphism of formal groups µ : L→ E which
lifts µ̄ and which has the following property:

Let τ : U →M be an arbitrary R-module homomorphism which lifts of τ0

and consider the following diagram

U −−−−→ L

τ

y yµ
V −−−−→ E.

It need not to be commutative but the difference of the two maps U → E
factors

U → a⊗S tE
exp−→ E,

where the first map is induced by an R-module homomorphism U → a⊗S tE.

Proof: We begin with the construction of µ. We fix a natural number n
such that pnS = 0. For N ∈ NilS we consider the canonical map

(10) G(N )→ G(N/a) = G0(N/a)
µ̄→ H0(N/a)

We will construct a morphism t : G → E such that the following diagram
becomes commutative.
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(11)

G(pn)(N ) −−−−→ G(N )
pn−−−−→ G(N )yt y

((V ⊕ (a⊕ tE))/(a⊗ V ))⊗S N −−−−→ E(N ) −−−−→ H0(N/aN ) −−−−→ 0

In this diagram the rows are exact (see (9)). The first arrow of the upper
row is always injective and for the first arrow of the lower row this is true if
N is a flat R-module.

We see that the kernel of E(N )→ H0(N/aN ) in annihilated by pn.
Let ξ ∈ G(N ). We denote by η ∈ H0(N/aN ) is image by right vertical

map (10). Take an inverse image η̃ ∈ E(N ). We define t(ξ) = pnη̃. Clearly
this is well-defined and gives the desired commutativity.

Let N be a flat S-module so that the lower row of the diagram is also left
exact. In this case we obtain a map

G(pn)(N )→M(N ).

where M denotes the S-module (V ⊕ (a⊕ tE))/(a⊗V )). Inserting for N the
flat augmentation ideal of G(pn) and taking the image of id ∈ G(pn)(N ) we
obtain a morphism of functors

(12) G(pn)→M.

One has to check that this is a morphism of group functors. Indeed, let
G(pn) = SpecA. Then it suffices to show that

G(pn)(A⊗S A)→M(A⊗S A)

is a group homomorhism. But since A ⊗S A is flat, this follows from the
definition.

The morphism (12) fits into a commutative diagram

G(pn) −−−−→ Gy y
M −−−−→ E.

By Proposition 1 and the the proof of Theorem 2 the last map factors
through an R-module homomorphism

G(pn)→ U →M.

Therefore the last commutative diagram implies a commutative diagram

(13)

G(pn) −−−−→ Gy y
U −−−−→ E.
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Again by the construction of the universal extension the following diagram
is a cofibre product in the abelian category of abelian sheaves of SS :

G(pn) −−−−→ Gy y
U −−−−→ L

Therefore the diagram (13) provides the desired map µ : L → E. It en-
joys the required property because U → M is induced by an R-module
homomorphism.

Let µ now an arbitrary lifting of µ0 with the property of the Theorem.
Finally we show that the map µ is unique. By construction the universal
extension fits into a commutative diagram:

0 −−−−→ G(pn) −−−−→ G
pn−−−−→ Gy yλ yid

0 −−−−→ U −−−−→ L −−−−→ G −−−−→ 0

We begin to show that the map µ◦λ coincides with the map t in diagram
(11). In fact this holds for an arbitrary lifting or µ0. We make this assertion
more explicit: The assumption that µ lifts µ0 gives us for each N ∈ NilS a
commutative diagram

(14)

G(N )
pn−−−−→ G(N )yλ y

L(N ) −−−−→ G(N/(aN )

µ

y yρ̄
E(N ) −−−−→ H(N/aN ).

Let ξ ∈ G(N ). Let ξ̄ ∈ H(N/aN ) be its image all the way down on the
right hand side of the diagram. Let η ∈ E(N ) a preimage of ξ̄. Then our
assertion says

(15) µ ◦ λ(ξ) = pnη.

The question whether the two maps of sheaves µ◦λ, t : G→ E agree is local
with respect to the situs SS . Therefore we may assume that there exists an
element ξ1 ∈ G(N ) such that pnξ1 = ξ. We conclude that

pn(µ ◦ λ(ξ1)) = µ ◦ λ(ξ).

But by the diagram (14) the element µ◦λ(ξ1) is mapped to ξ̄. Therefore we
may use this element for η to prove (15). This makes the equation obvious.
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Now we know that µ◦λ is uniquely determined. Consider the commutative
diagram

(16)

G(pn) −−−−→ Gy yλ
U −−−−→ L

µ̆

y yµ
E

id−−−−→ E
Here µ̆ denotes the restriction of µ. Because the upper square is a push-out
in the category of sheaves, it follows that µ is uniquely determined by µ̆ and
µ ◦ λ. It remains to show that µ̆ is uniquely determined.

Let N ∈ NilS be flat as S-module. Then we obtain from (16) the mor-
phisms:

G(pn)(N )→ U(N )
µ̆→M(N )

Here M has the same meaning as in (12). We know that the composite of
these two maps is uniquely determined. The morphism µ̆ would be uniquely
determined by Proposition 1, if we knew that µ̆ induced from a map of R-
modules U →M . But this is exactly what condition on µ in the Theorem
says.

Q.E.D.


