Geometrie, Übung 4

1) Es sei ABC ein Dreieck. Es sei W der Schnittpunkt der Winkelhalbierenden des Winkel $\angle ACB$ mit der Seite \overline{AB} . Man beweise, dass

$$|WA|:|WB|=|CA|:CB|.$$

(Man wende den Satz von Menelaus auf die Abbildung an.)

Es sei \overline{AB} eine Strecke und es sei $W \in \overline{AB}$ ein innerer Punkt. Es sei g eine Gerade durch W.

Man konstruiere eine Punkt $C \in g$, so dass WC die Winkelhalbierende des Dreiecks ABC durch den Punkt C ist.

2) Wir betrachten den affinen Raum $(\mathbb{R}^n, \mathbb{R}^n)$, so dass wir vom Abstand |AB| von zwei Punkten A und B sprechen können. Es seien $(P_1, \lambda_1), \ldots, (P_t, \lambda_t)$ gewichtete Punkte $P_i \in \mathbb{R}^n, \lambda_i \in \mathbb{R}$, so dass $\lambda_1 + \ldots + \lambda_t = \lambda \neq 0$. Dann definiert man die Funktion:

$$F(X) = \sum_{i=1}^{t} \lambda_i |XP_i|^2, \quad X \in \mathbb{R}^n.$$

Es sei S der Schwerpunkt von $(P_1, \lambda_1), \ldots, (P_t, \lambda_t)$. Man beweise die Identität:

$$F(X) = F(S) + \lambda |XS|^2.$$

3) Es seien A, B zwei Punkte im \mathbb{R}^n und es sei $\mu \in \mathbb{R}, \mu > 0$. Man beweise, dass die Menge aller Punkte $X \in \mathbb{R}^n$, so dass

$$|XA|/|XB| = k \tag{1}$$

eine Sphäre ist. (Man benutze 2))

Es seien $A, B \in \mathbb{R}^2$ und es sei X auf dem Kreis (1). Man konstruiere den Kreis, indem man 3 Punkte auf ihm findet. (siehe Abbildung).

4) Es sei (\mathbb{A}, V) ein affiner Raum. Eine Teilmenge $\mathbb{B} \subset \mathbb{A}$ heißt ein affiner Unterraum, wenn $\mathbb{B} = \emptyset$ oder wenn ein Untervektorraum $U \subset V$ existiert und ein Punkt $P \in \mathbb{A}$, so dass $\mathbb{B} = P + U$.

Man beweise, dass eine Teilmenge $\mathbb{B} \subset \mathbb{A}$ genau dann ein affiner Unterraum ist, wenn für alle Punkte $B_1, B_2 \in \mathbb{B}$ auch sämtliche Schwerpunkte $(B_1, \alpha), (B_2, 1 - \alpha)$ für alle $\alpha \in K$ zu \mathbb{B} gehören.

Abgabetermin: Donnerstag, den 13.11. 2014