Lineare Algebra II, Übung 18

1) Es sei $K=\mathbb{Q}$. Wir betrachten die symmetrische Bilinearform $B:\mathbb{Q}^3\times\mathbb{Q}^3\to\mathbb{Q}$ mit der folgenden Gramschen Matrix.

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 3 & 1
\end{array}\right)$$

Man finde eine Diagonalmatrix, die die Gramschen Matrix von B bezüglich einer Basis von \mathbb{Q}^3 ist.

2) Es sei $B:V\times W\to K$ Bilinearform von endlich erzeugten Vektorräumen. Es seien $S_1,S_2\subset V$ Unterräume. Wenn B in V ausgeartet ist, so ist die Formel

$$S_1^{\perp} + S_2^{\perp} = (S_1 \cap S_2)^{\perp} \tag{1}$$

im allgemeinen nicht richtig. Geben Sie ein Gegenbeispiel.

3) Es seien U, V, W endlich erzeeugte K Vektorräume. Es sei $B: V \times W \to K$ eine nichtausgeartete Bilinearform. Es sei $B_1: U \times W \to K$ eine weitere Bilinearform, die aber ausgeartet sein kann.

Man beweise, dass es eine lineare Abbildung $f: U \to V$ gibt, so dass

$$B_1(u, w) = B(f(u), w).$$

für alle $u \in U$ und $w \in W$. (Bitte mit allen Details.)

4) Man betrachte die folgende Funktion $Q: \mathbb{R}^5 \to \mathbb{R}$.

$$Q(\underline{x}) = 7x_1x_2 + 5x_2^2 + 8x_2x_3 + 18x_4x_5 + 3x_2x_4 + 10x_4^2.$$

Man finde eine symmetrische Bilinearform $B: \mathbb{R}^5 \times \mathbb{R}^5 \to \mathbb{R}$, so dass $Q(\underline{x}) = B(\underline{x},\underline{x})$. Man gebe die Gramsche Matrix von B in der Standardbasis an.

Abgabe bis Donnerstag, 1.12.2016, 14:00