Lineare Algebra II, Übung 21

1) Es sei K ein Körper, so dass $2 \neq 0$. Es sei V ein K-Vektorraum. Es sei $B: V \times V \to K$ eine nichtausgeartete symmetrische Bilinearform, $f: V \to K$ eine lineare Abbildung und $c \in K$. Es sei $Q \subset V$ die Teilmenge aller Vektoren $v \in V$, so dass

$$B(v,v) + f(v) + c = 0. (1)$$

Man beweise, dass es einen Vektor $w_0 \in V$ gibt, so dass $f(v) = 2B(v, w_0)$. Man finde $c_0 \in K$, so dass

$$B(v + w_0, v + w_0) + c_0 = 0.$$

genau dann, wenn $v \in Q$. Es sei $Q_0 = \{u \in V \mid B(u, u) - c_0 = 0\}$. Dann gilt $Q = Q_0 - w_0$.

Es sei $K = \mathbb{R}$ und $V = \mathbb{R}^2$. Man finde w_0 und c_0 , wenn die Gleichung (1) die folgende Form hat.

$$3x^2 + 2xy + 5y^2 + 6x - 1 = 0.$$

2) Man berechne den Abstand der folgenden beiden affinen Unterräume A_1 und A_2 des \mathbb{R}^4 :

$$A_1 = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\0\\1\\2 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\}, \quad A_2 = \left\{ \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\3\\1 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\}.$$

(Vergleiche Aufgabe 20, 3.)

3) Es seien v_1, w_1 zwei Vektoren in einem euklidischen Vektorraum. Der Winkel $\phi_1 = \angle(v_1, w_1)$ zwischen diesen Vektoren ist definiert durch

$$\cos \phi_1 = \frac{(v_1, w_1)}{|v_1| \cdot |w_1|}.$$

Es seien $v_1, v_2, w_1, w_2 \in \mathbb{R}^3$ Vektoren der Länge 1. Es sei $\angle(v_1, w_1) = \angle(v_2, w_2)$.

Man beweise, dass es eine Isometrie $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ gibt, so dass $\alpha(v_1) = v_2$ und $\alpha(w_1) = w_2$. (Hinweis: Man kann versuchen v_1, w_1 bzw. v_2, w_2 jeweils so zu einer Basis zu ergänzen, dass die Gramsche Matrix des Standardskalarprodukts in diesen beiden Basen diegleiche ist.)

4) Es sei <, > die Bilinearform $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, welche durch die folgende Gramsche Matrix gegeben ist:

$$\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 5 & 2 \\
-1 & 2 & 3
\end{array}\right)$$

Dann ist (V, <,>) ein euklidischer Vektorraum.

Man berechne die orthogonale Projektion des Standardvektors e_3 auf $\mathcal{L}(e_1, e_2)$ in diesem euklidischen Vektorraum.

Abgabe bis Donnerstag, 22.12.2016, 14:00