Implizite Funktionen

Es sei $\xi \in \mathbb{R}^m$. Es sei m > n. Gegeben sei eine differenzierbare Funktion

$$\phi: (\mathbb{R}^m, \xi) \to \mathbb{R}^n. \tag{1}$$

Wir schreiben für $x = (x_1, \dots, x_m) \in \mathbb{R}^m$ und $\xi = (\xi_1, \dots, \xi_m)$:

$$\phi(x) = (\phi_1(x), \dots, \phi_n(x)) \in \mathbb{R}^n.$$

Es sei $\eta = \phi(\xi) \in \mathbb{R}^n$. Wir sagen, dass die Gleichungen

$$\phi_i(x) = \eta_i, \quad i = 1, \dots, n$$

nach den Variablen x_1, \ldots, x_n aufgelöst werden können, wenn eine Umgebung $U \subset \mathbb{R}^m$ von ξ existiert, so dass die Projektion $(x_1, \ldots, x_m) \mapsto (x_{n+1}, \ldots, x_m)$ eine Bijektion induziert:

$$U \cap \{x \in \mathbb{R}^m \mid \phi(x) = \eta\} \to V \subset \mathbb{R}^{m-n},\tag{2}$$

wobei V eine Umgebung von $(\xi_{n+1}, \ldots, \xi_m)$ ist. Die Umkehrfunktion ψ zu (2) hat die Form:

$$\psi(x_{n+1},\ldots,x_m)=(\psi_1(x_{n+1},\ldots,x_m),\ldots,\psi_n(x_{n+1},\ldots,x_m),x_{n+1},\ldots,x_m).$$

Proposition 0.1 Gegeben sei eine Funktion (1). Wir nehmen an, dass die partiellen Ableitungen $(\partial \phi/\partial x_i)$ in einer Umgebung von ξ existieren und stetig sind. Es sei

$$\det \begin{pmatrix} \frac{\partial \phi_1}{\partial x_1}(\xi), & \dots & \frac{\partial \phi_1}{\partial x_n}(\xi) \\ & \dots & \\ \frac{\partial \phi_n}{\partial x_1}(\xi), & \dots & \frac{\partial \phi_n}{\partial x_n}(\xi) \end{pmatrix} \neq 0.$$

Dann kann das Gleichungssystem

$$\phi(x) = \eta$$

nach den Variablen (x_1, \ldots, x_n) aufgelöst werden. Es gibt also eine Bijektion (2). Die Funktionen $\psi_1(x_{n+1}, \ldots, x_m), \ldots, \psi_n(x_{n+1}, \ldots, x_m)$ haben in allen Punkte von V stetige partielle Ableitungen.

Beweis: Man kann das auf den Satz über die Umkehrfunktion zurückführen: Dazu betrachtet man die Abbildung

$$\tilde{\phi}: (\mathbb{R}^m, \xi) \to \mathbb{R}^m,$$

so dass

$$\tilde{\phi}(x) = (\phi_1(x), \dots, \phi_n(x), x_{n+1}, \dots, x_m).$$

Die Determinante der Jacobischen Matrix von $\tilde{\phi}$ im Punkt ξ ist ungleich 0. Also findet man eine Umgebung $U \subset \mathbb{R}^m$ von ξ und eine Umgebung $\tilde{U} \subset \mathbb{R}^m$ von $(\eta_1, \ldots, \eta_n, \xi_{n+1}, \ldots, \xi_m)$, so dass $\tilde{\phi}: U \to \tilde{U}$ bijektiv ist und die Umkehrabbildung differenzierbar. Wenn man \tilde{U} verkleinert, kann man annehemen, dass $\tilde{U} = W \times V$, so $W \subset \mathbb{R}^n$ eine Umgebung von η ist und $V \subset \mathbb{R}^{m-n}$ eine Umgebung von $(\xi_{n+1}, \ldots, \xi_m)$. Das Urbild von $\eta \times V$ bei $\tilde{\phi}$ ist dann $U \cap \{x \in \mathbb{R}^m \mid \phi(x) = \eta\}$. Damit erhält man die gewünschte Bijektion (2). Die Funktionen $\psi_i(x_{n+1}, \ldots, x_m)$ erhält man durch die Einschränkung der Umkehrfunktion $\tilde{\phi}$ auf $\eta \times V$. Daher sind diese Funktionen differenzierbar.