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Introduction We fix a prime number p. Let R be an Fp-algebra. Let R{τ}
the non-commutative polynomial ring, such that τr = rpτ . Let M be a left
R{τ}-module. Let D(M) the functor on the category of R-algebras S such
that D(M)(S) = HomR{τ}(M,S). Here S is regarded as a left R{τ}-module
by defining τs = sp. Then D(M) is an affine commutative group scheme.
It is flat if M is projective as R-module.
D is a contravariant functor in M from the category modR{τ} of left

R{τ}-modules to the category agsR of affine commutative group schemes
over R.

(1) D : modR{τ}
contra−→ agsR

There is a contravariant adjoint functor C. Let Ga,R = SpecR[T ] be the
additive group. We define the action τ : Ga,R → Ga,R by τ∗T = T p. This
gives an isomorphism R{τ} → Endags/RGa,R. We define for G ∈ ags/R

(2) C(G) = Homags/R(G,Ga,R).

It is a left R{τ}-module via the action on Ga,R. We call C(G) the coordinate
module of G. We have a functorial bijection

Homags/R(G,D(M))→ HomR{τ}(M,C(G)).

If R = k is a field the functor D induces an antiequivalence between the
category modk{τ} and the full subcategory of objects G ∈ agsk such that

the Verschiebung VG : G(p) → G is zero, cf. [DG]. The contravariant functor
C is a quasiinverse. Since both categories are abelian it follows that C and
D are contravariant exact functors.

If we restrict D to the category of left R{τ}-modules which are projective
over R we obtain a fully faithful and exact contravariant functor with values
in the category of flat affine group schemes over R. (See Proposition 23 for
the meaning of exact in this context.)

(3) D :

(
modR{τ}

projective/R

)
contra−→

 agsR
flat/R

Verschiebung V = 0


Let G ∈ agsR be a flat group scheme of finite presentation. We denote by

`G the co-Lie complex as defined in [I]. It is an object in the derived category
Db(modR) of R-modules. There are at most to non-zero cohomology groups

nG = H−1(`G), ωG = H0(`G)

Definition 1. Let q = pu a power of p. Let R be a Fq-algebra. We consider
G ∈ agsR which is flat and of finite presentation. Let ι : Fq → Endags/RG
be an action.

We say that the action ι on G is strict if the induced action Fq → EndR ωG
coincides with the Fq-module structure on ωG obtained by restriction of
scalars Fq → R.
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We say that the action ι is balanced if it is strict and if the induced action
Fq → EndR nG coincides with the Fq-module structure on nG obtained by
restriction of scalars Fq → R.

Instead of ”balanced” we can say the the action of Fq on the cohomology
of `G is strict.

Let R{τq} the non-commutative polynomial ring, such that τr = rqτ . We
show the following variant of a result of T.Poguntke [P].

Theorem 2. Let R be an Fq-algebra.
The category of pairs (G, ι) such that G ∈ agsR is finite locally free with

VG = 0, and ι is a balanced action on G, is equivalent to the category of left
R{τq}-modules which are finite locally free as R-modules.

If R = k is a field the category of pairs (G, ι) such that G is of finite type,
VG = 0, and ι is balanced is equivalent to the category of left k{τq}-modules
N which are finitely generated.

The proof of the first assertion is based on the fact that ωG∗ of the Cartier
dual G∗ of G is a locally free R-module. We include a proof of this fact
mentioned in a footnote of [SGA3]. Thereby we relate ωG∗ to the crystal of
G∗ and dualy of G.

The connection with Poguntke’s formulation is given by the following
Proposition.

Proposition 3. Let R be a Fp-algebra. Let M ∈ modR{τ} be of finite
presentation such that M is projective as R-module. The group scheme
G = D(M) is of finite presentation and flat over R.

Then the complex `G is quasiisomorphic to the complex

(4) R⊗Frob,RM
τ ]−→ M.

Poguntke’s definition is based on the complex (4) and makes sense for
each group scheme G = D(M) in the essential image of (3). No finiteness
condition is needed. One can classify all Fq-actions on G = D(M) which are
balanced with respect to the complex above. One obtains a fully faithful
exact contravariant functor from the category of left R{τq}-modules to group
schemes in agsR with a balanced Fq-action.

One can also classify all strict Fq-action on G = D(M). They correspond
to R{τq}-modules with an additional structure which we call a twisted fil-
tration.

Crystals and group schemes annihilated by the Frobenius
Let R be a Fp-algebra. We begin with finite flat group schemes G over R

which are annihilated by p. (finite means that the affine algebra of G is a
finitely presented R-module.)

Let us first consider the category of those G which are embedable in a
p-divisible group X. Then we can find an exact sequence (of fppf sheaves)

(5) 0→ G→ X → Y → 0,

such that X and Y are p-divisible groups. We denote by DR(X) the Lie
algebra of the universal extension of X. This is a locally free and finitely
generated R-module. From (5) we obtain a map of R-modules

DR(X)→ DR(Y )
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We denote the cokernel of this map by MG. By standard arguments one
shows that R-module MG is independent of the resolution (5) and that it is
functorial in G. We will denote the kernel of the multiplication pn : X → X
by X[n]. By our assumptions we have MX[1] = DR(X). In particular the
last module is free and finitely generated. We can define MG also for those
G which are not embedable into a p-divisible group because we may take
an affine covering ∪Ui = SpecR, such that the restriction G|Ui

is embedable
in a p-divisible group over each Ui. We note that the functor G 7→ MG

commutes with arbitrary base change R→ R′:

MGR′ = MG ⊗R R′.

Proposition 4. The functor G 7→MG from the category of finite flat group
schemes R, which are annihilated by p to the category of R-modules defined
above has the following properties:

(1) MG is a finitely generated locally free R-module.
(2) If G is a finite flat group scheme of order pr, then MG is locally free

of rank r.
(3) If 0 → G1 → G2 → G3 → 0 is an exact sequence of sheaves such

that Gi are finite flat and annihilated by p, the the induced sequence

(6) 0→MG1 →MG2 →MG3 → 0

Proof. In the case of a perfect field R this follows from Dieudonné theory.
(We refer here to the covariant Dieudonné which is build on Cartier theory.)
Let us denote by X[1] the kernel of multiplication by p on X. If G = X[1]
then MG = DX(R). We already know that this is finitely generated and
locally free and has the rank predicted by the Proposition.

In the general case we show first, that G 7→ MG is a right exact functor.
It is easy to embed the sequence of the Gi above into a diagram

0

��

0

��

0

��
0 // G1

//

��

G2
//

��

G3
//

��

0

0 // X1
//

��

X2
//

��

X3
//

��

0

0 // Y1
//

��

Y2
//

��

Y3
//

��

0

0 0 0

where the rows an columns are short exact sequences of sheaves. The sheaves
Xi and Yi are p-divisible groups. Since DR is exact on short exact sequences
of p-divisible groups we obtain the asserted right exactness.

Now we embed G into X. Then we obtain an exact sequence

(7) 0→ G→ X[1]→ H → 0
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where H is a finite flat group scheme too. We obtain an exact sequence

(8) MG →MX[1] →MH → 0.

We claim that this sequence is exact and all modules are projective. For
this we may restrict to the case, where R is a local ring with residue class
field k. We recall that MG and MH are finitely generated.

In the case where R = k is a perfect field we have dimkMG + dimkMH =
dimkMX[1] and therefore the sequence (8) is exact. For general R with
residue class field k we deduce that MG ⊗R k → MX[1] ⊗R k is injective
because the functor M commutes with base change. Therefore MG is a
direct summand of the free R-module MX[1]. This shows the first property
asserted in the Proposition. The second follows from base change to k and
then to a perfect field. Since we already know that (6) is a right exact
sequence of locally free R-modules the last assertion follows because

rankRMG1 + rankRMG3 = rankRMG2

holds by the second property. �

Corollary 5. Let α : X → Y be an isogeny of formal p-divisible groups
whose kernel is annihilated by p. Then the kernel and the cokernel of the
induced map D(α) : DR(X) → DR(Y ) are locally free and finitely generated
R-modules.

Variant: Let R be a Fp-algebra. Let G be a finite flat group scheme over
R which is annihilated by p. Let S → R be an epimorphism of Fp-algebras
such that the kernel is endowed with nilpotent divided powers. We take a
resolution (5). Then we define MG,S as the cokernel of the map

DS(X)→ DS(Y )→MG,S → 0.

Because we have nilpotent divided powers DS(X) is defined. The S-module
MG,S clearly commutes with base change respect to morphisms of pd-thickenings
S′ → S of R. If G = X[1] we obtain MG,S = DS(X) because the last module
is annihilated by p. We see that MG,S is a locally free S-module. As in the
proof of Proposition 4 we see that G 7→MG,S is a right exact functor.

Proposition 6. We assume that S → R is a surjection of Fp-algebras and
that the kernel a is endowed with nilpotent divided powers. Let G be a finite
locally free group scheme over R which is annihilated by p.

Then MG,S is a finite locally free S-module such that prankMG,S is the
order of G. The functor G 7→ MG,S on the category of finite locally free
group schemes over R which are annihilated by p is exact.

Proof. As before we consider an exact sequence (7). Then we obtain the
right exact sequence

MG,S →MX[1],S →MH,S → 0.

If we tensor this by S/a we obtain the exact sequence

0→MG →MX[1] →MH → 0.

of locally free R-modules. Localizing we may assume that we have free
R-modules. We find a basis ū1, . . . , ūn of MX[1] such that ū1, . . . , ūr is a
basis of MG. We lift the elements ūi to elements ui ∈ MX[1],S such that
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u1, . . . , ur ∈ MG,S . By the Lemma of Nakayma u1, . . . , un is a basis of the
free module MX[1],S and u1, . . . , ur is a set of generators of MG,S . Therefore
this set of generators is a basis. The rest follows exactly as in Proposition
4. �

We will recall an elementary definition. Let G = SpecA be an affine
scheme over SpecR with a section ε : SpecR → SpecA. We call (G, ε) a
pointed scheme over SpecR. Let I be the kernel of the comorphism A→ R.
We write ωG = I/I2 and view it as an R-module. This is the conormal sheaf
(or module) of (G, ε). It is a contravariant functor. The formation of ωG
commutes with base change R→ R′.

Let (G2, ε2)→ (G3, ε3) a morphism of pointed affine schemes over SpecR.
Let (G1, ε1) be the inverse image of the closed subscheme ε3 by the morphism
G2 → G3 where ε1 in induced from ε2. Then we have the sequence

(9) ωG3 → ωG2 → ωG1 → 0

is exact.
If (G1, ε1) and (G3, ε3) be two affine pointed schemes over R. The natural

R-module homomorphism

ωG1 ⊕ ωG3

+−→ ωG1×RG3

is an isomorphism.
We write Lie(G, ε) = HomR(ωG, R).

Proposition 7. Let R be an Fp-algebra. Let G be a commutative finite

locally free group scheme over R such that the Frobenius FrG : G→ G(p) is
zero.

Then ωG is a finite locally free R-module. On the category of group
schemes which satisfy the assumptions of this Proposition the contravari-
ant functor G 7→ ωG is exact.

Proof. Since ωG commutes with base change we may assume that R is a
noetherian ring and then that R is an artinian local ring.

Let X be a p-divisible group and let H be the kernel of the isogeny
FrX : X → X(p). Then ωX = ωH . Therefore the assertion is true for
G = H.

For the general case we embed G in a p-divisible group X. Then we form
the exact sequence of finite flat group schemes

0→ G→ H → I → 0.

This induces an exact sequence

(10) ωI → ωH → ωG → 0.

Let k be a residue class field of R. We claim that the homomorphism

(11) ωI ⊗R k → ωH ⊗R k
is injective.

To show this we may assume that R = k. By Mumford AV or SGA 3
Exp. V IIB the group schemes I,H,G are described by their p-Lie algebras.
In particular we have that rankG = pdimωG and similiary for I and H. This
implies that in the sequence (10) the first map is injective.
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For arbitrary R the injectivity of (11) implies that ωI is a direct summand
of the free module ωH . Therefore ωG is free as desired. �

We write LieG = HomR(ωG, R) so that under the category of the Propo-
sition LieG is an exact functor.

Remark: In the Théorème 4.4. of SGA 3 Exp. V IIB the assumption
that ωG is locally free holds automatically if G is commutative. Therefore
finite flat commutative group schemes G over an Fp-algebra R which are
annihilated by the Frobenius are classified by the p-Lie algebra LieG. Dually
finite flat commutative group schemes G over an Fp-algebra R which are
annihilated by the Verschiebung VG are classified by the p-Lie algebra LieG∗

of the Cartier dual. This is called by Genestier la module coordonnée, cf.
Genestier, Espaces symmétriques de Drinfeld, Astérisque 234. We recall that
for each finite locally free group scheme there is a canonical isomorphism

(12) Homags/R(G,Ga,R) = Hom(ωG∗ , R) = LieG∗.

Corollary 8. With the assumptions of Proposition 7 there is a canonical
isomorphism

LieG⊗R,Frob R ∼= DR(G).

Proof. Since DR(G) is canonically defined the question of the existence of
such an isomorphism is local if we define it canonically.

Therefore we may assume that there is a resolution of G by p-divisible
groups:

0→ G→ X → Y → 0.

We apply the snake lemma to the commutative diagram

0 // G //

FrG
��

X //

FrX
��

Y //

FrY
��

0

0 // G(p) // X(p) // Y (p) // 0

The existence of the Verschiebung VerX : X(p) → X shows that FrX :
X → X(p) is surjective because FrX ◦ VerX = p idX(p) . If we denote the
kernel of FrX by X[FrX ] we obtain an exact sequence

0→ G→ X[FrX ]→ Y [FrX ]→ G(p) → 0.

By the proof of the Proposition this remains exact if we apply the functor
Lie. In particular we find a surjection LieY → LieG(p). We consider the
diagram

DR(X) //

��

DR(Y ) //

��

DR(G) // 0

LieX // LieY // LieG(p) // 0.

Since the vertical arrows are surjective, we obtain a surjection DR(G) →
LieG(p). We know that the origin and the target of the last arrow are
finitely generated projective R-modules of the same rank. We conclude that
the arrow is an isomorphism. This is equivalent to our assertion. �
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Let R be a Fp-algebra. We consider the non-commutative polynomial ring

R{τ} = {
∑N

i=0 aiτ
i | ai ∈ R, N ∈ N} with

τa = apτ a ∈ R.

This ring acts on EndGa,R. We fix once for all and isomorphism Ga,R =
SpecR[T ] such that the group struture is given by T 7→ T ⊗1+1⊗T . Then
the action is given as follows

τ : Ga,R → Ga,R τ∗T := T p

a : Ga,R → Ga,R a∗T := aT

This gives an isomorphism of rings, c.f. Laumon, [DG].

(13) R{τ} → EndGa,R.

In the ring R{τ} we have the Euclidean division. Let

(14) g(τ) = τd + ad−1τ
d−1 + . . .+ a1τ + a0

be a unitary polynomial. Then any f(τ) ∈ R{τ} has a unique expressiion

f(τ) = q(τ)g(τ) + r(τ),

where q(τ), r(τ) ∈ R{τ} and deg r(τ) < d. If R = k is a field this implies
that each left ideal a ⊂ k{τ} is principal, i.e. a = k{τ}g(τ). More generally
a submodule of a free finitely generated left k{τ}-module is free. We remark
that there are right ideals in k{τ} which are not finitely generated unless
the field k is perfect.

We will define two contravariant functors, cf. Introduction

modR{τ}
D−→←−
C

agsR

The are considered in (cf. [DG] IV §3.6) if R is the field but for the definitions
R can be arbitrary.

Definition 9. Let M be a left R{τ}-module. We define D(M) as a functor
on the category of R-algebras S with values in the category of abelian groups.
We set

D(M)(S) = {φ ∈ HomR(M,S) | φ(τm) = φ(m)p}
D(M)(S) is an abelian group with respect to the addition of homomorphisms
φ.

We consider S as a left R{τ}-module by setting τs = sp, s ∈ S. Then we
may write D(M)(S) = HomR{τ}(M,S). We note that D(M) is left exact in
the argument M .

The functor D(M) commutes with base change. More precisely we write
DR = D to indicate that we are over that base ring R. Let R → R′ be a
ring homomorphism. R′⊗RM = R′{τ}⊗R{τ}M is an R′{τ}-module. There
is a canonical isomorphism

SpecR′ ×SpecR DR(M) ∼= DR′(R
′ ⊗RM).

Proposition 10. The functor D(M) is an affine group scheme over SpecR.
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Proof. Let SR(M) be the symmetric algebra of the R-module M . Let u[p]

be the ideal of SR(M) which is generated by all elements mp− τm, m ∈M .

We set U [p](M) = SR(M)/u[p]. Clearly we have D(M) = SpecU [p](M). �

We note that the comorphism ∆ : U [p](M)→ U [p](M)⊗R U [p](M) of the
group structure of D(M) is given by ∆(m) = m ⊗ 1 + 1 ⊗m for m ∈ M .

Elements of U [p](M) which satisfy the last equation are called primitive.
We follow the recent literature and call D the Drinfeld functor.

Definition 11. Let G = SpecA be an affine group scheme over R. We set

C(G) = Homags/R(G,Ga,R).

The homomorphism are homomorphisms of group schemes over R. CG is a
let R{τ}-module via the action of R{τ} on Ga,R, cf. (13). We call CG the
coordinate module.

Let ∆ : A→ A⊗R A be the comorphism of the group law on G. The we
have

(15) C(G) = {x ∈ A |∆x = x⊗ 1 + 1⊗ x ∈ A⊗R A }.
The element x corresponds to the homomorphism T 7→ x of C(G). The set
on the right hand side of (15) is called the set of primitive elements of A.

Definition 12. Let G be a commutative group scheme over SpecR. We
will say that G has the base change property (BCM) if for each R-algebra
R′ the canonical morphism

(16) R′ ⊗R Homags/R(G,Ga,R)→ Homags/R′(GR′ ,Ga,R′)

is an isomorphism.

We remark that the canonical morphism is always an isomorphism if affine
and R → R′ is flat. Indeed, we have G = SpecB. Indeed by (15) we may
write CG as a kernel of an exact sequence of R-modules

0→ CG → A → A⊗R A,
x 7→ ∆Ax− x⊗ 1− 1⊗ x

If we tensor with the flat R-algebra R′ we see that base change (16 holds.
From this we easily obtain that the Zariski-sheaf Hom(G,Ga,R) on X =
SpecR is the quasicoherent OX -module C∼G which is associated to the R-
module CG. If we want to work over a general base scheme X we can define
CG as a quasicoherent OX -module.

For each left R{τ}-module M we have a canonical homomorphism

(17) M → C(D(M)) = Homags/R(D(M),Ga,R).

To define it we must associate eachm ∈M a morphism of functorsD(M)(S)→
Ga,R(S) = S. This morphism is simply the evaluation at m of homo-
morphisms in D(M)(S) = HomR{τ}(M,S). Equivalently we can use that

C(D(M)) consists of the primitive elements of U [p](M). Then we can say

that the map (17) is given by the natural map M → U [p](M).

Lemma 13. Let M be a left R{τ}-module which is projective as R-module.

Then U [p](M) is a projective R-module and D(M) is a flat group scheme
over R. Moreover the map the map M → C(D(M)) (17) is bijective.
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Proof. This is stated for R = k a field in [DG] IV, §3,6 Lemma. If M is free

as R-module the proof of [DG] works because for the basis of U [p](M) used
there, the reference is to a section of the book where k is not a field (sic).

In particular this shows that U [p](M) is a free R-module and therefore flat.
In general we find a projective R-module N , such that M ⊕ N is a free

module. We endow N with a R{τ}-module structure such that τ(N) = 0.
With this structure we have D(M⊕N) = D(M)×SpecRD(N). This implies

that U [p](M) ⊗R U [p](N) = U [p](M ⊕ N) is a free R-module. The natural

augmentation U [p](N) → R which gives the unit section shows that R is

a direct summand of the R-module U [p](N). Therefore U [p](M) is a direct
summand of the free R-module M .

Let G = D(M) and H = D(N). We have a split sequence 0 → G →
G ×R H → H → 0. If we apply the functor C this gives again a split
sequence. We obtain a commutative diagram where the vertical maps are
the adjunction morphisms

0 // N //

��

M ⊕N //

��

M //

��

0

0 // C(H) // C(G×H) // C(G) // 0

We know that the vertical arrow in the middle is bijective. Therefore the
first vertical arrow is injective and the last vertical arrow is surjective. Inter-
changing the roles of M and N we conclude that M → C(G) is bijective. �

Lemma 14. Let G be a finite locally free commutative group scheme over R
such that VG = 0 or let G = D(M) where M is projective as an R-module.

Then G has the property (BCM), cf. Definition 12.

Proof. LetG = DR(M). It follows from Lemma 13 that Homags/R(G,Ga,R) =
M Since the construction of DR(M) commutes with base change we obtain
GR′ = DR′(R

′⊗RM) and therefore Homags/R(GR′ ,Ga,R′) = R′⊗RM . This
proves the assertion for G = D(M).

Now assume the G is finite and locally free. If VG = 0 the R-module ωG∗
is by Proposition 7 a locally free. Therefore we obtain

HomR(ωG∗ , R)⊗R R′ ∼= HomR′(ωG∗
R′
, R′).

Because taking the Cartier dual commutes with base change and because of
(12) we obtain (BCM) in this case. �

We remark that a finite group scheme G = SpecA is locally free over R
iff A is a finitely generated projective module.

Proposition 15. Let G be an affine commutative group scheme over R
and let M be an R{τ}-module. Let α : G → D(M) be a homomorphism of
groups. The contravariant functor C and (17) gives a homomorphism of left
R{τ}-modules

M → C(D(M))
C(α)−→ C(G).

We obtain a functorial homomorphism

(18) Homags/R(G,D(M))→ HomR{τ}(M,C(G)),
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which is bijective.

Proof. We set G = SpecA and we denote the comorphism of group law by
∆ : A → A ⊗R A. By definition a morphism of schemes φ : G → DM is an
element of DM (A) = HomR{τ}(M,A). The morphism φ is a homomorphism
of group schemes iff the following diagram is commutative

(19) G×SpecR G
φ×φ //

��

D(M)×SpecR D(M)

��
G

φ // D(M)

where the vertical arrows are the group laws. We note that D(M) ×SpecR

D(M) ∼= D(M ⊕M) and that the group law is induced by the diagonal
M →M ⊕M . The morphism G×SpecRG→ D(M) given by the upper way
in the diagram (19) corresponds to the map

M → M ⊕M −→ A⊗R A.
m 7→ (m,m) 7→ φ(m)⊗ 1 + 1⊗ φ(m)

The lower way in (19) corresponds to the map

M
φ−→ A

∆−→ A⊗R A.

Therefore φ ∈ HomR{τ}(M,A) defines a homorphism of group schemes G→
D(M) if

∆(φ(m)) = φ(m)⊗ 1 + 1⊗ φ(m), for each m ∈M.

In other words all elements φ(m), m ∈ M must be primitve elements of A.
Because of (15) we the that φ induces a group homomorphism if an only if
it lies in HomR{τ}(M,CG). This shows that (18) in bijective. �

From (18) we deduce a canonical adjunction homomorphism

(20) κ : G→ D(C(G)).

We can also decribe this adjunction morphism explicitly. Let S be an R-
algebra. Let ξ ∈ G(S). We must associate to ξ an element

ξad ∈ HomR{τ}(Homags/R(G,Ga,R), S).

Let α ∈ Homags/R(G,Ga,R). Then we define ξad(α) = αS(ξ) where αS :
G(S)→ Ga,R(S) = S is induced from α.

We cite without proof the following result:

Proposition 16. ([DG], Chapt IV, §3, 6.6) Let R = k be a field. Let G be a

commutative affine group scheme such that the Verschiebung VG : G(p) → G
is zero.

Then the adjunction homomorphism κ : G → D(C(G)), cf. (20) is an
isomorphism.

The functors D and C are antiequivalences between the category modk{τ}
and the full subcategory of agsk of objects G with VG = 0. The modules of
finite type coorespond under this antiequivalence to affine group schemes of
finite type over k.
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One knows that both categories are abelian. Therefore for a field R = k
both contravariant functors D and C are exact.

Corollary 17. If there monomorphism G → GI
a,R for some set I then

κ : G→ D(C(G)) is a monomorphism.
If C(G) is projective as R-module the homomorphism deduced from (20)

C(κ) : C(D(C(G)))→ C(G).

is an isomorphism of R{τ}-modules.
Let H = D(M). Then the functor C induces an injection

Homags/R(G,H) −→ HomR{τ}(C(H), C(G)).

If M is projective as R-module the last map is bijective.
Assume that M is projective as R-module. Then the functor D induces a

bijection

HomR{τ}(N,M)
∼−→ Homags/R(D(M), D(N)).

Proof. Assume we have a monomorphism G → GI
a,R. Let ξ ∈ G(S) be in

the kernel of κS . Then for each α ∈ Homags/R(G,Ga,R) we have αS(ξ) = 0.

Let ξ′ ∈ GI
a,R(S) be the image of ξ. Then it follows that for each projection

π : GI
a,R → Ga,R the element πS(ξ′) = 0. This shows the first assertion.

If we apply to G→ D(C(G)) the adjunction (18) we obtain by definition
idC(G). Therefore the composite of the following maps is the identity

C(G)→ C(D(C(G)))
C(κ)−→ C(G).

The first arrow is (17) applied to M = C(G) and therefore by Lemma 13 an
isomorphism. Hence C(κ) is an isomorphism.

For the third assertion we write the definition of (18)

Homags/R(G,D(M))→ HomR{τ}(C(D(M)), C(G))→ HomR{τ}(M,C(G)).

By the Proposition the composite of these arrows in bijective. If M is pro-
jective as R-module the second arrow is by Lemma 13 bijective. Therefore
we obtain the second assertion of the Proposition.

Finally we find by the same arguments bijections

Homags/R(D(M), D(N)) ∼= HomR{τ}(N,C(D(M))) ∼= HomR{τ}(N,M).

�

Proposition 18. Let G be a locally free and finite commutative group
scheme over R. Then the adjunction map G → D(C(G)) is an isomor-
phism.

The functor D is an antiequivalence of categories

(21) D :

(
modR{τ}

finite projective/R

)
contra−→

 agsR
finite locally free/R
VerschiebungV = 0.


The contravariant functor C is a quasiinverse.
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Proof. We note that an R-module is finite and locally free iff it is finite and
projective. We know by Proposition 7 that C(G) = LieG∗ is a finite locally
free R-module. Then D(C(G)) is by Lemma 13 a finite locally free group
scheme. The Verschiebung of D(C(G)) is zero. To see this we chose a sur-
jection of R{τ}-modules R{τ}I → C(G), where I is a finite set. This gives
a monomorphism of schemes D(C(G)) → GI

a,R. Since the Verschiebung of

Ga,R is zero the same holds for D(C(G)).
If we apply C to the adjunction map we obtain by Corallary 17 an iso-

morphism
C(D(C(G)))→ C(G).

It induces an isomorphism

(22) LieD(C(G))∗ → LieG∗.

By [SGA3] this implies that D(C(G))∗ → G∗ is an isomorphism. Hence
G→ D(C(G)) is an isomorphism. (We remark that we need by base change
the classifiction of finite locally free group schemes with F = 0 only in the
case of a base field to see that (22) is an isomorphism.

This shows that the functor D of (21) is essentially surjective. On the
other hand it is fully faithful by Corollary 17. �

We need sheaves in the fpqc-topology. This is the topology on the cat-
egory of affine schemes which has as covering families finite families of flat
morphisms {ui : SpecSi → SpecS}i∈I such that ∪i∈I Imui = SpecS, cf
[DG] III, §1, 3.2.

Proposition 19. Let M be an left R{τ}-module which is locally free an
an R-module. We consider R{τ} ⊗RM as a left R{τ}-module via the first
factor. The multiplication gm ∈ M for g ∈ R{τ} and m ∈ M induces a
morphism of left R{τ}-modules R{τ} ⊗RM →M .

Then the following sequence of left R{τ}-module is exact.

(23)
0→ R{τ} ⊗τ,RM → R{τ} ⊗RM →M → 0

g ⊗m 7→ gτ ⊗m− g ⊗ τm
In particular we have proj.dimR{τ}−M ≤ 1.

If we apply to the sequence above the functor D we obtain an exact se-
quence in the category of fpqc sheaves

(24) 0→ D(M)→ D(R{τ} ⊗RM)→ D(R{τ} ⊗τ,RM)→ 0.

The next to last arrow is a faithfully flat morphism of affine group schemes.
We call (24) the canonical resolution of D(M).

Proof. We begin with the case where M is a free as an R-module. We choose
a basis ei ∈M , i ∈ I. Then we obtain an isomorphismR{τ}⊗RM ∼= R{τ}(I)
such that fi = 1⊗ei is the standard basis of the last module. We find aij ∈ R,
such that

τei =
∑
j∈I

aijej , for all i ∈ I.

We may rewrite the sequence of the Proposition

(25)
0→ R{τ}(I) → R{τ}(I) →M → 0

fi 7→ τfi −
∑

j∈I aijfj
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where the next to last arrow maps fi to ei. For Ga,R we have CGa,R
= R{τ}.

Since the elements τnfi, n ∈ N, i ∈ I are a basis of the R-module R{τ}(I)
it follows immediatly that the elements

τnfi −
∑
j∈I

ap
n−1

ij τn−1fj , with i ∈ I, n > 1, and fi, with i ∈ I

generate the R-module R{τ}(I) and are linearily independent. The exactness
of (25) follows. In the case where M is not necessarily a free R-module we
proceed as in the proof of Lemma 13. Let N be a projective R-module such
that M ⊕ N is a free R-module. We regard N as an R{τ}-module with
τ(N) = 0. We denote the sequence (23) for M resp. N by E2 → E1 → M
resp. F2 → F1 → N . By the case of a free module the direct sum of these
to sequences

0→ E2 ⊕ F2 → E1 ⊕ F1 →M ⊕N → 0

is exact. Therefore each of the former sequences is exact. This shows the
first part of the Proposition.

Clearly the functor D is left exact. Therefore for the last assertion of
the Proposition we need only to check that D applied to the second arrow
of (25) gives a faithfully flat map of affine group schemes. Again we begin
with the case where M is free. We make the identification of functors on
R-algebras S:

D(R{τ}(I))(S) = HomR{τ}(R{τ}(I), S) = SI = GI
a,R(S).

The evaluation at fi ∈ R{τ}(I) corresponds to the projection to the i-th
factor GI

a,R → Ga,R. We see that D applied to the second arrow gives

(26)
GI
a,R −→ GI

a,R

(ξi) 7−→ (ηi)
with ηi = ξpi −

∑
j∈I

aijξj .

Let X = {Xi}i∈I . The affine scheme GI
a,R is represented by the polynomial

ring R[X] since a morphism ξ : R[X]→ S is given by ξi = ξ(Xi). It follows
that the comorphism of (26) is

R[X] → R[X]
Xi 7→ Xp

i −
∑

j∈I aijXj

Therefore for M free the last assertion is a consequence of the following
Lemma 20.

Now we treat the case where M is not necessarily a free R-module. We
keep the notations N,Ei, Fi used above in this proof. Since D is left exact we
already have a left exact sequence of group schemes 0→ D(M)→ D(E1)→
D(E2). We have to show that the last arrow is a faithfully flat morphism of
group schemes. The natural inclusion M →M ⊕N induces a morphism of
the canonical resolutions

0 // D(M) // D(E1) // D(E2)

0 // D(M ⊕N) //

OO

D(E1)×R D(F1)
π //

OO

D(E2)×R D(F2)

OO
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We know that the last horizontal arrow π below is faithfully flat. We consider
the morphism D(E2) → D(E2) ×R D(F2) induced by the unit section of
D(F2). If we take the fibre product with π. We obtain a faithfully flat

morphism D(E1) ×R D(N) → D(E2). Since D(N) = SpecU [p](N) is by
Lemma 13 faithfully flat over R we conclude by the following Lemma 21. �

Lemma 20. Let R be commutative ring. Let I be a set. Let X = {Xi}i∈I
and Y = {Yi}i∈I be to sets of variables. Let ni, i ∈ I be natural numbers
such that ni ≥ 2 for all i ∈ I. Let hi(X) ∈ R[X] for i ∈ I be polynomials of
total degree totdeg hi < ni. We consider the homomorphism of R-algebras

(27) R[Y ]→ R[X], Yi 7→ Xni
i + hi(X).

Then the monomials

(28) X
ui1
i1
·Xui2

i2
· . . . ·Xuid

id
,
{i1, . . . , id} ⊂ I,
0 ≤ uj < nj , for j ∈ {i1, . . . , id}.

are a basis of the R[Y ]-module R[X]. In particular this module is free.

Proof. In the case I finite see [Z]. The general case may be reduced to the
finite case. �

Lemma 21. Let C be a faithfully flat R-algebra. Let α : U2 → U1 be a
homomorphism of R-algebras such that the homomorphism U2 → U1 ⊗R C
is faithflat.

Then the homomorphism α : U2 → U1 is faithfully flat.

Proof. Let M1 →M2 be a monomorphism of U2 modules. We have to show
that M1 ⊗U2 U1 → M2 ⊗U2 U1 is a monomorphism. It suffices to prove the
injectivity after tensoring with ⊗RC because C is faithfully flat. But then
we obtain M1 ⊗U2 (U1 ⊗R C) → M1 ⊗U2 (U1 ⊗R C) which is injective by
assumption. Finally for any U1 module M we obtain from M1 ⊗U2 U1 = 0
that M1 ⊗U2 (U1 ⊗R C) = 0 which implies M1 = 0. �

Corollary 22. Let M be as in Proposition 19. Assume that

0→ P2 → P1 →M → 0

is an exact sequence of left R{τ}-modules such that P1 is a projective module.
Then P2 is projective. The sequence of fpqc-sheaves

0→ D(M)→ D(P1)→ D(P2)→ 0

is exact. The next to last arrow is a faithfully flat morphism of affine group
schemes.

If M is a finitely generated R{τ}-module the affine scheme D(M) is flat
and of finite type over SpecR.

Proof. We consider the standard resolution 0 → L2 → L1 → M → 0 of M ,
cf. Proposition 19. We find a commutative diagram

0 // L2
//

��

L1
//

��

M //

=

��

0

0 // P2
// P1

// M // 0
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It defines a homotopy equivalence of the complexes [L2 → L1] ∼= [P2 → P1].
If we apply the functor D we obtain a homotopy equivalence of complexes
of sheaves [D(L1)→ D(L2)] ∼= [D(P1)→ D(P2)]. Because these complexes
have the same cohomology groups we obtain a diagram of sheaves with exact
rows

0 // D(M) // D(L1) // D(L2) // 0

0 // D(M) //

=

OO

D(P1) //

OO

D(P2) //

OO

0

It follows formally that the second square in this diagram is a fibre product
of sheaves and hence of schemes. Since we know that by the Proposition that
D(L1) → D(L2) is faithfully flat the same is true for the arrow D(P1) →
D(P2) obtained by base change.

If M is finitely generated as an R{τ}-module we can take for P1 a finitely
generated free module. We obtain a closed immersion D(M) → GN

a,R for

some natural number N . We know the flatness of D(M) by Lemma 13. �

We generalize the last Corollary.

Proposition 23. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of
left R{τ}-modules which are projective as R-modules.

Then by applying D we obtain an exact sequence of sheaves

(29) 0→ D(M3)→ D(M2)→ D(M1)→ 0,

such that the next to last arrow is a faithfully flat map of affine schemes.

Proof. Our assumption implies that the sequence of R{τ}-modules

0→ R{τ} ⊗RM1 → R{τ} ⊗RM2 → R{τ} ⊗RM3 → 0

is split exact. It is therefore mapped by D to an exact sequence of sheaves.
Therefore the exactness of (29) in the category of sheaves follows from the
Proposition by using the canonical resolutions of the D(Mi) and the snake
Lemma.

To prove the last assertion we proceed as in the proof of the last Corollary.
We find a commutative diagram with exact rows

0 // M1
// M2

// M3
// 0

0 // P1
//

OO

P2
//

OO

M3
//

OO

0

where P1 and P2 are left projective R{τ}-modules. By the last Corollary we
know that φ : D(P2)→ D(P1) is a faithfully flat morphism of affine schemes.
Applying D to the diagram we see that D(M2) → D(M1) is obtained by
base change from φ and therefore a faithfully flat morphism. �

We have a canonical isomorphism

ωGa,R
∼= TR[T ]/T 2R[T ] ∼= R, T 7→ 1.

This induces a canonical homomorphism of R-modules

(30) dG : Homags/R(G,Ga,R)→ HomR(ωGa,R
, ωG) = ωG.



16

The morphism τ : Ga,R → Ga,R induces the zero map on ωGa,R
. The multi-

plication by τ on the coordinate module induces a Frobenius linear map

(31) R⊗Frob,R Hom(G,Ga,R)
τ ]−→ Homags/R(G,Ga,R)→ ωG

The composite of these maps is zero by what we said above.
In the case G = Ga,R the map (30) identifies with

R{τ} → R, f 7→ f(0)

which maps a polynomial in f ∈ R{τ} to its constant term. For G = Ga,R

(??) is an exact sequence. Indeed, we have an isomorphism R⊗Frob,RR{τ} ∼=
R{τ} which sends r ⊗ f(τ) to rf (p)(τ) where f (p)(τ) is obtained from f(τ)
by raising the coefficients to the p-th power. This identifies (??) with the
exact sequence

0→ R{τ} ×τ−→ R{τ} d−→ R→ 0,

where ×τ denotes the right multiplication by τ . Now we consider the case
G = GIa,R = SpecR[X] where I is any set. Then we obtain

Homags/R(G(I)
a,R,Ga,R) ∼= R{τ}(I).

This is a special case of Lemma 13. But we could also remark that each
morphism GIa,R → Ga,R factors through the projection GIa,R → GJa,R where
J ⊂ I is a finite subset. Indeed, such a morphism is given by a polynomial
in R[X] which depends only on finitely many variables. Therefore the map

dGI
a,R

: Homags/R(GI
a,R,Ga,R)→ ωGI

a,R

identifies with the R-module homomorphism R{τ}(I) → R(I) which takes
the constant term component wise. The sequence (31) becomes for G = GI

a,R
an exact sequence

0→ R⊗Frob,R R{τ}(I) → R{τ}(I) → R(I) → 0.

Proposition 24. Let M be an R{τ}-module which is projective as R-
module. Let G = D(M).

Then the sequence (31) is right exact:

(32) R⊗Frob,R Hom(G,Ga,R)
τ ]−→ Homags/R(G,Ga,R)

d−→ ωG → 0.

In other words

ωG ∼= C(G)/Rτ(C(G)) ∼= M/Rτ(M),

cf. Lemma 13. If M is a projective R{τ}-module the sequence (32) is also
left exact.

Proof. We begin with the case where M is free. We choose a basis ei, i ∈ I
and use the exact sequence (25). This sequence remains exact if we tensor
with R⊗Frob,R. We obtain a commutative diagram whose rows and first two
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columns are exact

0→ R⊗Frob,R R{τ}(I) //

τ ]

��

R⊗Frob,R R{τ}(I) //

τ ]

��

R⊗Frob,RM → 0

τ ]

��
0→ R{τ}(I) //

d

��

R{τ}(I) //

d

��

M → 0

d

��
0→ ωGI

a,R

//

��

ωGI
a,R

//

��

ωG → 0

0 0

It is easily seen that the last column must be also right exact sequence. For
arbitrary M we take an R{τ}-module N which is projective as R-module
and such that M ⊕ N is a free R-module. We noted that ωD(M⊕N)

∼=
ωD(M) ⊕ ωD(N). By the free case we obtain a right exact sequence

(R⊗Frob,RM)⊕ (R⊗Frob,R N)→M ⊕N → ωD(M) ⊕ ωD(N) → 0

Since this is the direct sum of the two complexes (31) for G = D(M) and
G = D(N) we see that each of these two complexes is right exact.

The last assertion follows immediately from the case where M is a free
R{τ}-module which we already know. �

Definition 25. Let M be an R{τ}-module which is projective as R-module
and let G = D(M). Then we call

(33) R⊗Frob,R Hom(G,Ga,R)
τ ]−→ Homags/R(G,Ga,R)

the co-Lie complex of G. We denote the kernel of (33) by nG. By Proposition
the cokernel in ωG.

If M is of finite presentation this complex is isomorphic to the co-Lie
complex of G as defined by [I] Chapt. VII. To see this we begin with a finitely
generated projective R{τ}-module P . Then D(P ) is smooth over R, because
it is flat and of finite type and the geometric fibres of D(P ) → SpecR are
isomorphic to Gn

a , cf. below ??? or [DG]. In this case the co-Lie complex
of Illusie coincides with ωD(P ) which is quasiisomorphic to the complex (33)
for G = D(P ). Assume that M is of finite presentation. Then we find a
resolution 0 → P2 → P1 → M → 0 where P1 and P2 are finitely generated
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projective left R{τ}-modules. We obtain a diagram

0

��

0

��
0→ R⊗Frob,R P2

//

τ ]

��

R⊗Frob,R P1
//

τ ]

��

R⊗Frob,RM → 0

τ ]

��
0→ P2

//

d

��

P1
//

d

��

M → 0

d

��
0→ ωD(P2)

//

��

ωD(P1)
//

��

ωD(M) → 0

��
0 0 0

This shows that the complexes R ⊗Frob,R M
τ ]−→ M and ωD(P2) → ωD(P1)

are isomorphic in the derived category. By [I] Chapt.VII, Prop. 3.1.1.5
applied to the exact sequence 0 → D(M) → D(P1) → D(P2) → 0 we see
that ωD(P2) → ωD(P1) is the co-Lie complex of D(M).

Let q = pu. We classify group schemes in the essential image of D with
an action of Fq over an Fq-algebra R.

Definition 26. Let G a commutative affine group scheme over an Fq-
algebra R endowed with an action

ι : Fq → EndSpecRG.

We say that the action ι is strict if the induced action Fq → EndR ωG coin-
cides with the Fq-module structure on ωG obtained by restriction of scalars
Fq → R.

Let M be a left R{τ}-module which is projective over R. An action
i : Fq → EndR{τ}M defines an action on the group scheme D(M). Since
ωD(M)

∼= M/RτM . We call i strict if the induced action on the R-module
M/RτM is strict, i.e. it coincides with the action given by Fq → R.

Definition 27. Let (M, ι) as above. We call the action i balanced (cf. [P])
if it is strict and if the induced action on the R-module nD(M) coincides with
the action given by Fq → R.

For the coordinate module M this Definition means the following. M
becomes via i an Fq ⊗R-module. We consider the decomposition

Fq ⊗R ∼=
∏

k∈Z/uZ

R, a⊗ r 7→
∏
i

ap
k
r.

The product ap
i
r makes sense because R is an Fq-algebra. For the R{τ}-

module M we deduce a decomposition

M = ⊕k∈Z/uZ Mk,

where Mk = {m ∈ M | ι(a)m = ap
k
r, a ∈ Fq}. the acation of τ on M is

graded of degree 1, i.e. τ(Mk) ⊂ Mk+1. Clearly an Fq-action is the same
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thing as such a graduation of this type. We obtain similiar decompositions

ωD(M) = ⊕k∈Z/uZ ωD(M),k, nD(M),k = ⊕k∈Z/uZ nD(M),k.

Strict means that ωD(M),k = 0 for k 6= 0 and balanced if moreover nD(M),k =
0.

The homomorphism

(34) τ ] : R⊗Frob,RMk−1 →Mk

has kernel nD(M),k and cokernel ωD(M),k. Therefore strict means that (34)
is surjective for i 6= 0 and balanced means the it is bijective for k 6= 0.

For a comfortable construction of modules (M, i) we make two definitions.
We write R{τq} for the non-commutative polynomial ring such that τqr =
rqτq. Let N be a left R{τq}-module. A twisted filtration on N consists of
R-submodules Ek ⊂ R⊗Frobk,RN k = 0, . . . u−1 which are direct summands
such that E0 = 0 and such that for k = 1, . . . u− 1

R⊗Frob,R Ek−1 ⊂ Ek ⊂ R⊗Frobk,R N.

Proposition 28. The category pairs (M, i) consisting of a left R{τ}-module
M which is projective over R and a strict Fq-action i is equivalent to the
category of pairs (N,E·) where N is a left R{τq}-module which is projective
over R and E· is a twisted filtration such that R⊗Frob,REu−1 ⊂ R⊗Frobu,RN
is contained in the kernel of the map τ ]q : R⊗Frobu,R N → N .

The balanced pairs (M, i) correspond to pairs (N,E·) with E· = 0, i.e. the
category of balanced pairs is equivalent to the category of R{τq}-modules N
which are projective as R-modules.

Proof. We start with (M, i) with i strict. Then the maps

(35) (τk)] : R⊗Frobk,RM0 →Mk.

are for k = 0, 1, . . . u− 1 surjective. Since Mk is projective as R-module the
kernel Ek is a direct summand. We set N = M0 and

τq = τu : N → N.

In the other direction we set Mk = (R⊗Frobk,RN)/Ek. For k = 0, . . . u−2
we define τ : Mk →Mk+1 by the natural surjection

τ ] : R⊗Frob,R (R⊗Frobk,R N/Ek)→ R⊗Frobk+1,R N/Ek+1

and
τ ] := τ ]q : R⊗Frob,R (R⊗Frobu−1,R N/Eu−1)→ N

�

We can now proof Theorem 2. It follows from Proposition 18, Proposition
16, the remark after Definition 25 and from the last Proposition 28.

ZUR EINLEITUNG It is more convenient to arbitrary finitely gener-
ated projective R{τ}-modules in place of free modules R{τ}I . An important
example is obtained as follows. Let V be a finitely generated projective R-
module. Then

(36) R{τ} ⊗R V
is a finitely generated projective left R{τ}-module. Note that we take the
action of R on R{τ} from the right to form this tensor product. Therefore
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(36) inherits a left R{τ}-module structure via the first factor. Since V is a
direct summand of a free R-module Rn we conclude that (36) is a finitely
generated projective R{τ}-module.

The case of a ground field
We discuss the the ring R{τ} in more detail if R = k is a field. By

Euclidean division (14) k{τ} is left noetherian and any left ideal is principal.
Let M be a left k{τ}-module. An element m ∈M is called torsion if there

is an element f(τ) ∈ k{τ}, f(τ) 6= 0 such that f(τ)m = 0. Equivalently
we may ask, that m is contained in a k{τ}-submodule N ⊂ M which is
finite dimensional over k. The set of all torsion elements T ⊂M is a k{τ}-
submodule. We call T this the torsion submodule of M . If M is a finitely
generated k{τ}-module then T is a finite dimensional k-vector space because
M is noetherian.

Lemma 29. Let k be a field of characterictic p. Let M be a finitely generated
k{τ}-module. Then there is a finitely generated free k{τ}-submodule F ⊂M
such that M/F is a finite dimensional k-vector space.

Proof. Let m1, . . . ,mr ∈M a minimal set of generators of the k{τ}-module
M . We make induction on r. If the mi are a basis of M there is nothing to
prove. In the other case there is a nontrivial relation

f1m1 + . . .+ frmr = 0, fi ∈ k{τ}.

We may assume that f1 6= 0. Let M1 ⊂ M the submodule generated by
m2, . . . ,mr. It is clear that M/M1 is a finite dimensional k-vector space. By
assumption of the induction we find a free k{τ}-module F ⊂M1, such that
M1/F is finite dimensional. But then M/F is finite dimensional too. �

Proposition 30. Let R be a local ring such that the maximal ideal m of
R is nilpotent. Let M be a finitely generated R{τ}-module which is free as
R-module.

Then there exists a free and finitely generated R{τ}-submodule F ⊂ M ,
such that M/F is a finite and free R-module. We note that M is an R{τ}-
module of finite presentation.

Proof. We consider the k{τ}-module

M̄ = k{τ} ⊗R{τ}M = k ⊗RM.

We may choose a free and finitely generated submodule F̄ ∈ M̄ as in Lemma
29. Let f̄1, . . . , f̄d be a basis of the k{τ}-module F̄ . By Lemma 29 there are
elements t̄1, . . . , t̄e ∈ M̄ such that the elements

τnf̄i, t̄j for n ≥ 0, i = 1, . . . , d, j = 1, . . . , e

are a basis of the k-vector space M̄ . We lift the elements f̄1, . . . , f̄d, t̄1, . . . , t̄e
arbitrarily to elements f1, . . . , fd, t1, . . . , te ∈M . By the Lemma of Nakayama
the elements

τnfi, tj for n ≥ 0, i = 1, . . . , d, j = 1, . . . , e

are a basis of the R-module M . Therefore the element f1, . . . , fd generate a
free R{τ}-submodule F ⊂M with the desired properties. �
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Proposition 31. Let k be a perfect field of characteristic p. Let M be a
finitely generated k{τ}-module. Then M is isomorphic to a direct sum of
k{τ}-modules

M = T ⊕ k{τ}m

where T is finite dimensional as k-vector space and m ≥ 0 is some integer.

Proof. Let T ⊂M be the torsion submodule. Then M/T has no torsion, i.e.
there is no k{τ}-submodule N̄ ⊂ M/T , N 6= 0 which is finite dimensional
over k. Indeed, the preimage N ⊂M of N̄ would be also finite dimensional
and therefore N = T by definition.

Therefore it suffices to show that a finitely generated torsion free k{τ}-
module M is free.

We will show that for torsion free M 6= 0

(37) Homk{τ}(M,k{τ}) 6= 0.

Note this is trivial if M is a submodule of a free module and therefore such
modules M are free.

To show (37) we take by Lemma 29 a free k{τ}-submodule F ⊂M such
thatM/F is a finite dimensional k-vector space. The group Ext1

k{τ}(M/F, k{τ})
has a k{τ}-right module structure via the second factor and in particular a
k-vector space.

The assertion (37) follows if we show that

(38) dimk Ext
1
k{τ}(M/F, k{τ}) <∞.

Indeed, from the exact sequence 0→ F →M →M/F → 0 we obtain the
exact sequence

0→ Homk{τ}(M,k{τ})→ Homk{τ}(F, k{τ})→ Ext1k{τ}(M/F, k{τ}),

because k{τ} contains no τ -invariant finite dimensional (left) k-vector sub-
space and therefore Homk{τ}(M/F, k{τ}) = 0. Since M is torsionfree we
have U 6= 0 and then Homk{τ}(F, k{τ}) is an infinite dimensional k-vector
space. The assertion (38) implies therefore (37).

Now we show (38). A monogen left k{τ}-module which is torsion is of the
form k{τ}/k{τ}f for a polynomial f = τn+an−1τ

n−1 + . . .+a0 6= 0, ai ∈ k.
If suffices to show that Ext1

k{τ}(k{τ}/k{τ}f, k{τ}) is a finte dimensional

k-vector space. We easily find an isomorphism of right k{τ}-modules

Ext1
k{τ}(k{τ}/k{τ}f, k{τ}) ∼= k{τ}/fk{τ}.

Because k is perfect the dimension of the last vector space in n. This proves
(37).

Finally we show that the torsionfree M is free. Indeed, there exists a
non-zero k{τ}-module isomorphism ϕ : M → k{τ}. Since the image of ϕ is
a principal ideal we obtain a decomposition

(39) M = M ′ ⊕ k{τ}.

We note that M/k{τ}τM is a finite dimensional (left) k-vector space. From
(39) we obtain

dimkM/k{τ}τM = 1 + dimkM
′/k{τ}τM ′.
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We see that an induction applied to (39) shows that M is a free k{τ}-module.
The proposition follows. �

Let R be a local ring such that the maximal ideal m of R is nilpotent.
Let MR be the category of all finitely generated R{τ}-modules M which are
free as R-module as in Proposition 30.

Then we define a contravariant functor

(40) D : MR → {flat group schemes over R}.

For the definition of DM we take a resolution

(41) 0→ L2 → L1 →M → 0

where L1 is a free finite R{τ}-module. Then k⊗R L2 is a free k{τ}-module
because it is a submodule of the free k{τ}-module k⊗R L1. Therefore L2 is
a free R{τ}-module. Because two resolutions are homotopically equivalent
we may define DM as the kernel

0→ DM → DL1 → DL2 .

We claim that the last arrow is a surjection of sheaves. It is enough to show
that the last arrow is a faithfully flat morphism. By EGA IV, Corollaire
(11.3.11) we are reduced to the case where R = k is a field. By base change
we may assume that k is perfect. In this case we have by Proposition 31
that M ∼= T ⊕ k{τ}m. We choose a resolution 0 → P2 → P1 → T → 0.
Then

0→ P2 → P1 ⊕ k{τ}m → T ⊕ k{τ}m → 0

is a resolution for M and the map DP1 ⊕Dk{τ}m → DP2 is faithfully flat by
Corollary ?? and in particular a surjection of sheaves. Hence for any other
resolution (41) we have an surjection of sheaves. The argument of Corollary
?? shows then that DL1 → DL2 is a faithfully flat morphism.

Proposition 32. Let R be a local ring such that the maximal ideal m of R
is nilpotent.

Then the functor D (40) is fully faithful and exact. The coordinate module
is a quasiinverse functor.

Let M ∈ MR, i.e. M is a finitely generated R{τ}-module which is free
as R-module. Let L1 →M a surjection from a free finitely generated R{τ}-
module. Its kernel L2 is a finitely generated free module. The induced se-
quence

(42) 0→ DM → DL1 → DL2 → 0

is an exact sequence of sheaves and the next-to-last arrow is a faithfully flat
morphism of schemes. There is a natural isomorphism

(43) M → Homgs/R(DM ,Ga,R).

Proof. We already proved the assertions about (42). This implies that the
functor D is eaxact. Indeed, let 0 → M1 → M2 → M3 → 0 be an exact
sequence of modules in MR. Then we find a diagram of R{τ}-modules,
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where all modules named L are free and such that all rows and columns are
exact:

0 0 0

0 // M1
//

OO

M2
//

OO

M3
//

OO

0

0 // L11
//

OO

L12
//

OO

L13
//

OO

0

0 // L21
//

OO

L22
//

OO

L23
//

OO

0

0

OO

0

OO

0

OO

If we apply the functor D the exactness follows from (42).
From (??) and (42) one obtains a natural map

κM : M → Homgs(DM ,Ga)

which is injective, cf. (??). To prove that κM is an isomorphism we use an
exact sequence

0→ F →M →M/F → 0

as in Proposition 30. We write T = M/F . Then we find a commutative
diagram

0→ Homgs(DF ,Ga) // Homgs(DM ,Ga) // Homgs(DT ,Ga)

0→ F

κF

OO

// M

κM

OO

// T → 0

κM/F

OO

Since T is a finitely generated free R-module we know by Proposition ??
that κT is an isomorphism. Since κF is also an isomorphism we conclude
that κM is an isomorphism.

We now show that the functor D is fully faithful. Let G be a group scheme
over R and let N = Homgs/R(G,Ga,R) be the coordinate module. Clearly
we have for the free module F = R{τ} that

(44) Homgs/R(G,DF ) ∼= HomR{τ}(F,N).

Therefore this equation holds for each free R{τ}-module F . We consider
the commutative diagram

0→ Homgs(G,DM ) // Homgs(G,DL1) //

∼=
��

Homgs(G,DL2)→ 0

∼=
��

0→ HomR{τ}(M,N) // HomR{τ}(L1, N) // HomR{τ}(M,L2)→ 0

Therefore we obtain a natural isomorphism

(45) Homgs(G,DM )
∼−→ HomR{τ}(M,N)

for each group scheme G over R and each M ∈ MR. This shows the fully
faithfulness and also that the coordinate module C is a quasiinverse ofD. �
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Corollary 33. Let R as in the Proposition. For M ∈MR the group scheme
DM has the property (BCM), cf. Definition 12. If G is a flat group which
has the property (BCM) and such that CG ∈MR then G = CM for M = CG.

Proof. For the first assertion we have to show that the coordinate module of
SpecS×SpecRDM is S⊗RM . We consider the resolution ???. We see easily
that SpecS×SpecRDLi

∼= DS⊗RLi . Therefore the first assertion follows from
the exact sequence

o→ S ⊗R L2 → S ⊗R L1 → S ⊗RM → 0.

�
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