LECTURES ON p-DIVISIBLE GROUP

THOMAS ZINK

1. FORMAL GROUPS AND p-DIVISIBLE GROUPS

Let R be a commutative ring with unit. Let Nilp be the category of nilpotent
R-algebras. Let F; € R[[X1,...,Xn, Y1,...,Y4,]],1 <4 < n, be formal power series
in 2n variables. Take N € Nilg. Let N = N @& --- @& N be the direct sum of n
copies of N. Given z = (z1,...,2,),¥ = (Y1,-..,Yn) € N, the finite sum

Fz(£7g) = Fi(xla ey Ty Y1y e ayn)
is a well-defined element of N. Consider the map defined by the n-tuple F,
+p: N x N 5 N0V,
(z,y) = (F1(z,Y), - .-, Falz,9))
Now suppose +p is a group law for each N € Nilg, with neutral element 0 =

(0,...,0). Then 0+ 0 = 0 implies that F;(0,0) = 0, so F; has no constant terms
for any 4. In this case, the n-tuple F' = (F};) can be considered as a functor

Nilgp — Groups,
N (N™ 4p).

The composition of F' with the forgetful functor Groups — Sets is the functor

Nilz — Sets,

N N,

This functor will be denoted by A", ie.,

ANy =N™
for N € Nilpg.

Next, we consider how to define a morphism of functors Am 5 Am,

Example: Given F;(Xy,...,X,) € R[[X1,...,Xn]],1 <i<m, then
Uy:N" 5 N™ N e Nilg,
z = (Fi(z),. .., Fn(z))

defines a morphism A™ — A™ of functors. Conversely, we have

Proposition 1.1. Suppose we are given a morphism of functors ® : An — Am,
Then there are formal power series F; € R[[X1,...,X,]],1 < i < m, such that for
any N € Nilg, the homomorphism ®n : N™ — N™ is defined by

(X1, yxn) = (Fr(z1, . xn), oo, F(21, .00y 20)).
1
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Proof. In R[[X7,...,X,]], consider the nilpotent algebra
Ny = (X1, ..., Xp) (X1, .., X))t

Then & defines
Oy, : N = N
The homomorphism ®y;, is determined by

Oy, (X1,..., X)) = (B[t ..., Fnlt]) € N™.

t

If ® is a morphism of functors, we have the commutative diagram

n <I>Nt+1 m
Nt(+)1 - Nt(-H)

! l

Nt(n) Nt(m)

PN,

So there are formal power series F' = (F;; 1 < i < m) with Fymod deg t = F;[t].

By construction the proposition holds for N = N;. So it is easy to see that the
proposition is true for any N € Nilg of the form N = @;N;,. For any finitely
generated nilpotent R-algebra, there is a surjective homomorphism @®;N;, — N.
It is easy to see @y is of the given form. Any N € Nily is a union of finitely
generated nilpotent algebras. We are done. ]

Thus a morphism of functors @ : Am 5 Am™ s given by power series. It is an ana-
logue of the fact that the morphism between affine schemes is given by polynomials.

Definition 1.2. A formal group law is a functor

G : Nilp — Groups
such that F o G = A", where F : Groups — Sets is the forgetful functor.
Example: (1) G, the additive formal group law, is defined by GQ(N) = (N,+).
(2) Let N € Nilg. We define a commutative algebra structure on R® N by defining

the multiplication by (r1,m1)(r2,n2) = (r17re, r1n2 + rong + ning). We define the
multiplicative formal group law G,, by

Gm(N)=(1+N)*CR® N.

Here (1+N)* means elements in RO N of the form 1+z, 2z € N with multiplicative
law. As a functor with values in Sets, it is clear that G,, = Al.

From now on we only consider commutative formal group law. We use Ab to
denote the category of abelian groups.

Definition 1.3. A functor
H :Nilg — Ab

is called a formal group if
(i) H is exact, i.e., if 0 = Ny — No — N3 — 0 is an exact sequence in Nilg, then

0— H(N1) - H(Ny) — H(N3) — 0
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is an exact sequence in Ab.

(ii) If N € Nilg and N = U;eN;, where N; are sub-algebras of N and I is
a filtered set, (i.e., given any N;,N; for i,j € I, there is an r € I such that
N; < N,,N; — Nr,) then H(N) = UieIH(Ni)~

As a first example of formal groups, we want to show that given a commutative
smooth algebraic group G over R, we can associate to it a formal group. As a
preparation, recall the notion of smoothness. There are various equivalent defini-
tions of smoothness. Here we only remark that smoothness is equivalent to finite
presentation plus formal smoothness. Recall that a morphism between schemes
f: X — Y is called formally smooth if for any exact sequence

0—-1I—-A— B—=0,

where A, B are commutative rings over Y (i.e., SpecA and SpecB are schemes over
Y) with 1, and I is a nilpotent ideal of A, the natural map Xy (A) — Xy (B) is
surjective. Here Xy (A) = Homy (SpecA4, X).

Lemma 1.4. Let X be a scheme over R. Let A;,i = 1,2,3 be rings over R. Let
a: Ay — Az be a surjective homomorphism with nilpotent kernel Kerc, and let
B Ay — Az be a homomorphism. Form the fiber product Ay x4, As. Write
X (A) = Homgpecr(SpecA, X) for any R-algebra A. Then we have a bijection

X(Al) XX(Ag) X(AQ) = X(A1 X Ag AQ)
Proof. By the universal property of the fiber product, there is a map
D X(Al X Ag AQ) — X(Al) X X (A3) X(AQ)

To show it is a bijection, we first consider the case when X = SpecB is affine.
Then X(A;) = Homp(B,A4;). We aim to define the inverse map of ®. Given
(al,ag) S X(Al) X X (As) X(AQ) = HOHI(B,Al) XHom(B,As) I‘IOIII(B,AQ)7 which
means that we have maps a; : B — A; such that aa; = Bas, by the universal
property of the fiber product again, we define a map b : B — Ay X4, As. Define
U((ar,a2)) =b. Tt is easy to see that U is the inverse of ®.

Now consider the general case. Since Kera is nilpotent, SpecA; = SpecAs as
a topological space. Hence Spec(A; x4, A2) = SpecA; as a topological space.
Given (a1,a2) € X (A1) Xx(45) X(A2), for any = € SpecAy, there is a basic open
affine neighborhood Spec(As); of = such that as(Spec(Az)¢) is contained in an
open affine U of X. Since o : A; — Aj is surjective, we can take g € Ay such that
a(g) = B(f) € As. Then by the affine case considered above there is a morphism

by : Spec[(A41)g4 X (A3)a(e) (A2)f] - U — X.
Since Spec(A; x4, A2) = SpecAs as a topological space, when f ranges over a
set in Ay such that Spec(Asz)s form a cover of SpecAs, then Spec[(A41)y X (ay).,,
(Az)y] form a cover of Spec(A; x4, A2). So we can glue by to get a morphism

b : Spec(A; X4, A2) = X. Now define ¥((a,az2)) = b. One can check that ¥ is
the inverse of ®. O

Proposition 1.5. Now let G be a commutative smooth group scheme over R. We
define a functor G : Nilg — Ab, named the completion of G along the unit, by

G(N) = Ker(G(R® N) — G(R)).
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Here R ® N is endowed with the commutative ring structure (ri,m1) - (r2,n2) =
(rire,m1ng + rong + ning), and R® N — R is the map sending N to 0. The map
G(R® N) — G(R) is induced by the R® N — R. Then the functor G is a formal
group.
Proof. We first show that G is an exact functor. Let

f 9

0 Ny Ny N3 0
be an exact sequence of nilpotent algebras. Let A; = R @® N;. We have the nat-
ural homomorphisms A ! Ay J Az ¢ R of commutative R-algebras.

Since g : N3 — N3 is surjective, sois g : Ay — Asz. The algebra Ker(A4s — As) = N,
is nilpotent. We check
¢

Ay R
| |
As —g>A3

is a fiber product. Here ¢ is the structure map, i.e., ¥(r) = (r,0) and ¢ : A; =
R & N; — R is the natural projection. First the diagram is commutative, since
gf(rn) = g(r, f(n)) = (r,gf(n)) = (r,0) = Gd(r,m). If (r,n) € Ap,r’ € R
with g(r,n) = ('), i.e., (r,g(n)) = (+/,0), then r = ', g(n) = 0, so there is
ny € Ny such that n = f(n1), so we have (r,n) = f(r,n1),r = ¢(r,n1). This shows
Ap = Ay xa, R

Now we can use Lemma 1.3. Hence we get
G(Al) = G(Ag) X G(As) G(R)
So we have the following exact sequences

00— G(A;) —= G(As) ® G(R) — G(As)

i ! l

0 ——G(R) ——G(R) © G(R) G(R) 0

Then by the snake lemma we have that the sequence of kernels
0 — G(N1) = G(No) — G(N3)
is exact. To show the surjectivity of G (N3) — G (N3) we use the formal smoothness

of G. In fact, the formal smoothness of G shows that G(A2) — G(As3) is surjective,
then it is easy to see G(Ny) — G(N3) is surjective.

Next we have to show that if N = U;e;N; is a filtered union, then G’(N) =
Uielé(Ni). If G = SpecB is affine, then the smoothness of G implies that B is of
finite type over R. In this case, we claim that

SpecB(A) = @SpecB(Ai)
where A= R® N, and A; = R® N,. In fact, we can write B = R[Xy,...,X,]/qa,
and for f € SpecB(A) = Hom(B, A), f is determined by a; = f(z;) € A, where
x; = Xj+a. Since A; is filtered, there is an ¢ € I such that a; € A; for all j, hence
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the claim. This shows that G(N) = U;c;G(N;) if G is affine. For general G, we
can reduce it to the affine case. This completes the proof of the proposition. [

Definition 1.6. A functor H : Nilg — Sets is called left exact if
(1) H(0) = {0}, where {0} is a given set with one element.
(ii) H respects fiber products, i.e., given a fiber product

N1 XNy N Ny
Ny N3

g

we have H(Nl X N3 NQ) = H(Nl) XH(Ng) H(Ng)

Proposition 1.7. A formal group H is left exact.
We omit the proof, and just remark that the condition (i) of left exactness of a

formal group H follows from the fact that H is an exact functor.

Example. Let X be a scheme over R and £ € X(R). Consider the functor
X : Nilz — Sets
X(N) = Fiber¢[X(R® N) — X(R)].
The functor X is called the completion of X along £. Then X is left exact.
Corollary 1.8. A formal group H respects fiber products. In particular, we have
H(Nl X Ng) = H(Nl) X H(Ng)

Next, we turn to another construction.

Let H be a functor Nilg — Ab such that
(11) H(Nl XNQ) gH(Nl) XH(NQ)
for any N7, Ny € Nilg. A formal group H is such a functor, as we have seen.

Proposition 1.9. For a functor H satisfying (1.1), there is an R-module structure
on H(N) for any N € Nilg with N? = 0.

Proof. If N € Nilg and N? = 0, the addition map + : N & N — N, which sends
(n1,n2) to ny + ng (addition law of the algebra structure of N) is a morphism
of algebras. Let H be a functor satisfying (1.1). Apply H to the morphism +.
We get a homomorphism H(+) : H(N @ N) — H(N). By Eq.(1.1) we have
H(N) x H(N) = H(N & N). So we have a homomorphism

H(N) x H(N) — H(N).

We can check that this construction gives an abelian group structure on H(N)
(H(N) has another abelian group structure as an object of Ab. Later we shall see
that the two abelian group structures are the same). The zero element is just H(0).

Next we show that there is an inverse for any € H(N). Let f : N - N@® N be
the map f(n) = (n,—n). Then f is also a homomorphism of algebras, so we have
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commutative diagrams

H H
N—LNen  EH®N) D, 7Ny x H(N) 2

L] |

0——=~N H(0) H(N)

where p; is the projection N x N — N to the first factor. Given « € H(IN), since
H(p1)H(f) = H(p1f) = id, we have H(f)(z) = (z,y) for some y € H(N). It is
easy to see that x +y = 0.

Let A € R. Then n — An induces an algebra homomorphism of N to V.
Apply the functor H to get A : H(N) — H(N). It is not hard to see that these
constructions endow H(N) with an R-module structure. O

Definition 1.10. Let H be a functor satisfying (1.1). For any R-module M, we
define M, € Nilg (v stands for vector group) by M, = M as an abelian group and
M2 = 0. We define the tangent functor ty of H by

ty : MOdR — MOdR
M s H(M,).

Example: Let (A4, m,k) be a local ring. Let H : Nil, — Ab be the functor
H(N) = Hom(m, N). Then it is not hard to see that tz(k) = Hom(m/m? k,),
which is the tangent space of SpecA at the closed point. This justifies the name
“tangent functor”.

For any M € Modg,m € M, put ¢, : R — M for the map ¢,,(a) = am and
consider the map

(1.2) tu(R)@r M — ty (M)

§@m =ty (cm)(E).

Lemma 1.11. If ty is right exact and commutes with direct sums, then the map
(1.2) is an isomorphism.

Proof. If M = R, the isomorphism is trivial. If M = R is a free R-module,
the isomorphism is also clear, since both sides commute with direct sum. For the
general case, M admits a presentation

RY - RO & M — 0.
So we have

tg(R) ® RY) —tg(R) ® RY) ——ty(R) @ M ——0

| | |

tr(RW)) trr(RW) tar(M) ——0

Since the first two vertical arrows are isomorphisms by the above discussion, so is
the one on the right. |
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Lemma 1.12. Let H be a formal group. Let N; € Nilg,i € I. Assume there is
t € Nt such that N} =0 for alli € I. Then N = ®;¢;N; € Nilg. Hence H(N) is
well-defined. We have

H(®ierNi) = @ierH(N;).
Proof. The map ®;crN; — N; induces H (®;ec;N;) — H(N;), so we have a natural
map

H(®ierNi) — HH(NJ

iel
We want to show that this map induces an isomorphism H (®;c;N;) — @i H(N;).
If |I| = 2, this is Corollary 1.7. By induction, we know this is an isomorphism for
any finite set I. For general I, let J be a finite subset of I. We have an isomorphism
H(@ZGJNZ> = @ZGJH(NZ) Since
H(®ierN;) = H(Uy Sjes Nj) = UsH(BjesN;),

the lemma follows. O

Since a formal group H is exact, ty satisfies the condition of Lemma 1.11. We
get

Corollary 1.13. Let H be a formal group. Then we have the isomorphism (1.2)
tg(R)@r M — tg(M).
In particular, since ty is exact, ty(R) is a flat R-module.

Now we turn to the relations between the two notions: the formal group law
defined in Lecture 1, and the formal group defined in Lecture 2.

Theorem 1.14. Let H be a formal group. If tg(R) is a finitely generated free
R-module, then H is a formal group law defined in Lecture 1. More precisely, if
tg(R) = R?, then H =2 A? as functors with values in Sets.

The aim of this lecture is to prove Theorem 1.14.
We begin with some general remarks.

Let C be a category, N is an object in C. We define a functor

hy : C — Sets

by hy(M) = Hom(N,M). Let F : C — Sets be any other functor. We have a
natural map

Y :Hom(hy, F) — F(N),

which is defined as follows. Given ® : hy — F, then @y is a morphism hy(N)
Hom(N, N) — F(N). Define Y(®) = &y (idy).

Lemma 1.15 (Yoneda’s Lemma). The map Y is a bijection.

Proof. In fact, we can construct the inverse map of Y as follows. Given a € F(N),
we need to construct a map ®ps : hy (M) — F(M) for any object M in C. Given
f: N — M, define ®p,(f) = F(f)(a). It is not hard to see this gives an inverse of
Y. [
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Definition 1.16. Let G be a group, which acts on a set M. The set M is called a
principal homogeneous space over G, if the map

GXM-—MxM
(g9, m) = (gm,m)
is bijective.
The case of M = () is possible. Let ¢ : M; — Ms be a G-morphism of principal
homogeneous space over G. Then ¢ is bijective if and only if M; # 0.

Definition 1.17. A small surjection is a surjective map o : M — N in the
category Nilg such that Kerao- M = 0.

Let M — N be a small surjection with kernel K. Then + : K ® M — M is a
homomorphism in Nilg, and

KoM M

g l

M——N

is a fiber product. Let GG : Nilg — Ab be a left exact functor, so G respect the
fiber product. We can apply G to the above fiber product to get

G(+)

G(K) ® G(M) G(M)
G(M) G(N)

For n € G(N), put

G,(M) = Fiber,|[G(M) — G(N)].
Then G(K) x G, (M) = G,(M) x G,(M), i.e., G,(M) is a principal homogeneous
G(K)-space.

Lemma 1.18 (Jacobi Inversion Theorem). Let F,H : Nilp — Sets be two left
exact functors, and o : F' — H a natural transformation. Assume
(i) « induces an isomorphism of the tangent functors, i.e.,

ay : F(N)— H(N)
is bijective for any N € Nilg with N? = 0;

(ii) F is smooth, i.e., for any M — N surjective, F(M) — F(N) is also surjective.
Then F is an isomorphism of functors.

Remark: In the Jacobi Inversion Theorem, take FF = H = Ad. These two functors
are left exact. Let « = (Fy,..., Fy), where F; are formal power series. Then on the
tangent spaces, the map

R? = A%R,) — AYR,) = R?
is defined by the Jacobian matrix Jac(Fy,..., Fy) = (gf; ). The Jacobi Inversion

J

Theorem says that if Jac(Fy,..., Fg) is invertible, so is o = (F7, ..., Fy). This is
an analogue of the Jacobi Inversion Theorem in calculus.
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Proof of Lemma 1.18. Let 0 - K — M — N — 0 be a small surjection in Nilg.

Claim: if o is a bijection, then ajs is a bijection, in the diagram

F(N)

H(M) ——~ H(N)

Let £ € F(N),n = an(§) € H(N). By assumption (ii), each of the maps F(M) —
F(N) and H(M) — H(N) is surjective. Since ay is bijective, it suffice to show
F¢(M) — H,(N) is bijective for any ¢ € F(N). Because K? C K - M = 0, and by
(i), we see F'(K) = H(K). Denote this group by G. By the remark before Lemma
(1.18), we see that both F¢(M) and H, (M) are principal homogeneous G-spaces.
Since F¢(M) # 0 by assumption (ii), we see F¢(M) — H,(M) is bijective. The
claim follows.

Now let N be any object in Nilg. Then there is an n such that N™ = 0. So we
have the small surjections
0—-N"! 5N N/NT 0,
0— N"?/N""' = N/N""' = N/N"? =0,

0 — N?/N® - N/N® - N/N? =0
and (N/N?)? = 0. So a/n2 is bijective. By induction, we get the lemma. O
Now we are ready to prove Theorem 1.14.
Proof of Theorem 1.14. For any M € Modpg we have
(1.3) H(M,) = tg(R) @ M = Homg(tg(R)", M),

where tg(R)Y is the dual module of ¢y (R). Write T =ty (R)V. Let 11 be the ele-
ment of H(T,) corresponding to idy in the isomorphism (1.3). By Yoneda’s Lemma,
Hom(hp,,H) = H(T,). Hence n; induces a natural transformation hp, — H.
Moreover (1.3) shows that, if N € Nilg with N? = 0 then hy,(N) — H(N) is
bijective (just take N = M, for some M € Modg).

Now in S[X] = R[X1, ..., X4], let S[X]|T = (X1,..., X4) be the ideal generated

by Xi,...,Xq4. Take
T, = S[X]*/(S[X]F)"*.
The freeness of ty(R) shows that T3 = T as an R-module. Since H is exact, we
have surjective morphisms
H(Tiy1) = H(T).
So we can lift n € H(Ty) to n; € H(T;), such that n;41 — n; under the surjection
H(T;+1) — H(T;). Yoneda’s Lemma gives 7; : hr, — H, and {n;} forms an induc-
tive system by our construction (note that the functor T — hr is contravariant).
Define
F = lim hr,,
and
n= liglm :F— H.
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Next we check that F = A%, For any N € Nilg, it is easy to see that
Hom(T;,N) = {(nl,...,nd) €N|n]f1~~~n§d =0, for k1+~~~kd2i+1}.

Hence
F(N) = lim Hom(T;, N) = N,

So F = A% In particular F is also smooth (terminology as in Lemma 1.18 (ii)).
The morphism 7 induces an isomorphism on the tangent functors by the above
discussion, and both F' and H are smooth. So we see that 7 is an isomorphism by
Jacobi Inversion Theorem. We are done. (]

Lemma 1.19. If N € Nilg with N2 =0, and H : Nilg — Ab is a formal group,
then the two abelian group structures defined in Lecture 3 coincide.

Proof. We use +, : H(N) x H(N) — H(N) to denote the addition law of H(N)
as an object in Ab, and + the addition law on H(N) defined by H(+), where
+: N x N — N is the addition of N. Apply H to {0} — N. We get H({0}) —
H(N). Let Oy be the image of H(0). We have seen in Lecture 3, that Oy is
the zero for +. Now H is functorial, so for any Ny — N,, Ny, N, € Nilg,
(H(N1),+-) — (H(N3),+7) is a homomorphism of abelian groups. In the spe-
cial case {0} — N, H({0}) has only one element, which is the identity of H({0}).
Since H preserves the identity element, Oy is the zero element of (H(N),+,) by
functoriality.

To show that + = +,, we note that + : H x H — H is a morphism of functors.
So

+:(H(N) x H(N),+,) = (H(N),+,)

is a homomorphism of abelian groups. Take (x1,z2), (y1,y2) € H(N) x H(N). We
have

(w1, 22) +7 (Y1,92) = (T1 ++ Y1, T2 ++ Y2).
Since + is a homomorphism of abelian groups, applying H we get
(z1+22) +7 (11 +y2) = (#1 +7 Y1) + (22 +7 v2).
Now take 1 = yo = 0. We get
Y1+ T2 = T2 +7 Y1 = Y1 + T2

This shows the two addition laws are the same. O

Now we consider base change of formal groups.

Definition 1.20. (i) Let f : R — S be a homomorphism of rings. If N € Nilg, we
can view N as an R-algebra via f. We denote Ny the corresponding R-algebra.
(ii) Let F' : Nilg — Sets be a functor. We define foF : Nils — Sets by

(feF)(N) = F(Ny).

It is easy to see that f, (A%) = Ag If F' is a formal group, so is foF'. Then we
get a functor f, : FGr — FGg, where FGg denotes the category of formal groups
over R.
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Theorem 1.21 (Lazard, 1955). Let f : R — S be a surjective homomorphism of
rings. Let G be a formal group over S such that G = AdS. Then there is a formal
group F over R such that F = A% and foF =G.

The proof can be found in [Z].

Lazard’s Theorem shows that, under some conditions, a formal group of the
form A4 can be lifted. How about the morphism? More precisely, let G1, G2 be two
formal groups over S and Fi, F, two formal groups over R such that foF; = G;.
Let a: Gy — G2 be a homomorphism of formal groups. Does « lift to F}, — Fy?

The answer is no in general. Let us consider the following example.

Example: Consider G, over R. As a functor, G,(N) = (N, +). A homomorphism
f: Gy — G is given by a formal power series f(X) € R[[X]] such that fy : N - N
is a homomorphism for all N € Nilg. So f is a homomorphism if and only if

(1.4) f(5+T) =f(S)+ f(T)
in R[[S,T]]. Write f =3 a, X", fn = a, X™. The equation (1.4) is equivalent to
an(T+S)" = a,T" + a, S, Vn > 0.

So ag = 0. If R is torsion free, it is easy to see that a,, = 0,n > 2. If R is p torsion,
then a,, = 0 for all n such that n is not a power of p. So we get

Proposition 1.22. (1) If R is torsion free, then End(G,) = R.
(2) If p- R =0 for a prime p, let ¢ : R — R be the Frobenius, i.c., p(r) = rP. Then
EndG, = R [[T]], where R,[[T]] is an algebra defined as follows: R,[[T]] is R[[T]]

as an R-module and the multiplication is defined by
P T T = 1™ (1 )T,

Proof. (1) As we have seen, f is a homomorphism if and only if f is defined by
f(X) =rX. Now associating ® to r defines the isomorphism End(G,) — R.

(2) We have f € End(G,) if and only if f is defined by f(X) = > a; X?'. Associ-
ating f to the formal power series Y. a; 7" defines a bijection End(G,) = R, [[T]].
It is easy to see this map preserves the multiplication. (I

Now consider the ring homomorphism f : Z — F,. It is easy to see that
fe(Ga)z = (Ga)r,. By the above proposition, there are many homomorphisms

® : (Gy)r, —+ (Gq)r, which cannot be lifted.

We have a weaker partial solution to the above problem.

Proposition 1.23. Let f : S — R be a surjective homomorphism of rings with
kernel a such that a> = 0. Assume la = 0 for somel € N. Let F,G : Nilg — Ab be
two functors and G is a formal group. Assume o : foF' — foG is a homomorphism.
Then there exists o : F' — G such that feo' = la.

Proof. Given N € Nilg, we have to define oy : F(N) — G(N). Given € F(N).
Let £ be the image of ¢ under the map F(N) — F(N/aN). Note that N/aN
is in fact an R-algebra. So F(N/aN) = foF(N/aN). We get a homomorphism
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anjan : F(N/aN) = G(N/aN). Let 7] be the image of £ under this map. Since G
is a formal group, we have the following exact sequence:

0 — G(aN) — G(N) — G(N/aN) — 0.

Let n,n" € G(N) be two lifts of 5. Then n — 1’ € G(aN). Since a? = 0, we have
G(aN) = aN ®g tg(S). Since la = 0, we see In = In’. Now we define a/y (§) = In.
By the above discussion, oy is well-defined and satisfies foa = la. (]

Definition 1.24. Let R be a commutative ring with 1. Let us be given a pair
(C,¢e), where C is an R-algebra with structure morphism i : R — C and € is an
R-algebra homomorphism C — R. The pair (C,¢) is called an augmented algebra if
goi=idg. If (C,¢) is an augmented algebra, we call CT = Kere the augmentation
ideal. We have C = R® CT. A homomorphism of augmented algebras f : A — B
is a homomorphism of R-algebras and ex =epgo f.

Notations. We give a list of the notations which will be used later. Let A, B
be two R-modules (R-algebras, R-augmented algebras or unitary R-algebras). We
denote
Hompg(A,B)  the set of R-module homomorphisms.
Hom, (A, B) the set of R-algebra homomorphisms, i.e., maps preserving
the R-module structure and multiplicative structure.
Hom,, (A, B) the set of homomorphisms of unitary rings, i.e., maps which not
only preserve the algebra structure but also preserve 1.
Hom,, (A, B) the set of homomorphisms of augmented algebras.

It is easy to see that Hom,,(A, B) = Hom,,(A, B). If we counsider topological
rings, we add a “c” in the subscript to denote the continuous homomorphisms. For
example, if A, B are two topological R-algebras, Hom.,(A4, B) will denote the set
of continuous algebra homomorphisms from A to B.

Given N € Nilg, we can form an augmented algebra A. As the R-module
A = R & N with multiplication defined by: (r,n)(r’,n') = (rr',rn/ + r'n + nn’),
See the Example after Definition 1.1. Let ¢ : A — R be the projection map. Then
the augmentation ideal A™ is N. For any other nilpotent algebra M, we have

Hom, (N, M) = Homg, (A, R® M) = Hom,, (A, R ® M).
Let Augnp denote the category of augmented algebras with nilpotent augmenta-
tion ideals. The above discussion shows that we established an equivalence
Augnp — Nilg
A AT
with inverse N — R&® N.

Since
SpecA x SpecB = Spec(4A ® B),
we can see that
ha+ X hp+ = hrgB+1A+@R+A+@B+:
where hy : Nilg — Sets is the functor defined by Ay (M) = Hom, (N, M).
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Definition 1.25. Let (C,¢) be an augmented R-algebra given with a chain of ideals
o D€ D€ DC3 "+, CiCOJr,

such that C/c; is a nilpotent augmented algebra. We define a functor SpfC :
Nilp — Sets by

(1.5) SpfC(N) = lim Homg (C™ /ey, N)
teN
We endow C' with the linear topology defined by the ideals ¢;. Then an element
of 1.5 is just a continuous algebra homomorphism C* — N, where we give N the
discrete topology. Indeed ¢ : CT — N continuous means that there is a number ¢
such the ¢|,, = 0. We will write:

SpfC(N) = Hom,,(C, N).

We use Spf(C,{c;}) to denote the functor if we want to emphasize that SpfC is
defined by the ideals ¢;.

Example: Let C = R[[X1,..., X,]],¢: = (X1,..., X,,)". Then SpfC = A%.
Definition 1.26. The functor SpfC' is called strictly pro-representable if
(1) CT /e is finitely generated R-module for any t > 0;
(2) for every t >0, there is a sub-R-module uy C CT such that CT [uy is a finitely
generated projective R-module, such that the two sequences {u;} and {c;} of sub-
modules of C' are cofinal.

Note that in the definition (1.26), the functor Spf(C, {c;}) is the same as Spf(C, {u})
by the cofinality condition in (2).

Notations as above, put C = @C’/ ¢;. We have a surjective homomorphism
C — C/cs. Denote the kernel by ¢5, we have isomorphisms C’/ES >~ (/cs. Then
Spf(c, {Et}) = Spf(C7 {ct})'

Definition 1.27. Let G = SpfC : Nilgp — Ab be a strictly pro-representable
functor, i.e., that FoG is a strictly pro-representable functor, where F' : Ab — Sets
is the forgetful functor. Define the hyperalgebra Hg of G by

HG = HOIHCR(C, R)
Lemma 1.28. There is an augmented algebra structure on Hq.

Proof. Given f € Hg,r € R, define (rf)(x) = rf(x). This gives a natural R-
module structure on Hg.

The group law X x X — X gives a homomorphism m* : C — C®C, where
CC =(C®C,¢;@C+C®c), i.e., as an augmented algebra, C@C is just C ® C,
and the chain of the ideals is defined by {¢; ® C + C ® ¢;}. The multiplication of
Hg is defined as follows. Given &, € Hg, put £ -1 = (£ ® 1) o m*,

C m* CeC £Q@n

This gives an algebra structure on Hg.

R®R=R.
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For r € R, define f. : R®CT — R by f.|r(z) =rz and f.|c+ = 0. This gives
the map i : R — Hg. Define € : Hg — R as follows. Since C = R® C*, any
f € Hg can be written as f = f1 @ fo, where fi : R — R, fo : CT — R. Define
e(f) = f1(1). Tt is easy to see that e oi = idg. Hence we get an augmented algebra
structure on Hg. It is easy to check that HY, = Hom.g(C*, R). [

Definition 1.29. Define a functor (G,,Hg)" : Nilg — Ab by
(GmHe) (N) = (1+ H} @ N)*.
As in the definition of G, (1+ HZ ®gr N)* means the units in R& (H, @ N) C
He ® A of the form 1+ x,x € Hg Qr N, where A= R® N.
Lemma 1.30. The functor (G,,Hg)" is a formal group.
Proof. Since HY = liﬂHomR(C’/ ug, R), and C'/uy is finitely generated projective

R-module, H}, is a flat R-module. So the functor (G,,Hg)" is exact. The second
condition of formal groups is easy to verify. O

Recall that G = SpfC, where C = R® C*. Given N € Nilg, we have
G(N) = Hom,,(C*,N) = @Homa(0+/ct,N)
t

C @HomR(C+/ct,N) = hﬂHomR(C'Jr/ut, N).
t t

Since Ct /uy is a finitely generated projective module, we have Homg(C /u;, N) &
Hompg(CT /us, R) @ N .
So we have
X(N)cC @(HomR(C+/ut,R) QN) = (li_r)nHomR(C’+/ut,R)) ®@N=H} ®N,

here we use the fact that lim and @ commute.

Definition 1.31. Define a natural transformation ® : G = SpfC — (G, Hg)" by
dy : G(N) = (G Hg) (N) = (1 + Hf, ®r N)*™

E—14€.
On the right hand side, using the inclusion G(N) C H,®r N, we identify £ € G(N)
with an element of Hg ®r N.

L For any finitely generated projective R-module P, we have Hom(PY, M) = P @ M, where
PY = Hom(P, R) is the dual module of P. In fact, we have a canonical homomorphism P ® M —
Hom(PV, M) defined by p @ m + (f + f(p)m). If P is free and finitely generated, this map is
obviously an isomorphism. In general, take a resolution 0 - N — F — P — 0, with F is finitely
generated R-module. Since P is projective, this sequence is split exact, so N is also projective,
ie., PON =F. So PV ® NV = FV is also free. By this we see that PV is also projective. The
split exactness shows that we have the following commutative diagram with exact rows:

00— NQM ———>FQM P®M 0

y y 1

0 —— Hom(NV, M) —— Hom(FV, M) —— Hom(PV, M) ——=0

b is an isomorphism by the above discussion. The 5-Lemma shows that a is injective and c is
surjective. Since P and N are symmetric, we can change the roles of N and P to see both a
and c are isomorphisms. Now apply this to Hompg(Ct /us, N) = (CF /uz)V, which is also finitely
generated and projective, as we have seen.
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Lemma 1.32. For any N € Nilg, the map ®y is a group homomorphism.

We first show Lemma 1.32.

Proof of Lemma 1.32. Let A = R@® N be the deduced augmented algebra. Recall
that G = SpfC. By definition, G(N) = G(A) = Homeq(C, A) = Home,,(C, A).
Given &1,& € G(A), then &; : SpecA — G. We need to show that ®x (& + &) =
PN (1) P (E2).

We first check what the morphism &; + &> is. Let A : SpecA — SpecA x SpecA
be the diagonal morphism. We know that A corresponds to the multiplication
homomorphism m : A®@r A — A : m(x; ® x2) = x122. The right triangle of the
following diagram

SpecA

|

SpecA x SpecA

—
—

e §1x8&2

—

-
SpecC/¢; x SpecC /ey ——— G x G G

is commutative, since the composite of the vertical arrows is (£1,£2). This shows
that & 4+ & = + 0 (&1 X &) o A. Since & € Homeqq(C, A) is continuous, there is
t € N such that ¢; factor through C'/¢; for both ¢ = 1,2. So we have the left triangle
of the above diagram. The bottom line of the diagram is obtained from

St

C C/Ct®C/Ct,

where §; is the composite

"
mg

C

cel

C’/ct®C’/ct .

Here my. is the map obtained from the multiplicative structure on X, see the proof
of Lemma 1.28. So &; + &5 corresponds to the following homomorphism

c 8¢ C/Ct On C/Ct 1082

A A=A

Recall (Lemma 1.28) that the multiplication in H¢ is defined as follows. Given
hi,hy € Hg, then hy - ha = (h1 ® hg) o &; for t large enough.

As before, there is an isomorphism

Hg ®p A= Hom.i(C, A)

h®ar— (c— h(c)a).

Suppose &; corresponds to h; ® a; under this isomorphism. The above discussion
shows that & + & corresponds to (hq - ho)ajas. The map G(A) — (Hg ® A)* is
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obtained from the inclusion G(A) C Hom.r(C, A), therefore preserves the multi-
plicative structure. By the definition of ®,, we have a commutative diagram

PN

G(N)

(1+H} ® N)*

G(A) ————— (He® A)*
So @ is a group homomorphism. O
The homomorphism @ is obtained from an inclusion, so it is an embedding.

Next, we will describe the image of @y .

Let m : C ® C — C be the multiplication. It is obtained from the diagonal
morphism A : G — G x G. Since A is a homomorphism of group functors, the
deduced map

m*: Hg — Hg ® Hg

is a homomorphism of algebras.
Proposition 1.33. We have
G(A) = {x € (14 Hf @p AT Iz = x®x}

where m% = m* ®ida : Ho ® A = Hqg ® Ho ® A, and = ® x is identified with the
image of x ® x under the map idg e, ®ma : HoQHe®ARA - Ha @ Ho® A.

Proof. Given (p : C — A) € G(A) = Homq,(C, A), then p(1) = 1 since p respect
the augmentation structure. Since p is a an algebra homomorphism, we have a
commutative diagram

C®C m C
lp@w lp
ApA—"4 s 4

Given z € Hg ® A = Hom.(C, A), x corresponds a homomorphism & : C' — A.
Assume & respect the augmentation, i.e., (1) = 1. Then & is a homomorphism of
commutative rings with 1 if and only if the above diagram commutes for p = Z,
ie, z € G(A) if and only if &m = m4 o (2 ® &). It is easy to see that

miy(z)=2Fom, z®xr=myo(Z® 7).
Hence we get the proposition. (|

We begin with some general notions.

Definition 1.34. Let S be an augmented R-algebra. Let ST be its augmentation
ideal. We define a group functor

(GpS)" : Nilg —> Ab

by
(GmS)N(N) = (1+ ST ®@r N)*.
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As we saw in Lemma 1.20, if ST is a flat R-module, then (G,,S)" is a formal
group. The construction S — (G,,S)" is functorial.

Although S — S® S, = — x®x is not an algebra homomorphism (not additive),
we still have a morphism of group functors

(1.6) (GS)" = (G (S ®r SHN

T—= T XX

Explicitly, the map (1.5) is defined by x = 14+y— @z =14+1Qy+yR1+yRy
forze (1+ST@N)*,ye ST@rN. Hare 1®@y+y®1+yQy e [(R®ST)®
(STRR)®(ST@SH]@N =(S®S)" ®@N. It is easy to check this is a morphism
of group functors directly.

For any N € Nilg, we associate to N a new nilpotent algebra N such that
as an R-module, N is just N, and the new multiplication on N is defined by
(N®)2 = 0.

Definition 1.35. For any functor H : Nilg — Sets, we define the Lie algebra
Sfunctor of H

LieH : Nilgp — Sets
by LieH(N) = H(N“b).
If H is left exact, there is a canonical abelian group structure on LieH (N).
Note that H(N%) = tg(N). The difference between the Lie algebra functor

and the tangent functor is that the Lie algebra functor is defined on Nilg, while
the tangent functor is defined on Modg.

Definition 1.36. A sequence of group functors Hy — Ho — Hj3 is called exact if
for any N € Nilg, the sequence

of abelian groups is exact.

By definition of LieH, the functor Lie is exact.

Now suppose we are given a pro-representable formal group G = SpfC. We have
defined Hs = Hom.g(C, R).
Remark: Hg has a bi-algebra structure defined by m* : He — Hg ® Hg, so
SpecH¢ is a group scheme. In literature, SpecHg is called the dual of G. In our
treatment, this plays no role.

Recall that in the last lecture we showed that there is an embedding of formal
groups G :— (G,,Hg)" and for any N € Nilg, the image of G(N) is

{re(l+HL@N) Imz=00z}.

The above results are summarized in
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Theorem 1.37. We have the following exact sequence of formal groups

Y172

04>G4>(GmHg)A (Gm(Hg(X)Hg))A

where v1 s the morphism induced by m* : Hg — Hg ® Hg, and o is the map
(1.5), i.e., the morphism induced by A: Hg — Hg ® Hg, Az) =z ® x.

In the remainder of this section, we assume that R is a Q-algebra. If N € Nilg,
y € N, then exp(y) = >~ L7 is well-defined. Let S be any augmented algebra,

n=0
H = (G,;,9)". Tt is easy to see that we have an isomorphism

[ST@N]" = H(N)=(1+ ST ® N)*
y — exp(y)

with inverse 1+ z + log(1 + 2). The left hand side [ST ® N]* means ST ® N with
additive abelian group structure. We also have an isomorphism

LieH(N) = (14 ST @ N**)* =~ §+ @ N = [§+ @ N]*,
l+y—y.
So we have an isomorphism
(1.7) exp : LieH ——— [T .

Proposition 1.38. Assume R is a Q-algebra. Then for any strictly representable
formal group G, there is an exponential map expy : LieG — G, which is an iso-
morphism functorial in G

Proof. By Theorem 1.37 and the fact that Lie is an exact functor, we have

(#) 0 —> LieG —> Lie(Gy, Hc)" Lie(Gy(He ® He))"
|
| exXpg \Lexp lexp
¥ Y1—72
0 G (GpHg)) —————— (G, (Hg @ Hg))N

We check that the right hand side square is commutative. Since ; is obtained from
an algebra homomorphism, v; commutes with exp by functoriality. We check that
2 commutes with exp. Given N € Nilg, the homomorphism 7, is defined by (1.5).
If we identify Lie(G,,Hg)"(N) = (1+ H} @ N*)* with H, @ N by 1 +y — v,
then Lie(y;) is defined by y — 1 ® y + y @ 1 (note y @ y = 0).

(HE @ N**)t ————— (Hg ® Hg)* ® N

\chp lCXP

(1+ Hf @ N)* (1+ (Hg ® Hg)* @ N)*

So we have to check
exp(l®y+y®1) = exp(y) ® exp(y).
Note that exp(1®@y) =3, (1613;71!;)” =1 ® exp(y) since exp(y) = >_,5 % So

exp(1®y+y®1) = exp(10y) exp(y®1) = (1@exp(y))(exp(y)®1) = exp(y)@exp(y).

Consequently, we get the commutativity of the right hand square of diagram ().
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The last two vertical arrows of diagram (x) are isomorphisms by (1.6), so this
diagram induces an isomorphism expg : LieG — G. O

Theorem 1.39. Assume R is a Q-algebra. Let G = Spf(C, {c:}) be a strictly pro-
representable functor, such that for t large enough, ¢; C (C1)? and C*/(C*)? is a
free R-module of rank d. Then G = G4.

Proof. By definition, LieG(N) = Hom,,(C*, N%). Since (N%*)? = 0 and ¢; —
(C*)? for t large enough, we have

LieG(N) = Home,(CT/(C*)%, N) = N @ (CF/(CT)})" = (N, ).
So LieG = GZ. Proposition 1.38 shows that G = LieG, hence the theorem. O

Corollary 1.40. Let R be a Q-algebra. If G = SpecA is a group scheme, with A
a nilpotent R-augmented algebra which is finitely generated as an R-module, then

G=0.

Proof. Assume first that R is a field k. Take C' = A with ideals ¢; = 0. Then the
condition of Theorem 1.39 is satisfied automatically. Hence, by Theorem 1.39, we
have G = G? = Spfk[[X1,..., X4]]. If d # 0, AT is not nilpotent. Hence d = 0, G
is trivial.

For the general case, let m be any maximal ideal of R. Denote the quotient map
R — R/m by k. Then koG = SpecA/mA is a group scheme over the field R/mR.
The above discussion shows A/mA = R/mR. So AT /mA* = 0. Then Nakayama’s
lemma shows A}, = 0. Since this is true for all m, we have At = 0. O

Remark. 1. The corollary is false if R has characteristic p > 0. Consider the
functor G : Nilg — Ab defined by G(N) = {n € N|n? = 0}. This is well-defined
since (n1 4+ n2)? = nf +nb. It is easy to see that G = SpecR[X]/X?. Then G is a
non-trivial finite group scheme.

2. The corollary is equivalent to the following Theorem of Cartier. Any finite group
scheme over a field of characteristic 0 is étale.

Definition 1.41. Let R be any commutative ring with 1. Let I be an R-algebra
(maybe without 1). A divided power (pd) structure on I consists of a collection
of maps v; : I — I, 1> 1, such that

(1) 1 (2) = 73 nlya(z) = 2", n > 1; 7 (az) = 6" ().

V(@ +y) = S0 (@) i (@) + (@) + 0 (y)-

'Vp(x)’Yq(x) = (p—;q),qu(x).
(

Y (Vq(@)) = %%q@)'

If there is an N € NT such that v, (z1) ... Vo, (x,) =0 for allmy +---+n. > N
and all x1,...,x, € I, the divided powers are called nilpotent.

If we define vo(z) = 1, then we can simplify formula (2). But note that I need
not contain 1.
Example: If R is a Q-algebra, then any R-algebra I has a pd structure defined by
Yo (x) = “;L—T,L This is the example which motivates the definition.

A non-trivial example in introduced next.
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Let R be a commutative ring with 1. Let p be a fixed prime number. Assume
that for any prime number [ # p, [ is invertible in R. An example satisfying
these conditions is Z,). Let S be an R-algebra with 1. Consider I = pS. Given

x=py € I with y € S, define 7, (x) = %y",n > 1.

Claim: ~,, defines a pd structure on I.
First, we check that 7, is well-defined. It is easy to see the denominator of 27 is
prime to p, hence it makes sense in R by our assumption. If pz = 0, because p|Z;
in R, it is easy to see

p" n_ P on
H(y +2)" = PVEAR

So v, () is independent of the choice of y.

Next, we check that ~y, (x) satisfies the relations (1)-(4) in Definition 1.41.

n

If R and S have no Z-torsion, then S C S®zQ. Under this inclusion, v, (z) = 7.
So v, satisfies (1)-(4).

For the general case, we only show

n(e+y) = Z% )i () + () + 1 ()-

The other formulas are S1m11arly proven.

Given z,y 6 I, define a map « : pZ[X,Y] — pS =1 by a(X) = z,a(Y) = y.
Let v, (t) = L4, t € pZ[X,Y]. Then v,(a(t)) = a(v,(t)), for all t € pZ[X,Y].
Mm@ +y) = m(@X +Y)) = a(v,(X +Y)). Since we know the corresponding
formula holds in pZ[X, Y], the formula holds also in pS.

In this lecture, we treat divided power structure more seriously.

Definition 1.42. Let R be a commutative ring with 1 and let I C R be an ideal.
A collection of maps v, : I — I,n > 1 is called divided powers(pd in French) if
the following relations are satisfied:

Yu(rz) =r"y,(z), re€R, x€l;

nly,(z) =
Z% ) n—i(
i=0
where we set yo(x) = 1;
p+q
) = (71 )l

_ (gt
Yp(7q(®)) = p!(q!)*q’)’pq( )-

More generally, if I is any R-algebra, v, : I — I is called divided powers if this
sequence defines divided powers on 0@ [ in the ring R@ I. This definition coincides
with Definition 1.41. We can define nilpotent divided powers as in Definition 1.41.
Note that if ,, are nilpotent divided powers, then I is nilpotent by the relation
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nly,(z) = 2™,
Example: If R has no Z-torsion, then R C R® Q. So % € R® Q is well-defined.
Suppose [ is an ideal of R, then I has divided powers if and only if % el.

Proposition 1.43. Let I,J be two R-algebras. Suppose I has divided powers
{},n > 1. Then there is a unique divided power structure {¥,} on I @ J
such that 3, (x @ y) = vn(x) @ y™ for allz € I,y € J.

The proof is omitted but it is nontrivial.

Let R be a Z,)-algebra. We consider the polynomial ring A = R[{X;},i €
M] in possibly infinitely many indeterminates h;,i € M, where M is a set. Let
a = ({XP},i € M) be the ideal generated by X’. Let S = A/a. Then S is an
augmented R-algebra. Put z; = X;(mod a). Then the augmentation ideal S* of S
is generated by the x;.

Proposition 1.44. There is a unique divided powers structure {,} on ST which
satisfies:
(i) = 27 /n! fori <p;  yp(zi) = 0,i > p.

Proof. First, we assume R has no p torsion. For y € S, we can write y =
Y 1<p<m @rZy, where a, € R and Z, has the form

Xile XP 0<e; <p.
Now y € ST means Z,. # 1. So

n o __ J1 r7j1 Jm 7Jm
Yy = Z alzl "'amZm'
J1i+FIm=n
Note that for j; > p, Z]* =0, hence
yn _ 1 jl jl Jm 7Jm
=D oAy
T itdame=n JL T Ime
Ji<p

makes sense and is an element of ST. We are done.

For a general R, take a surjection R; — R such that R; has no Z torsion. Sim-
ilarly, we have Sy, S’f . The above discussion shows we can define divided powers,
say Yn, on Si". Let b = Ker(R; — R). Then S” — ST has kernel bS; NS = bS;".
We have St = S]/bS; .

Claim: 4, is well-defined on equivalence classes defined by be , le, ify €
St h e bST, then 7, (y) = Y (y + h).

In fact, we have
Ty + 1) = An (W) + D An—i(w)¥i(h).-
i>1
But h € bS] has the form > a,Z" with a, € b, Z, are monomials in x;, so for
i>1,

~ 1 L . .
W= Y el a2 € bt
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The claim follows.

The claim shows that we can define v, : S — S7 by the reduction of 4,. We
are done. O

Theorem 1.45. Let k be a field with chamctem’sticp There exists a set {a; € k|i € M},
where M is an index set, such that a —-a™,0 < e; < p, make a basis of k over
kP. Such a set {a; € kli € M} is called a p- baszs of k. A p-basis exists.

We omit the proof.
Let {a; € k|i € M} be a p-basis of k. Let | = k'/P. We can write

U= k{Ti}iep ]/ (T7 — ai).
Then
L@yl = k{T, T} iepd) /(T = ai, T}Y — ai).
If we put X; =T; — T/, we can write

l®l _k/’[{TuX}zeM]/(Tp aivXp I{Xi }zeM]/(Xp>

By Proposition 1.30, we can define a divided power structure on (I®y)". Consider
the multiplication [ ® I — . We use I to denote the kernel of the multiplication
map. It is not hard to see that the X; generate I, hence I = (I ®; )*.

Corollary 1.46. The kernel of the multiplication | @ I — 1 has a divided power
structure (not unique, relies on the choice of a p-basis).

Remark: If M is infinite, the kernel I is not nilpotent, since X;, --- X;, # 0 for
different ;. Corollary 1.46 shows that we can define a pd structure on non-nilpotent
ideals.

We can generalize Proposition 1.38 as follows.

Lemma 1.47. Let F = (G,,S)" for an augmented R-algebra S. Let N € Nilg
with nilpotent divided powers {y,}. Then we have an isomorphism

exp: LieF(N) = (1+N?®®r ST — (1+ N ® S+)*

1+n®s»—>2w(n)®sl
1>0

Proof. By Proposition 1.29, for I > 1, n® s — v;(n) @ s' defines a divided power
structure on N ® S*. It is easy to see that

(N@SHT - (1+N®SH)~*
nes— Z’yl(n) ® st
1>0
is a group homomorphism. It is an isomorphism since it has an inverse
1-n®s— —Z(l —Dly(n) @ s
1>1

Since LieF(N) = (1 + N® @ ST)* is isomorphic to (N ®g ST)* by 1+ 1y — y,
we are done. 0



Lectures on p-Divisible Group 23

Proposition 1.48. Take N € Nilg with nilpotent divided power structures 7, :
N — N. Let G be a strictly pro-representable formal group. Then we have an
isomorphism

expy : LieG(N) G(N)

functorial in (N, {vn}) and G. This exponential map is called the Grothendieck-
Messing exponential.

Proof. The proof is the same with the proof of Proposition 1.24, except that we
have to replace the isomorphism (1.6) by Lemma 1.47. O

Let G : Nilg — Ab be a strictly pro-representable formal group such that
G = SpfC. Given N € Nilg, and divided powers v = {~v,} on N. In Proposition
1.48, we showed that we have the Grothendieck-Messing exponential isomorphism

LieG(N) — G(N).

Let us be given a surjective homomorphism p : S — R of rings with 1. Let
a = Kerp. Suppose a has pd structure § = (4,,). For any N € Nilg, we know
that a ®g N has pd structure Sm(a ® ) = dm(a) ® ™. Since N is nilpotent, 5 is
nilpotent. We have an exact sequence

0—>a—S—R—D0,
hence
a®s N—> N — N®g (S/a)=N/aN — 0.

Let G be a strictly pro-representable formal group. Since G is exact, we have the
exact sequence

PN

(1.8) Gla®s N) —> G(N)

G(N/aN) ——0

Note that we have an isomorphism LieG(a®s N) = G(a®g N). The sequence (1.7)
is also left exact if NV is a flat S-module.

Fix a prime number p once and for all.

Lemma 1.49. Let R be a ring with 1. Let G be a strictly pro-representable formal
group over R. Given N € Nilg. Assume

(i) 2P =0 for each x € N,

(i) p- N =0.

Thenp-G(N)=0.

Proof. Let H = (G, Hg)". We know that G < H. So it suffice to show that
p-H(N)=0. Consider 1 +y € H(N) = (1+ Hf, ® N)* with y € H;, ® N. Then
(1+y)? =1+ yP =1 by the assumptions. We are done. |

In the sequence of (1.7), if we assume p-a = 0, then the divided power structure
shows a? = pld,(a) = 0 for any a € a. So condition (i) in Lemma 1.35 is automati-
cally satisfied. Hence p- G(a ®s N) = 0. In particular, p - Ker(py) = 0.

Definition 1.50. Let R be a commutative ring with 1 such that p is nilpotent in
R. Let G be a formal group over R such that G = AdR. Consider the multiplication
by p map pc : G — G (i.e., for any N € Nilg, x € G(N), pa(z) = p- z).
Then pg is defined by formal power series fi(X1,...,Xa),..., fa(X1,...,Xaq) €
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R[[X1,...,X4]] with f;(0) = 0. The formal group G is called a p-divisible (formal)
group if each X; is nilpotent in

R[X1,..., Xa]l/(A(X1, ..o Xa), -, fa(Xa, o, X))

Example: Let K be a field of a characteristic p. Let A be an abelian variety over
K. Then the completion of A along the origin

A(N) = Ker(A(K ® N) — A(K))
is a p-divisible group.
Theorem 1.51 (Weierstrass Preparation Theorem). Assume that G is a p-divisible
group. Notations as in Definition 1.50. Then the homomorphism

R[[X1,...,X4]] = R[[X1,...,X4]]

Xi— fi
18 faithfully flat, finite, and
R[[Xy,.... Xa)l/(fi(X1, ... Xa), s fa( X, ..., Xa))
s a finite projective R-module.
Recall that a ring homomorphism A — B is called faithfully flat if any sequence

of A-modules
0—-M—N—P—0,

is exact if and only if
0 >M®asB—->N®sB—>P®sB
is exact. The proof of Theorem 1.51 can be found in [Z].

Corollary 1.52. The kernel G(p) of pa is SpecR[[ X1, ..., Xdll/(f1,-.., fa). This
G(p) is a finite flat group scheme over R.

Note if p: A — B is a faithfully flat morphism of rings, then p is injective. In
fact, by faithful flatness, it suffice to show p®4 B: A®4 B — B ® B is injective.
But p ® 4 B has a section by ® bs — b1ba, hence it is injective.

Corollary 1.53. Let G be a p-divisible group. Then pg is “surjective” in the
following sense. Let F : Nil — Ab be any left exact functor. Given

G o =

F

—_—

B
such that o - pg = B - pg, then a = .

Proof. For simplicity, we write X for (Xy,...,Xy) and f = (f1,..., fa). Note that
Hom(G, F) = ljm Hom(SpecR([X]/ (X)™, F)

m

= lim F(R[[X]]/(X)™),
where the last equality follows from Yoneda’s Lemma. So given «, 8 € Hom(G, F),
there are two projective systems {ap,},{8m} with am,Bn € F(R[[X]]/(X)™).
Since
P : R[[X]] = R[[X]]
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Xi— fi
is faithfully flat,
R[[X]]/(X)™ — R[X]]/(/))™
is also faithfully flat, hence injective. Since F' is left exact, we have an injective
map
F(R[X]]/(X)™) — F(R[[X]]/(/)™)-

This map is induced by pg;, so it maps o, to o, opg. The assumption means that
A 0PG = Bm opa. The injectivity implies o, = B, for any m. Hence a = 5. O

Lemma 1.54. If G is a p-divisible group over S, then foG is a p-divisible group
over R.

Proof. Suppose that as an S-functor, the multiplication by p map pg : G — G is
defined by (f1,..., fa) with fi € S[[X1,...,Xa4]]. Let fi € R[[X1,...,X4]] be the
image of f; under the map f : S — R. Then py,g : foG — foG is defined by
(f1,-.., fa). Now the assertion is clear. O

Lemma 1.55 (Rigidity Lemma for p-Divisible Groups). Let f : S — R be a
surjective homomorphism, denote its kernel by a. Assume that there are natural
numbers n,m such that p"S = 0 and a?” = 0 for all a € a. Let G be a p-divisible
group over S. Let F be a strictly pro-representable formal group. Then the map

Homg (G, F) — Hompg(feG, fo F')

a+— fox

is injective, i.e., if a,B : G = F are two morphisms of group functors such that

fet = fof3, then a = (3.

Proof. We first assume m =n =1, i.e., p-a =0 and a? = 0 for any a € a. Given
any N € Nilg, we have a commutative diagram (note that F' is an exact functor)

G(N) — = G(N/aN)

s ~
N —PN ~
e iaN—ﬁN J/O‘N/aN_ﬂN/aN

0 —> F(aN) —> F(N) ——> F(N/aN)

Since N/aN is an S/a = R-algebra, then by assumption, an/qn = By/an- Since
the above diagram is commutative, ay — By factors through F(aN). Because
p-aN =0 and for any € aN we have P = 0, we conclude that p- F'(aN) = 0 by
Lemma 1.49. So p-ay = p- By for any N. Since a is a group homomorphism, we
have p-ay(z) = ay(pg(x)). Hence ayops = Byopg for any N. So aopg = Bopg.
Now by Corollary 1.53, we get a = . This completes the proof for m =n = 1.

For m = 1 and general n, we can reduce the lemma to the case m = n =1 by
considering the following sequence

S=S8/p"S — S/p"~ 'S — .- — S/pa — R.
For a general m, put a, = (z”" |z € a). The lemma reduces to the above case on

considering
S=5/ay = - —S/ag = S/ao.



26 Thomas Zink

Lemma 1.56. Suppose f : S — R is faithfully flat. Then for any S-module M,
we have an exact sequence

T —T2

0— M —MQ®s R M®s R®s R,
where the map M — M ®g R is defined by m— m® 1 and mi(m@r) =mr®
1,m(mer)=me1ler.

A proof can be found in [Z]. It is omitted here.

Proposition 1.57. Suppose that f : S — R is faithfully flat and p-S = 0. Assume
that r? € S for any r € R (note that this makes sense, since f is injective by faithful
flatness). Let G be a p-divisible group over S. Let F be a strictly pro-representable
formal group over S. Then the map

HOms(G, F) — HOHlR(f.G, f.F)

a— fea
is bijective.

Proof. We first show the surjectivity of the given map. To show the surjectivity,
given a homomorphism & : feG — foF, we want to construct a homomorphism
«a: G — F such that fea = a.

Let 71, m2 be the homomorphisms R — R®g R defined by 71 (r) = r®1, ma(r) =
1@r. Let Grgor = (m1f)eG = (m2f)eG (the last equality holds, because, f(s)®1 =
1® f(s) for s € S, i.e., the S-module structures on R®g R defined by m f and o f
are the same). Define Frg g similarly. Let &; = (m;)e@ : Grgsr — Fregr for
i=1,2.

Claim: &1 = ao.
Consider the multiplication map m : R ®s R — R defined by m(r; ® r2) = r1ra.

By definition, mm; = mms = idg. So & = (m7;)e@ = med;. In particular, we have
Me(t] = Mela. This means &y and as have the same image under the map

® : Hompgsr(GRresr: Frosr) — Homg(me(Gresr), Mme(FrResR)),

Hence to prove the claim, it suffice to show @ is injective. Let a = Ker(m). Note
that m is surjective. Hence by Lemma 1.55, it suffice to show that p-a = 0 and
a? =0 for any a € a. Now p-a = 0 holds by assumption. It is easy to see that a is
generated by r1 ® ro —rg ® 11, 71,72 € R. Since rP € S for any r € R, we have

(rn ®sry—ro®@sr)P =10 @srh —rf @grd = 0.
We get the claim.

For any N € Nilg, by Lemma 1.56, we have an exact sequences

T2

0——=N—>N®sR N®s R®s R .
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Applying the exact functors G and F, we get the following diagram with exact
rows,

0 G(N) G(N ®s R) ™ L G(N ®s R®g R)
I
| o \Ld l&l—dg
V T —T2

0 F(N) F(N ®s R) F(N ®s R®s R)

It is easy to see that

T; 0 (v = Qyj O Ty,
so we get the commutativity of the right hand square. Then it is follows that there
is an o : G(N) — F(N) such that the diagram is commutative. So we get the
surjectivity.

If we have two «, o/ € Homg (G, F) such that fea = fea' = &, then it is easy to
see a = o by the above commutative diagram. We are done. O

Corollary 1.58. Let k be a field of characteristic p. Put | =kY?. Let G (resp.F)
be a p-divisible formal group (resp. a strictly pro-representable formal group) over
k. Then

Homk(G, F) — Homl(Gl, Fl)

is a bijection, where Gj = i4G, i : k — 1 is the inclusion.

This is a direct consequence of Corollary 1.57.
Remark: This corollary is false if G is not a p-divisible group. For example, take
G =F = G,. Since pa = 0, G, is not a p-divisible group. It is easy to see the
corollary is false by Proposition 1.22.

In the above remark, we saw that G, is not a p-divisible group. We claim that
G=G,, isa p-divisible group over R if p- R = 0. For any N € Nilg, any n € N,
(1+mn)P =1+4+nP. Hence, the multiplication pg is defined by f(X) = X? € R[[X]].
Then X is nilpotent in R[[X]]/(X?). Hence G,, is a p-divisible group. In particular,
if k£ is a field of characteristic p, then G is a p-divisible group over k. Generally,
we have

Proposition 1.59. Let k be a field of characteristic p. If G is a formal group such
that G = A' and pg is nontrivial, then G is a p-divisible group.

Proof. Suppose pg is defined by a power series f(X) € k[[X]]. Since pg is non-
trivial, f(X) is non-zero. We can write
f(X)=X"ay+ar X +--+), ai€k, ag#0.
Then ag + a1 X + - -+ is a unit in k[[X]]. Hence
KX/ (f(X)) 2 K[[X]]/(X™),
and X is nilpotent in k[[X]]/(f(X)). O



28 Thomas Zink

2. WITT RINGS AND DISPLAY
Fix a prime p once and for all. Consider the following polynomials with coeffi-
cients in Z,
Wo = Xo,
Wl = Xg +pX1a

n n—1
W, =Xy +pXV  +- +p" 1 XE_ 4+ p" X,

Lemma 2.1. Let R be a commutative ring with 1 such that p is invertible in R.
Then for any n > 0, the map

(Wo,...,W,): R"* — R+,
(iE(), e ,{I?n) — (Wo(xo),Wl(xo,xl), . 7Wn($07 e ,{En))
is bijective. The R"1 on the left inherits a new ring structure from the usual ring

structure of R" ™Y on the right. Write W, (R) for this new ring structure.

The lemma is easy to see.

In the ring W,,(R), we can write the additive law as
(2.1)

(Xoy-- s Xn) +w Yo, ..., Y,) = (So(Xo0,Y0), -« -, Sn(Xoy - ., Xn, Yo, ..., Y3)).
Here the subscript W means that +y is the additive law in W,,(R) and S; are
polynomials in Z[}%] [Xo,...,X;,Yo,...,Y;] which are uniquely determined by
(22) Wl(SOaaSZ):Wl(X077XZ)+WZ(}/075)/1)7 0<i:<n.
Similarly we have polynomials P; € Z[%] [Xo,...,X;,Yo,...,Y;] such that
(2.3) (Xo, -, Xn) xw Yo, .-, Yn) = (Po, ..., Pp).

Here xp means the multiplicative law in W, (R).

Next, we want to show that the polynomials S;, P; defined above have coefficients
in Z. Consequently, for any ring R, we can define a new ring structure on R"*! by
formulas (2.1) and (2.3) directly.

Proposition 2.2. Let R be a ring without p torsion. Assume that there is a ring
homomorphism 7 : R — R such that 7(x) = 2P (mod p). Consider the map

(Wo,...,W,): R**! — Rprtl

defined as in Lemma 2.1. Consider (ug,...,u,) € R"". Then (ug,...,u,) is
in the image of the map (Wo, ..., W,,) if and only if 7(u;) = u;1(mod p+t) for
0<i<n-—1.

Proof. First we claim that 7(zP") = " (mod p™*1) for any m > 0.

For m = 0 the claim follows from the assumption. For m = 1, 7(2P) = 7(z)? =
P’ (mod p?). The general case can be deduced by induction.

Assume there are x; € R such that u,, = W,,(xo,...,zm). Then

T(Um) — Umt1
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m m—1 m41 m
=7(xh +prl 4 pwn) — (2 A prl ™2l ™ ).
By the above claim, it is easy to see if ¢ < m, we have

r(p'a?" ) =p' @) (mod p™ )
Hence () = U1 (mod p™ L.
Conversely, suppose we are given (ug, ..., u,) € R such that
7(Um) = U1 (mod p™Th).
We will construct z; by induction such that w,, = W,,(zo,...,2m,). First x¢
must be ug. Suppose that we defined zg, ..., z,—1. We have seen that 7(u;,—1) =
(@ +pad " Ay ) (mod p™). S0 —(@f +pat ) =

m m—1
U, —T(Um—1) = 0(mod p™). So there is an z,, € R such that u,, =z +paf

_|_
e p™ Tl 1+ p™x,,. We are done. 0

Corollary 2.3. The polynomials S; defined by (2.1) or (2.2) have coefficients in
7.

Proof. Let A = Z[Xo,...,X,,Yy,...,Y,]. Then A has no p torsion. We first
justify that S; is uniquely determined by (2.2). In fact, A C A® Z[%}, W,(A) C
WMA)@Z[%] and (Wo,...,W,): WMA@Z[%]) — (A®Z[%])”+1 is an isomorphism.
So (Wq,...,W,,) : W,(A) — A" is injective. So S; is uniquely determined by
the formula (2.2).

Define a ring homomorphism 7 : A — A by 7(X;) = X', 7(Y;) = Y. It is easy
to see that 7(f) = fP(mod p).

Now let u,, = W, (Xo, ... Xon) + W, (Yo, ..., Y,). Since S; is uniquely deter-
mined by the formula (2.2), it suffice to show that (ug,...,u,) is in the image
of (Wo,...,W,,) : W,(A) — A"l By Proposition 2.2, we need to check that
7(Um) = Upy1(mod p™+1). This is obvious from

T(W,n (X)) = Wy 1 (X)(mod p™*?).

We can similarly prove that P; has coefficients in Z.

The above results are summarized in

Theorem 2.4. The polynomials defined by (2.1) and (2.3) have coefficients in
7. For any ring R (possibly without 1), the set R" ™' equipped with addition and
multiplication defined by (2.1) and (2.3) forms a ring W, (R).

Proof. We have to show that the addition and multiplication satisfy the associative
law and distributive law. But these laws are just identities in .S;, P;. These identities
hold if p is invertible in R. Since S;, P; have coefficients in Z, these identities are
independent of the choice of R. We are done. O

Definition 2.5. Let W(R) be the set {(zo,...,%n,...)|Ti € R} equipped with the
addition and multiplication defined by (2.1),(2.3). Then W(R) is a ring. It is called
the Witt ring of R.
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By definition,
W= (Wp;n>0): W(R) = ][R
0

is a ring isomorphism. For any n, we have a map
W(R) = Wn(R)

(xo,21,...) — (T, ..., Tpn).
It is a ring homomorphism, by definition.

Lemma 2.6. The map
V.W(R) - W(R)
Vizo,z1,...) = (0,20, 21,...)
is a group endomorphism of the additive group (W(R),+). It is called the Ver-
schiebung morphism of W(R).

Proof. For any £ € W(R), it follows from the definition that W,,(V¢) =0 if n =0
and W,,(V¢) = pW,,_1(€) if n > 0. Using the fact that W,, : W,,(R) — [[; R is a
ring homomorphism, it is easy to see that

(2.4) Wn(vf + VTI) = Wn(v(§ +m), ¥n>0.

If R has no p torsion, we deduce that V¢ + V' = V(£ +n) from (2.4), since
W : W(R) — [[,° R is injective.

For a general R, take a surjective ring homomorphism 7 : S — R with .S which
has no p torsion. Then W(w) : W(S) — W(R) is a surjective ring homomorphism
and 7 commutes with V. Given &, € W(R), let £,7 € W(S) be such that 7(€) =
¢,m(77) = n. By the above discussion, we know that V& + Vi = V(€ + 7). Applying
7 to both sides and since 7 commutes with V we get V¢ + V= V(¢4 7). O

Proposition 2.7. The construction R — W (R) has the following properties:
(a) if f: R— S is a ring homomorphism, then the map

W(f) : W(R) — W(S),
(zo,x1,...) = (f(zo), f(21),...)

is also a ring homomorphism;
(b) for every n, the map
W, : W(R) — R

n—1

($0,$1,...)b—>x8 —‘,—pxzf +...+p”—1xﬁ_l+pnl‘n
s a ring homomorphism.

Lemma 2.8. Define a map []: R — W(R) by [z] = (2,0,0,...). Then

(1) [2]ly] = [zy] for any z,y € R.

(2) (l‘o, L1,--- ) = ZZO:O V”[xn].

Proof. (1) If R has no 1, we can embed R into Z& R. Then we can assume R has 1.
Consider the ring homomorphism f : Z[X,Y] — R defined by X — z,Y — y. Ap-
plying the functor W, we get a ring homomorphism W (f) : W(Z[X,Y]) — W(R).
If we know that [X][Y] = [XY] in W(Z[X,Y]), then applying the homomorphism
W(f) we get [z]ly] = [zy].
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Consider the injective map W : W(Z[X,Y]) — [[;” Z[X,Y]. By definition,
W, ([X]) = X?". So W,([X][Y]) = W,([XY]). Now by the injectivity of W, we
deduce that [X][Y] = [XY]. We are done.

(2) Using the same method as in the proof of Lemma 2.6, we can assume R has
no p torsion. Then it suffice to show

(2.5) W, ((z0, 21,...)) = W, (Z Vi[m]) . Vn>0.

i=0
Since W,, is a ring homomorphism, we have

W (Y V) = Y Wa(V ).
i=0 i

We saw in the proof of Lemma 2.6 that W,,(V¢) = 0 if n = 0; W,,(V€) = pW,,_1(€)
if n > 0. So if n = 0, both sides of (2.5) are equal to zo. If n > 0, W, (Vxi]) =
PW,_i([zi]) = pixfn_l if i <n and W, (Vx;]) = 0 for i > n. Then it is easy to
check the equality of (2.5). O

Definition 2.9. For any £ = (xg,x1,x2,...) € W(R), by (2) of Lemma 2.8 we have
¢ = [xo]+"Yn withn = (z1,xa,...). Define the Frobenius map ' : W(R) — W(R)
by

Fe = [ag] +pn.
Lemma 2.10. The Frobenius map is a ring homomorphism.

Proof. By definition of ¥, we have
Wn(Fg) = W, ([zg]) + pWn(n)

n+1 n n—1
=z +pll +p2b A+ p ang) = Wi (6).

So W, (F& 4+ 7¢') = Wi (5€) + Wi (') = Wpi1 () + Wi g1 (§) = W1 (E+ ) =
W, (F(¢ + ¢)). Similarly, W,, (FEF¢") = W, (£(£€)). As in the proofs of Lemmas 2.6
and 2.8, we can assume that R has no p torsion. Then the injectivity of W implies

that F€ 4 F¢" = F(€ 4+ &) and F¢Fe' = F(¢¢). U
Lemma 2.11. We have
(a) FoV =pj;

) (V€)= ) for &,n e W(R).

Proof. (a) Since W, (¥°V¢) = W, 1(Y€) = pW,,(£), we are done since we can
assume R has no p torsion.

(b) We have W,, ((Y¢)-n) = W,(VOOW,,(n) = pW,,_1 ()W, (n) forn > L and 0 if n =
0. On the other hand, if n > 1, W,,(V(¢ - ) = pW,,_1 (¢ - ) = pW,,_1 ()W, (n).
If n =0, W,(Y(¢-n)) = 0. We are done. O

Lemma 2.12. Given x € R, put £ = p[z] — V[zP]. Then all components of ¢ are in
p-R,ie,€W(p-R).

Proof. Without loss of generality, we can assume that R has 1 and has no p torsion.
It is easy to check that Wy(¢) = pz, and for n > 1 we have

Wo () = pa?" — Wy (Va?]) = pa?” — pW,_1([27]) = 0.
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Write £ = (£o,...,&n,...). We will show that p|&; by induction. We know px =
Wo(&) = &. So p|&. Suppose for n > 1, we have shown p|&g,...,E—1. Then
0=

W (&) = 58" +p€fﬂ71 -4 p" P +p"E,. So by the induction assumption,
p T p"E,. We are done. O
Proposition 2.13. Let R be a ring such that p- R = 0. Then
Hzo, 21,...) = (ah,27,...).

Proof. By Lemma 2.8 (2) we have

(o]
(zo,21,...) = > Vaal.
n=0
Hence -
Fwo, 21, ) = o] + Z V).
n=1

Note that for n > 1 we have FV™ = pV" ! and V is an endomorphism of the

additive group of W (R), hence commutes with p. By definition [zq] = [z}], con-
sequently .
Flag,a1,...) =[]+ V" plag).
Since p - R = 0, we have p[z,] = V[z2] by Lerr?r;; 2.12. So we get
Flag,wr, .. ) = Bl + > V'al] = (af,2f,...).
n=1
The last equality follows from Lemma 2.8 (2). O

Example 2.13.1. In the ring W (F,), the Frobenius is the identity map by Propo-
sition 2.13 since for x € IF, we have 2P = z.
Recall we have fixed a prime number p.

Definition 2.14. A ring R is called a perfect if p- R = 0 and the map R — R,
x +— xP, is a bijection.

Proposition 2.15. Let R be a perfect ring. Let A be a ring with an ideal a. Suppose
there is a positive integer ¢ such that a® = 0 for every a € a and p° =0 in A. Then
for any ring homomorphism « : R — A/a, there is a unique ring homomorphism
B: W(R) — A such that the following diagram is commutative

WER) - -2 - -2
lwo l
R = Ala

where ™ : A — A/a is the canonical projection.

n n—1
Proof. Consider W,, : W(A4) — A, W, (z0,...,ZTp,...) = ab +pz} +- -+
p"x,. By our assumption on the integer ¢, it is clear that for n large enough,
W (zo, -+ ,Zn, ) =0if 2; € a. We fix one such n. Then the map

W, : W(A) — A
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factors though W(A/a), i.e., we have the following commutative diagram

W(A) — 4
W, -~
iw(ﬂ) T lw
W(A/a) — " Ala

The lower triangular is commutative because W,, : W(A/a) — A/a is defined by
the same formula. Since p- R = 0, the Frobenius map ¥ : W(R) — W(R) is defined
by ¥(ro,r1,...) = (r5,77,...) by Proposition 2.13. It is an isomorphism because R
is perfect. So we can consider ¥~ ". We have the following commutative diagram

W(R) — > W(R) L w(Afa) s 4
lwn lw/
R C > A/a

Define 8 = W,, o W(a) o F . Since W, (F€) = W, 1(€), we have W, o F~ " = W,.
Hence mo S =moW, o Wi(a)o " = aoW, by the above diagram.

Now we prove the uniqueness. For r € R, consider 3([r]). Let r,, = 7'/P". Then

n
—_~

Fﬂl([r])/f_/[rn]. We have W («a)([rn]) = [a(ry)]. Moreover Wn([a(rn)]) = a(rn)p ,
where a(r,) € A is any lift of «a(r,). So

n
—~—

B([r]) = a(rt/?")
Let 8/ : W(R) — A is another homomorphism such that 7o 8 = o o Wy. Then
B'([rn]) is a lift of afr,]. So

B([r]) = B'([ra)?" = ' (I5']) = B'([r)
By Lemma 2.11 (a), we have FoV = p. In our case, we can show VoF = p on W(R)
too. In fact, by Proposition 2.13 and Lemma 2.6, for n = (rg,71,...) € W(R) we
have
VF(’I"Q,’I“l, . ) = (0,7‘8,7“11),. . )
Then Wo (V) = 0 = pWo(n), Wi(Vn) = pah = 0 = pWi(n). Inductively,
W,,(Vfn) = 0 = pW,,(n). Hence VF = p.

By Lemma 2.8, for any element { = (x9,21,...) € W(R), §{ = SV z] =
ZVlFl[x;/pi]. By the above discussion, we have VF = FV = p. Hence &
S pt [x;/pl]. Since we know S and 3’ agree on [r]| for any r € R, we have 3(¢)
B(E).

Corollary 2.16. For any positive integer m, we have a homomorphism W (F,)
Z/p™Z such that

oo

L ~Z/p™Z
I i
F,— . 7/p7
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is commutative. Hence we have a homomorphism
W(F,) — @Z/me = Zp.

Remark 2.16.1. In fact, one can show that the map W(F,) — Z, is an isomor-
phism.

Next, we consider the formal group associated to a Witt ring. Fix a ring R. We

have a functor
W : Nilg — Ab
N — W(N).

This functor is clearly exact. But it is not a formal group, since W(N) is not always
equal to UW(N;), for N = UN,. The reason that this equality fails is that W (N)
has infinite length in general. Hence, for (ng,nq,...), it is impossible to find one ¢
such that ng € N; for all k. For any N € Nilg, we define

W(N) = {€ = (w0, 21,...)|z; = 0 for i large enough} .
For a general ring S, W(S) is not even a group. For example,

2]+ [y =(..,Si(z,0,...,4,0,...),...).
Although [z], [y] have length 1, [x] + [y] may have infinite length. But we will show
that if N is nilpotent, W(N) is closed under addition, hence it is an abelian group.

In W, (Xo,...,X,) = X2 +pXP"" 4. 4 p'X,,, if we define deg X; = p',
then degW,, = p™. A homogeneous polynomial in this new definition is called a
quasi-homogeneous polynomial.

Lemma 2.17. The polynomial S,, defined by (2.2) is quasi-homogeneous of degree
p"in Xo,..., X, Yo, ..., Y, for each n.

Proof. By (2.2)
The lemma follows by induction. ([l

Corollary 2.18. If N € Nilg, W(N) is closed addition. Hence W(N) is an
abelian group. The functor

W : Nilp — Ab
is a formal group.

In the last lecture, we defined W : Nilz — Ab and we showed that W (N) is an
abelian group for N € Nilg. Now we will show that it is a W(R)-module. Since we
have a homomorphism W(R) - W(R @® N) and W(N) is an ideal of W(R @ N),
there is a natural W(R)-module structure on W(N).

Lemma 2.19. The group W (N) is also a W (R)-module.

Proof. We only consider the case N? = 0. The general case follows using a filtration.
Then we claim that

(@) (no,n1,...)+ (ng,ny...) = (no+ny,n1 +nf,...);

() F(ng,n1,...) = (pno,pn1,...);

(¢) &€ W(R) acts by &(ng,n1,...) = (Wo(&)ng, Wi(&)nq,...).
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From these formulae, we can see that W (N) is invariant under the action of W(R).
The claims (a)-(c) can be checked in a standard way, i.e., we can assume R is torsion
free and then prove these formulas by applying W;. So in the case N? = 0, if we
write Ny, for N regarded as a W(R)-module via W; : W(R) — R, we have an
isomorphism

W(N) = @ N[Wi]
of W(R)-modules. O

Let R be a ring such that p is nilpotent in R.

Lemma 2.20. Let I be the kernel of Wy : W(R) — R. We note that Ir = YW (R).
Let radW (R) denote the radical of W(R), i.e., the intersection of all mazimal ideals
of W(R). Then
Ig C radW(R).
Proof. For every x € I, we have to show that 1 — x is unit. Since Ir = YW (R),
we can assume x = "&. Then it suffices to show that
1+Ve+ (V)2 +...

is convergent in W(R) = LinW(R)/VW(R) It suffice to show that for any m,
there exists an n such that (V¢)* € V"W(R). By Lemma 2.11, we can check that
(Vg)n — pn—l\/gn.

For example, V¢Ve = V(FVeE) = V(pg?). Hence it suffice to show that if n is big
enough, then p"W(R) C V"W (R). Tt is enough to check this for m = 1. But this

clear, since W (R) /YW (R) = R is annihilated by some power of p by our assumption
on R. 0

We are now ready to define the notion of a display.

Definition 2.21. Let P,Q be two W(R)-modules. A map f : P — Q is called
F_linear if f is additive and f(éx) = YEf(x) for all ¢ € W(R) and x € P.

Given an f-linear map f: P — @, the map f*: W(R) Qw(r),r P — P defined
by f#(¢ ® x) = £f(z) is linear. The map f* is called the linearization of f.

Definition 2.22. Let R be a commutative ring with 1 such that p is nilpotent
in R. A display over R is a quadruple P = (P,Q, F, F), where P is a finitely
generated projective W(R)-module, Q C P is a submodule and F,F are F-linear
maps F: P — P, F: Q — P, satisfying the following conditions.
(1) IrP C Q.
(ii) The quotient P/Q is a finitely generated projective R-module.
(iii) If £ € W(R) and x € P, we have the relation

P(Vex) = €F ().

(iv) F(Q) generates P as a W (R)-module.

The number rkyy gy P is well-defined locally and is called the height of P. The R-
module P/Q is called the Lie algebra of P and tkr(P/Q) is called the dimension
of P.
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Remarks:(1) That P/Q has an R = W (R)/Ir-module structure follows from (i).
Since F' is not linear, F'(Q) is not a submodule of P in general.

(2) By (iii), we have

(2.6) F(x)=1-F(z)=F"1 -2)="1F(z) = pF(x)

for every = € Q.

A morphism of two displays is defined to be a homomorphism of the corre-
sponding projective modules satisfying certain obvious compatible conditions. The
displays over R forms a category.

Proposition 2.23. Let S — R be a surjective ring homomorphism such that any
element in the kernel is nilpotent. Then any projective R-module P lifts to a pro-
jective S-module P, i.e., there is a projective S-module P and an isomorphism
é: P®g R~ P. The pair (]5, @) is uniquely determined up to isomorphism

Proof. To be added.

Lemma 2.24. For any display P = (P,Q, F, F), we have a decomposition

where T and L are projective W (R)-modules. This decomposition is called a nor-
mal decomposition of P.

Here we only give a sketch of the proof. For details see [Z1] Lemma 2.

Proof. We first show each projective R-module M can be lifted to a W (R)-module.
Set A, = W(R)/I}. Then W(R) = @An,R = A;. The map A,41 — A, is
surjective and any element in the kernel is nilpotent. So M can be lifted to an
Ap-module M, step by step. Such {M,} forms a projective system. Then take
P= l&n M,.

Since P/Q is a projective R-module, we have a split exact sequence
0— Q/IrP — P/IpP — P/Q — 0

of R-modules. Let L be a projective W (R)-module which lifts Q/IrP. By pro-
jectivity of L, L — Q/IrP factors through Q. Similarly we can lift P/Q to a
projective W(R)-module T. The map T — P/Q factors though P. Then we have
a homomorphism L & T — P. By construction, this homomorphism becomes an
isomorphism after tensoring with W(R)/Ir. Since Ir C radW(R), we can apply
Nakayama’s Lemma to conclude that the homomorphism L & T — P is surjective.
Since P is projective, we deduce that the homomorphism L & 7T — P is an isomor-
phism by comparing ranks.

We can show that @ = IRrT & L similarly. a

Let P = (P,Q, F, F ) be a display. Suppose we are given a normal decomposition
P =T ® L. Define a map

b=FOF:TOL—P
(a,b) — F(a) + F(b).

Then ® is Frobenius linear.
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Lemma 2.25. The map
" W(R) ®@pw(ry P — P
wx— wd(x)
is an isomorphism.

Proof. By definition, ®* is linear. Since P is projective, it suffice to show that the
map is surjective. We use the axiom that F(Q) = F(IgT @ L) generates P. So it
suffice to show F(Q) C Im®*. For V&t € IgT, we have F(Vét) = EF(t) € Tm(®)
by (iii) in the definition of a display. For | € L, F(I) € Im(®) by the definition of
®. We are done. O

Assume L, T are free R-modules. Suppose t1,...,tq is a basis of T and [1, ..., [,
is a basis of L. Her d indicates “dimension” and c indicates “codimension”. Then
we have

(2.7) F(t;) = Zaijti + Zﬁijlia

with aij, Bij, Vij. 0i; € W(R). By Lemma 2.25, we have

(29) (5 7) < GLesatwia.

Conversely, if we are given an invertible matrix as in (2.9), we can define a
display P = (P,Q, F, F) with a given normal decomposition, as follows. Put T =
W(R)Y, L=W(R)¢,and P=T® L,Q = IgT ® L. Define

F:IgT®L— P

by
V& &
v
S|V a a vy &a
F =
n (5 5) F771
Tle Fnc

and F' : T — P by Formula (2.7). We extend F' to P — P by Formula (2.6). So
we have a map I : P — P. Then it is easy to check that we have defined a display
P=(PQ,FF).

We first look at an example of a display.

Definition 2.26. Let k be a perfect field of characteristic p. A Dieudonné mod-
ule over k is a triple P = (P,F,V), where P is a finitely generated free W (k)-
module and F : P — P,V : P — P are additive maps such that

F(¢x) = T¢F(z), V(ta)=" V() VeeW(k),z€ P,

and
FV =p=VF.
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Proposition 2.27. Let k be a perfect field with characteristic p. Let (P, F, V') be a
Dieudonné module. Define @ =V P and F:Q — P by Vx> x. Then (P,Q,F,F)
is a display. The assignment

(P,F,V)— (P,Q,F,F)

defines an equivalence between the category of Dieudonné modules over k and the
category of displays over k.

Proof. For a given Dieudonné module (P, F, V'), the construction obviously gives a
display (P,Q, F,F). Conversely, suppose we are given a display (P,Q, F,F). We
need to construct a map V : P — P. Since k is perfect, one can show that W (k) is
a complete discrete valuation ring with maximal ideal I = I}, = pW (k) = YW (k).
So in our case, each projective module is free. Let P=L & T, Q = IT ® L be a
normal decomposition. We have an isomorphism

F*W(k) @pwa Q = P,

by the definition of a display. In our case, the Frobenius ¥ : W (k) — W (k) is also
an isomorphism by Proposition 2.13. Define
0:W(k)@pwm Q@ — Q
by
ta— T _lfx.
Define a map

VP —=W(k)Qpww Q@ - Q — P,

where the first arrow is the inverse of F* and the second arrow is 6 and the last
arrow is the inclusion. Then (P, F, V) is a Dieudonné module.

It is not hard to see that the two constructions establish the required equivalence.
O

Next, we will construct a formal group for a display over any ring R such that p
is nilpotent in R.

We fix a display P = (P,Q, F, F) We set

P(N) =W(N) @wr) P.

Regarded as a functor on Nilg, P is a formal group, since W is a formal group and
P is projective over W(R). Define a homomorphism

(2.10) P(N) =W(N) @wn P — N @g (P/Q)
by
E@p—=Wo(§) ®p.

Lemma 2.28. Let P=Te& L,Q = IRAT ® L be a norma{ decomposition. Then
the kernel Q(N) of the map (2.10) is Ir(N) @wr) T © W(N) @w )y L, where
Ir(N) =VW(N). The functor Q : Nilg — Ab is a formal group.
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The lemma is trivial. By abuse of notation, we will use id : Q(N) — P(N) to
denote the inclusion map later on.

We define a map
F:Q(N)— P(N)
as follows. Fix a normal decomposition P =T & L,Q = IrT & L. By Lemma 2.28,
Q(N) is generated by elements of the form Vi ® t + ¢ @ | with 7,& € W(N),t €
T,l € L. Then we define

Fnet+eol)=ne Ft)+feo F().

Note, by abuse of language, we have two maps called F. Tt can be shown that the
definition of F' is independent of the choice of the decomposition.

Theorem 2.29. Let P = (P,Q, F, F) be a display. Define a functor BTp : Nilgp —
Ab as follows. For any N € Nilgr, we define

BTp(N) = Coker[F —id : Q(N) — P(N)].
Then BTp is a formal group and we have an exact sequence

(2.11) 0—=Q(N) Foid P(N) BTp(N) —=0

for any N € Nilg. Moreover the tangent space of BTp is P/Q. The construction
P — BTp is functorial.

Note that BT stands for “Barsotti-Tate”.

Proof. For simplicity, put X = BTp.

We first consider the case N? = 0. In this case, by the proof of Lemma 2.19, we

see that -
V(N) = @ Npw
n=0
By the definitions of p Q, we have
(2‘12) ( ) @n 0 N 2] OW(R) P

Q(N) = (Nw) ®W<R> L) & @,y Nyw.) @wm) P
Note that Ny, @w (r) L is generated by [a] ® I for a € N,l € L. We have
F(la]®1) =la) @ F(I) = [a"] @ F(I) = 0
since N? = 0.
As a W(R)-module Npy,; = V'[N] = {(0,...,0,a,0,...)|la € N}, where a is in

the n** place. Hence Nw,) ®w(ry P is generated by the tensors V"[a] ® x with
a € N,x € P. We have

F(Va) @) = Vnil[a} ® F(z) € Nw, ] Qw(r) P.
Therefore F' acts on the right hand side of (2.12) by maps
F(n): Nw,) ®w®r) P — Nw,_,) @w =) P
a®T—a® Fr.
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Namely, for (0,u1,uz,...) € D,,5; Nw,) ® P, we have
F((0,u1,uz,...)) = (F(1)u1, F(2)uz,...).
Now define an endomorphism F : P(N) — P(N) by

F(uo,uh...) = (F(].)’Lbl,F(2)UQ,)

Then F is an extension of F' : Q(N) — P(N). Since only finitely many of the
components u; are nonzero, we see that F' is a pointwise nilpotent endomorphism.
Therefore

F—id: P(N) — P(N)
is an isomorphism.

We obtain a commutative diagram

id ~

0 —= Q(N) P(N) N &g (P/Q) —=0
\Lid lﬁ‘—id
Q) — - () X(N) 0

In other words the tangent space of the functor X is P/Q.
Moreover it follows that F — id is injective for N € Nilg with N? = 0. For an
arbitrary N € Nily we find a finite chain

0=N,C---CNy;CN;{ CNy=N

such that N? C N;;1. Using the exactness of the functors P and Q an induction
with the snake-lemma shows that ' —id is injective in general, i.e. we proved that
the sequence (2.11) is exact. But this implies that the functor X is exact. The
second condition of a formal group is easy to verify, as we did for W(N ). This
proves the Theorem. O

Remark 2.29.1. If P/Q is a free R-module rank d then X 2 Ad by Theorem 1.14,
i.e., we may describe X by power series.

Lemma 2.30. Let P = (P,Q, F,F) be a display. Then there is a unique W(R)-
module homomorphism

Vi P — W(R)®pwr) P

such that
(2.13) VHEER(y) =@y, YE€e W(R),y€Q,
(2.14) VHEF(z)) =pt @z, VEe W(R),z € P.

Proof. The uniqueness follows from formula (2.13), since F(Q) generates P. To
prove the existence, we fix a normal decomposition P =T @ L. Then we have an
isomorphism

d=F'eF :W(R) @rwr T ®W @pwr L — P,
where F* is the linearization of F. Consider the map

p@id: W(R) @pwr) TOW @pwrw) L = W Qpwr) P
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ERt+NRI—pERt+nel.
Define
Vi P — W(R) ®wnr)r P
to be the composition of p @ id with ®~'. We proceed to check that V¥ satisfies
the required conditions. Clearly V* is linear.

Take y € Q to be of the form y =1 + Yut with [ € L,u € W(R),t € T. Then

VEHER(y)) = VHER (1)) + VF(EuF (t))
={Rl+pludt=E1+ NV udt
=+ "ut) =¢xy.

This shows the identity (2.13).

To verify (2.14), take z =+t with { € L,t € T. We have

VEEF(x)) = VEEF(D) + VFEF(L))
= VHE(VED) + VE(EF(1))
=1Vl +ptRt=pt@(1+1t) =ptDx.

We are done. ]
Let us denote by fV*# the W (R)-linear map
idw (R) @pwr) Vi W(R) @pwr) P — W(R) @pwr) W(R) @rw(r) P.
Denote the right hand side space by W ®@p2 y(g) P. Inductively, we have
FYE = id @ps wmy V' : W(R) i wr) P — W(R) @pitw(r) P.
We denote by (V™)# the composite
F'lyt o o Pyt o vt

Definition 2.31. A display P = (P,Q, F, F) is called nilpotent if there is an
n € N such that the map

(‘/n)jj P — W(R) ®F",W(R) P
is zero modulo Ir + pW (R).

Remark 2.31.1 The nilpotence condition for a display P = (P, Q, F, F ) is equiv-
alent to that the map

(2.15)  R/pR@w,w(ry (V") : (R/DR) @wyw(ry P = (R/pR) ©w, w(r) P
induced by (V™)! is zero.

If P,@Q are free module, then the maps are given by invertible matrices. In
this case, we can express the nilpotence condition of a display by the matrices.

Explicitly, let P = (P,Q,F,F) be a display which has a normal decomposition
with = W(R)?,L = W(R)®,h = d + c. Suppose the map ® = F* @ F! is given

by a matrix
A B
C D
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*()= (& 5) ()

for t € T,l € L. The matrix is invertible by Lemma 2.25. Consider the inverse
matrix
A B\ (A B\
(¢ b)-(cn) -

Vﬂt:pfipé "t
l C D e

Then V¥#(mod (Ig + pW (R))) is defined by the matrix

0 0
¢y Dy

where Dy = D(mod (Ig + pW (R))) is a matrix with entries in R/pR. Denote by
bgp ™) the matrix each of whose entries is the p™-th power of the corresponding
entry of Di. Then “P is nilpotent” is equivalent to the statement that there is an
integer n > 0 such that

i.e.,

Hence V* is defined by

(2.16) PED PP L P By

The following is the main theorem of the theory of displays.

Theorem 2.32 (Zink). Let R be a commutative ring with 1 such that p is nilpo-
tent in R. Let P be a nilpotent display. Then BTp is a formal p-divisible group.
Moreover, the functor

BT : {nilpotent displays} — {formal p-divisible groups}
is an equivalence of the categories.

This is Theorem [9] in [Z1]. We will discuss the proof later but will not give a
detailed proof.

Definition 2.33. A frame consists of a surjective homomorphism of commutative
rings f : S — R whose kernel is denoted by I, an endomorphism o : S — S and a
o-linear map ¢ : I — S such that

(i) o(s) = sP(mod pS) for each s € S.

(ii) 6(I) generates S as an ideal.

(iii) I C rad(S) and p € rad(S).

(vi) Every finitely generated projective R-module lifts to a finitely generated projec-
tive S-module.

We will often denote the frame by (S,1,R,0,5) and omit the map f from the no-
tations for simplicity.

Example 2.33.1. Let R be a commutative ring such that p is nilpotent in R.
Put S = W(R) and I = I = YW(R). Define o : W(R) — W(R) to be the
Frobenius, i.e., o(¢) = £, € W(R). Define 6 =V ' : I — W(R) by 6("n) = 1.
Then (S, Ig, R, T, Vﬁl) is a frame. The condition (ii) in the definition of a frame
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has been used in the proof of Lemma 2.24. Note that in this example, we have
a(Vn) = pa(Vn) for any Vn € I. For a general frame, we have the following lemma.

Lemma 2.34. Let F = (S,1,R,0,5) be a frame. Then there is a unique 6 € S
such that

a(i) = 0c5(i)
foralliel.

Proof. We first show the uniqueness. If 6" is a second element in S satisfying the
condition, then (¢’ — 0)d(¢) for all ¢ € I. But (i) generates S, so we get §' = 0.

For the existence, we write 1 = ), s,0(ix) with s, € S,i, € I. Then for any
i € I, we have
o)=Y oli)sko(in) = Y sio(iix) = Y _ spo(in)o(i),
k k k

by the fact that the map ¢ is o-linear. Then § = ), 50 (i) satisfies the required
condition. O

Definition 2.35. Let F = (S,I,R,0,6) be a frame. A window over F is a
quadruple (P, Q, F, F), where F' is a finitely generated projective S-module, @ is a
submodule of P, F' : P — P, F :Q — P are two o-linear maps, satisfying the
following conditions.
(i) IP C Q.
(ii) The quotient P/Q is a finitely generated projective R-module.
(i) Ifi €I and x € P, we have the relation

F(iz) = 6(i)F ().
(iv) F(Q) generates P as an S-module.
(v) If y € Q, then F(y) = 0F(y), where 0 is defined in Lemma 2.33.

Example 2.35.1. If we take F = (W (R), Ig, R, T, V_l) as in the Example 2.33.1,
then an F-window is equivalent to a display over R.

Remark 2.35.2. We can define nilpotent windows in the same manner as for
displays. We omit the explicit definition.

Definition 2.36. Let F = (S,I,R,0,6) and F' = (S',I',R',0',6") be two frames.
A morphism © : F — F' of frames consists of two homomorphism of rings
©,:5—= 8 and ©3 : R — R’ such that ©1 and ©s are compatible with all datum
i F and F'. Ezplicitly, we require the diagram

S -z S
|
R R

to be commutative. Hence ©1,09 induce a map I — I', which we denote by ©1
again, by abuse of language. Furthermore, we require

BQio0=0"00;, O;06=05"006;.
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Remark 2.36.1 Since a display is a special window, we have the notion of mor-
phism between displays.

We consider base change functor of windows.

Definition 2.37. Suppose we are given a morphism © : F — F' of frames. Then
we define the base change functor

O, : {F-windows} — {F -windows}
by the assignment
(2.17) P=(P,Q,F,F)—P =(P,Q ,F F,

where P! = 5" ®@g P, Q' =Ker(S'®s P — R' ®r (P/Q)), F ' =0'® F: P/ — P'.
Note that Q' is generated by I' @5 P and S’ ®s Q. We define F' : Q' — P’ by

F'(i'®z)=6¢'(i)@ F(z), Vel ,xzeP
F(soy) =d(s)®Fy), e yeQ.

It is not hard to check that P’ is an F'-window. Moreover, we have P'/Q" =
R @r (P/Q).
Remark 2.37.1. Since display is a special case of windows, we have the notion of
base change of displays.

As in Lemma 2.24, for any F-window P = (P, Q, F, F), we can show that there
is a normal decomposition P =T ® L, Q = IT & L. Then we have an isomorphism
P=F'0F :5R,5T®SRys5L— P.

Suppose that T and L are free. Then & is given by an invertible matrix

A B
M:(O D)eGLh(S), h = rkP.

In fact, it can be shown that P is uniquely determined by the matrix M. We
proved this for displays, and the proof is similar for windows. So we can identify
F-windows which have free P, Q with M € GL(S), where h = rkP.

Suppose F’ is another frame and © : F — F’ is a morphism of frames. Then it
is easy to see, under the above identification, that the base change functor can be
identified with the map

GL;L(S) — GL}L(S/)
M — O(M)
where ©(M) is the matrix obtained by applying ©; to each entry of M.
Next, we will see how to construct morphisms of frames.

Lemma 2.38. Let F = (S,I,R,0,6) be a frame. Assume S has no p torsion.
Then there is a ring homomorphism § : S — W(S) such that W,,(6(s)) = o"(s),
for alln >0, s € S. Furthermore, we have §(co(s)) = £8(s).
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Proof. For any s € S, set u, = ¢"(s). Note that as o(s) = s”(mod pS), we can
apply Proposition 2.2 to conclude there is a £ € W (s) such that W,,(£) = u,. Such
€ is unique since S has no p torsion and the map W = (W;;i > 0) : W(S) = [[,5o S
is injective. Then we can define §(s) = &. Since o is a ring homomorphism, so is d.

To prove the second assertion, we only need to check, for all n > 0 and s € 5,
that

(2.18) W, (6(a(5))) = Wi ("(6(s))).
The left hand side of (2.18) equals 0™ (o (s)) = 0"1(s). The right hand side of
(2.18) is W, 1(6(s)) = o™t (s). We are done. O

Proposition 2.39. Assume that F = (S,I,R,0,5) is a frame such that 6 = p.
Define X : S — W(R) to be the composition of § : S — W (S) and the canonical
homomorphism W (S) — W (R), where 0 is defined in Lemma 2.38. Then the map

X: (5717 R7 O-,O'-) — (W(R)aIRaRaFaV71)7

consisting of X : S — W(R) and id : R — R is a morphism of frames (see the
Definition 2.36) if and only if

(2.19) X(e(i) =" x(i), Viel.

Proof. By the definition of &, we have Wy (d(s)) = s. So we have the following
commutative diagrams

5 —% W(S) —= W(R) R

SRR )

S—— >R W(R) 2 R

In particular, X induces a map I — Ir. Hence (2.19) makes sense. If X is a
morphism of frames, then we have (2.19) by Definition 2.36. Conversely, suppose
(2.19) holds. Multiplying on both sides of (2.19) by p, the left hand side becomes

pX(6(i)) = X(po(i)) = X(o ().
The right hand side becomes
PV X () = FVVT IR () = Fx(i).
We get X(o(i)) = £X(i). This shows that X is a morphism of frames. O
Corollary 2.40. Suppose that § = p in F, and W(R) has no p torsion. Then
(2.19) holds. Consequently, we have a morphism of frames
X: (SvIvRa 0—7d) — (W(R)aIRaRaFav_l)'

Proof. Composing the canonical map W(S) — W(R) with 0 of Lemma 2.38 and
using that Lemma, we get
X(o()) = TX(3).

This is equivalent to
1

pX(5(i)) = p(V x(1),
see the proof of Proposition 2.39. Since we assume W (R) has no p torsion, we get
(2.19). O
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Example 2.40.1 If p- R =0 and R is reduced, then

p(ro,ri,...) = (0,rh, . .0)

in W(R). So W(R) has no p torsion.

Suppose X : F — (S, I, R, T, Vﬁl) defined in Proposition 2.39 is a morphism of
frames. Then we can consider the composite functors

(2.20) {F-windows} — {displays over R} — {formal groups}

where the first functor is the base change functor defined by X and the second
functor is BT.

Example 2.40.2 Let k be a perfect field of characteristic p. Put R = k[T, ..., Ty].
Then R is reduced. We set S = W(k)[Xy,...,X,])", the p-adic completion of
W (k)[X1,...,X,]. Consider the map f : S — R, f(X;) = T;. Let I be the ideal
pS. Define o : S — S by olww) = Fand o(X;) = X?. Defined : 1 =pS— S
by o(ps) = o(s). We get a frame F = (S, pS, R,0,5). It is clear that § = p. Since
W (R) has no p torsion, we get a morphism of frames

X:F = (W(R) I, R,",V)
by Corollary 2.40. We have
X:5—>W(R)
X; — [T;] = (T3,0,0,...).

Let S, R be two rings with 1. Suppose p is nilpotent in S. Let S — R be a
surjective homomorphism of commutative rings with kernel a. Suppose there are
pd structures v, on a. Let a' be the additive group [];cya. We define a W(S)-
module structure on a¥ by

Elag, a1, ... ] = [Wo(&)ag, Wi (E)ar,...], &€ W(S),a=[ag,a1,...] €a.
We set an(a) = (p" — 1)lypn (a) and
(2‘21) W;(X()u .- ~7Xn) = O‘p“’(XO) + apn—l(Xl) ++ X,

Then W’ (a) is well-defined for a € o and p"W’, (a) = W,,(a).

Lemma 2.41. The polynomials W define an isomorphism
log : W(a) — aV

n = Wi, (n)
of W(S)-algebras.

We omit the proof.
We denote @ = log™'[a,0,0,...]. Then @ is an ideal of W(S).
It is not difficult to compute the corresponding multiplication, Frobenius homo-
morphism, and Verschiebung homomorphism on a¥ under the isomorphism log by
the universal property of Wi:

[ao,al, .. .Hbo,bl, . ] = [aobo,palbl, e 7piaibi, .. }

(2.22) Hag,a1,...,ai,...] = [pay, pag, . ..,pa;,...]
V[ao,al,...,ai,...] :[O,ao,al,...,ai,...}
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Lemma 2.42. Let p: W(S) — R be the composition of the natural maps W (S) —
W(R) and Wy : W(R) — R. Then p is surjective, and Ker(p) = a & Ig. If we
define
ViiaeIs — W(S)
by V=la =0 and V-1(Vn) = n for Y € I, then
(W(S),a@I(S),R,", V1),
where I is the Frobenius on W(S), is a frame. Denote this frame by Ws/R-

Proof. It is easy to see that p is surjective and Kerp = W(a) + Is. Note that
W(a) = a+ YW(a) by (2.22) and YW (a) C Is = YW(S). Then it is clear that
Kerp=a® Is.

To show that Wy g is a frame, we need to show that Kerp C radW(S),p €
radW (S) and the lifting property (ii) of Definition 2.33.

To show that p € radW(S), we need to show that for any y € W(S5),1 —py isa
unit in W(S). Since p is nilpotent in S, 1+ (py) +-- -+ (py)™ + - - - is well-defined
in W(S) = LiLnW(S)/VnW(S), it is clear that 1 — py is a unit.

Next we show that: Kerp € radW (S). For any z in Kerp, y € W(S), we have
to show that 1 — zy is a unit in W(S). Since Kerp is an ideal, zy € Kerp. So we
only have to show that 1 — x is a unit for all z € Kerp. So we have to show that
14+a%+---+ 2™+ - is convergent in W(S) = wW(S)/VnW(S) It suffice to
show that for any n, there is an m such that 2™ € V"W(S). It suffice to show
that for m large enough z™ € YW (S). Suppose = = (zg,21,...,Ti,...) € W(S).
Since z = [zo] + Vo and Yz € YW (9), it suffice to show that [zo]™ € YW (S) for
m large. But = € Kerp implies 79 € a. We can view [zo] as an element of a",
ie., [zo] = [%0,0,...,0,...]. By (2.22), [20,0,...,0,...]"™ = [z7",0,...]. Since a
has divided power and p is nilpotent in S, then for n large enough we have that
xgn = (p")pn (z0) is zero. It suffice to take m = p™.

The lifting property can be proved in a similar way as in the proof of Lemma
2.24. O

It is obvious that we have a morphism of frames
O: WS/R = (W(S)v aod I(S)7R7 Fv Vﬁl) — Wr = (W(R)7]R7 R, Fa Vﬁl)'

Theorem 2.43. The base change functor defined by © induce an equivalence of
categories

{nilpotent WS/R—windows} — {nilpotent displays over R} .

We devote the following section and the next section to the proof of this theorem.
Consider the ideal p’a. Then p’a has pd structure defined by

7w p'a) = (p") " la), aca
We have the exact sequence

-1

0— pi_la/pia — S/pia — S/pi a— 0.
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We will show that
Wispia)/r = Wis/pi-1a)/R
induces an equivalence of categories of the corresponding nilpotent windows. Note

that, we assume that p is nilpotent in S. Hence for some i, p° = 0 in S, i.e.,
S/pta = S. Then the theorem will follow.

Observe that the Frobebius on W (p'~'a/p'a) is zero by (2.22) and the fact that
pa = 0 for any a € p'~'a/p‘a. Hence the theorem is a consequence of the following
proposition.

Proposition 2.44. Let
©:F=(S,1,R0,6) > F=(5,1,R,6.5)

be a morphism of frames with R = R. Assume that p is nilpotent in S, I has pd
structure and the map S — S is surjective with kernel ¢. By the snake lemma,
we can see that a = Ker(I — I). So & is defined on c. We assume (c) C ¢
and o(c) = 0. Then the base change functor defined by © : F — F induces an
equivalence of categories

{nilpotent F-windows} — {nilpotent F-windows} .

Proof of Proposition 2.44. For simplicity, we assume that the windows that we con-
sidered have free normal decompositions. There is no essential difficulty to gener-
alize the following proof to the general case.

Recall that a functor is an equivalence if and only if it is fully faithful and es-
sentially surjective. We first show that the base change functor in our case is fully
faithful.

We begin with some general remarks. Let P; = (P1, Q1, Fi, Fl) be an F-window.
Take a normal decomposition

P=T®L, Q=IT1®L;.

We assume that T3, L1 are free S-modules, say 177 ~ S¢ L, ~ S°. Consider the
map

(I):Fl@FllT1®L1—)P1.

Then & is defined by an invertible matrix

A B
Ci D)’

® t o Al Bl O'(t)
l o Cl D1 O'(l) ’
The map @ is uniquely determined by 12
F t . A1 Bl U(t)
\1) " \c1 Di)\o()))"
Let Py = (PQ,QQ,FQ,FQ) be another window. Take a normal decomposition
Py =Ty ® Ly, Qs = ITy & Ly with free Ty, Ly. We consider Hom(Py, P2). A map

ie.,



Lectures on p-Divisible Group 49

a:P; — Py is given by a matrix

(2.23) ()Z( ;)

with X € Hom(71,7»),Y € Hom(L1,Ls),Z € Hom(T1,Ls),J € Hom(Lq,ITs).
X, Y, Z have coeflicients in S and J has coefficients in I. Then « is a homomorphism
if and only if the diagram

ITy® L —=1IT, ® Ly

AT

ITy L —=1IT, ® Ly

is commutative (Recall: F' determines F ). The diagram is commutative if and only
if

’ Cy Do bo(Z) oY) \Z Y C1 D)’
where 6 is defined in Lemma 2.34.

Claim: Let P;, P, be two nilpotent windows which have the same base change P.
Then there is a unique isomorphism P; — P» which lifts id 5.

Proof of the claim: Suppose P = (P,Q,F,F). Assume P =
decomposition. Assume T = S% L = S°¢ and that ® = F @

defined by
A B
C D)

Let P, = T; ® L;, i = 1,2, be normal decompositions of P;. Without loss of
generality, we can assume T; ¢ S =T,L; ®s S = L. We have T} ~To =T,L; ~
Lo = L. Suppose ®; is given be a matrix

Ay B
C; D;)°

Suppose « : P; — P is a morphism given by a matrix as in (2.23), which lifts the
identity ids. By (2.24), we have

’ 02 D2 GU(Z) O'(Y) - Z Y 01 D1 ’
Since « lifts the identity, we have that
Egy O X J
(2.26) ( : E) - ( X Y)

has coefficients in ¢.

Consider the left side of (2.25).
(2.27)
(Ag Bg) (U(X) O'(J)) o <A20(X)+9B20(Z) AQU(J)+BQU(Y)>
Cy Dy 90’(2) O'(Y) - CQO'(X) —|—9D20'(Z) CQO'(J)—FDQO'(Y)
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By (2.26) and the assumption o(c¢) = 0, we have o(X) = 1,0(Y) = 1,0(Z) = 0,
thus (2.27) becomes

(2.28) (éj gZ) + (8 éizgo
Then (2.25) becomes
e (BP0 -G DE R

Multiplying (2.29) by

on the right we get

s &B 0 Ax6(J)\ (A1 By X J
2.30 . < o = .
(2:30) (éc sD) - (o con)\e n) " \z v
We see that X, Y, Z are uniquely determined by J, and J satisfies
(2.31) &g+ Axo(J)Dy = J.

Hence to prove the uniqueness and existence of «, it suffice to show that there is a
unique J satisfying (2.31). We define

U(J) = Aye(J)Dy.

It is enough to show that U is pointwise nilpotent. In fact, once we have that U is
pointwise nilpotent, then

(id-U)"'=id+U+U?+---
exists and J = (id — U)~!¢p is the unique solution of (2.31).

The nilpotence of U follows from the nilpotence of our windows. In fact,
U2(J) = Ay6(Ay6(J)D1) Dy = Ayo(Ag)62(J)o(Dy)Dy.
Inductively, we have
U™(J) = Aso(Az) -0 H(A2)6™ ()01 (Dy) -+~ o(D1) Dy
Let N = ¢" (J), and M = 0" 2(D;)--- Dy. By (2.16), there is an integer ¢ > 0
such that y o
O'Cil(Dl) s O'(Dl)D1 el.
So if we take n > ¢+ 1, M has coefficients in I. Since &(¢) C ¢, we see that N has
coefficients in ¢. Then

&(N)o(M) = 6(NM) = o(N)o(M) =0

since o(¢) = 0. Hence U is nilpotent. Now the claim follows.

The above proof is also valid when our windows do not have free normal decom-
positions.

Next we show the base change functor is fully faithful, i.e., for any nilpotent
F-window P17, Ps, with base change Py, Ps, then

Hom;(Ph 7)2) — Hom]t-(731, 752)
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is a bijection.

From the above claim, the map is bijective when P1 ~ P,. In the general case,
let & : Py — P> be a morphism. Consider the isomorphism
idp, 0\ 5 = — —
( 5 idp2>-73169772—>731€9772-

It lifts uniquely to an isomorphism

id 0
<1 07; id%) P B Py — P D Po.

Then « is the unique lift of @. This shows that the base change functor is fully
faithful.

The base change functor is essentially surjective since any window P lifts by lift-
ing the matrix. If we do not assume our windows have free normal decompositions,
we have to apply Proposition 2.23. Now the proof of Proposition 2.44, hence the
proof of Theorem 2.43 is complete. (I

Definition 2.45. Let R be a commutative ring with 1 such that p is nilpotent in
R. We denote by R®Y® the category defined as follows. An object of R°™Y® is a
pair (f : S — R,0s), where f : S — R is a surjective homomorphism and dg
is a divided power structure on Kerf. A morphism between (f : S — R,0s) and
(f': 8" = R,dg) in R® is a ring homomorphism « : S — S’ such that f'a = f
and o respects the divided power structures.

Definition 2.46. Let R be as above. A crystal M over R consists of the following
data:
(i) for each (f : S — R,ds) € RS, there is a finitely generated S-module Mg;
(ii) for each morphism o : (f : S — R,05) — (f' : 8" — R,dg/) € R°™®, there is an
isomorphism

psr.s: 8" ®s Mg ~ Mgr;
such that for any two morphisms a : (f :+ S — R,0s) = (f' : 8" - R,dg/), and
B:(f":S = R, s)— (f: 5" > R,dg), the following diagram

idgr ®¢ ’
s R s ®g Mg 5 5’8 S ©g Mg

J{N \L¢Sﬁ’sl
Psr s

S// ®S MS MS”

s commutative.

Remark 2.46.1. In fact, the category R“Y® can be used to define a site CrysX,
where X = SpecR. See [M] page 106-111. We have the structure sheaf 05" on
this site defined by OF*(S) = S for any (f : S — R,ds) € R“Y®. Then we can
define a crystal as a coherent sheaf M of Og;7 p-modules satisfying an additional
condition: for (a: S — S’) € RS, the restriction map M(S) — M(S’) induces
an isomorphism

S’ @5 M(S) ~ M(S).

It is easy to globalize the above notions.
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For any (f : S — R,ds) € RY® we have proved that the base change functor
induced by Ws/r — Wg (Theorem 2.43) defines an equivalence

fe : {nilpotent windows of Ws/r} — {nilpotent displays over R} .

For each nilpotent display P over R, let Ps = (Ps,Qs, F, F) be the corresponding
nilpotent Wg/g-window under the above equivalence. Let Dp(S) = Ps/IsPs.
Then Dp(S) is a finitely generated projective S-module. Let ac: (f : S — R,d0g) —
(f/ 8" - R,ds) be a morphism in R®Y®. Since f' = «f, we have f] = g fo-
Recall, fo is the base change functor induced by f, see Definition 2.37. Hence if we
let Psr = ae(Pgs) be the nilpotent display obtained by the base change induced by
a, then f,(Ps/) = P. So there is a canonical isomorphism ¢g g : S’ @ Dp(S) ~
Dp(S7).

Proposition 2.47. For a given nilpotent display P over R, the assignment
(f:8 > R,d05) = Dp(5)
la:(f:S— R,0s) = (f: 8" = R,05/)] = ¢s1.5
defines a crystal over R.

The proposition is clear.

Recall the notion of connections.

Definition 2.48. Let S be a scheme and X a finite type scheme over S. Let £ be
a coherent sheaf over X. A connection on £ is an Og-linear map

ViE=E® Qk/s
satisfying
V(fs)=s@df + fVm,
where Qﬁ(/s is the Kahler differential and d : Ox — Sx /s is the natural map, f is

a section of Ox and s is a section of £.

Similarly, we can define a connection for a crystalline site. It just replaces X in
the above definition by CrysX.

To a crystal M on X = SpecR, we will associate a connection. Let I be the
kernel of the multiplication map R ® R — R. Then Qp := Qp , o~ I/I?, see [H],

11.8. Themap d: R — QL isdr =1®r —r @ 1(mod I?). Let
U= (R®R)/I*
Then the kernel of the multiplication map U — R is I/I?. There is a natural pd
structure d;y on I/I? defined by
y(z) =2, ~(x)=0, i>1.

Then (U — R, dy) € RS, We can view id : R — R with the trivial pd structures
as an element of R°Y®. There are two morphisms in R°Y®: u; : R — U defined by
up(r) = 1® r(mod I?), uz : R — U defined by uz(r) = r ® 1(mod I?). Note that
dr = uy1(r) — ua(r). There is an isomorphism

(2.32) U~R® Q.
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Under this isomorphism, u; is identified with x: R — R & Qk, x(r) = (r,0); uz is
identified with K@ (—d) : R = R&Q},, r — (r, —dr). By the definition of a crystal,
we have isomorphisms

U®u1,RMR ~ MU ~ U®u2,R MR.

Under the identifications using the isomorphism (2.32), we have the following dia-
gram

Mg ®r.x (R© Q) —>MR®RK®( a) (R& Q)

\/

where p1, p2 are induced by U — R.
Proposition 2.49. For any m € Mg, define

V(m) = ¢(m®(1,0)) —m & (1,0).

Then V(m) € Mg ® Q}, and

V(fm)=medf + fV(m)
for f e R,me Mg.
Proof. Note that p;(m ® (1,0)) = m for i = 1,2 and p2¢ = p;. Hence we have
V(m) € Ker(p2) = Mg ® Q%. Since ¢ is a U-module homomorphism, we have

P(fm @ (1,0)) = o(m @ (£,0)) = (m @ (1,0) + Vm)(f,0)
=fm®(1,0)+medf + fVm.

We get

V(fm)=m®®df + fV(m).

By base change, we can get a homomorphism
VM- M ®QépCCR,

which is a connection by Proposition 2.48.

In [M], Messing associate to any formal p-divisible group X a crystal Dy, called
the Grothendieck-Messing crystal.

Theorem 2.50. Let P be a nilpotent display over R. Let X = BTp. Then there
is a canonical isomorphism

Dp(S) = Dx(S)
forany (f : S — R,dg) € R°"Y".

Definition 2.51. Given are (S — R, 65) € R°Y% | and a nilpotent display P over R.
Then a deforma,tzon of P to S is pair (77 L), where P is a display over S and ¢ is an
isomorphism PR — P. Here Py is the base change of P to R. A homomorphism
f:(P,0) = (P',0) of deformations is a homomorphism f : P — P’ of displays
such that ' o fr = 1. We denote by

Defp (S)
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the set of isomorphism classes of deformations of P to S.

Definition 2.52. Let P = (P,Q, F, F) be a display over R. Recall we have defined
Dp(R) = P/IRP in Proposition 2.47. We call the quotient map
Dp(R) = P/IgP — P/Q
the Hodge filtration of P.
Given are (f : S - R,d0g) € R®® and a nilpotent display P over R. We have
defined Dp(S) in Proposition 2.47. By a lifting of the Hodge filtration of P, we

mean a map p : Dp(S) — U, where U is a finitely generated projective S-module,
and a commutative diagram

D»(S) Dp(R)
U P/Q

such that U ®g R ~ P/Q.

Theorem 2.53. Let P = (P,Q,F, F) be a deformation of P to S. Then the
Hodge filtration ﬁ/[sf’ —» 15/@ of P is a lifting of the Hodge filtration of P. This
assignment gives a bijection between the set Defp(S) and the set of isomorphism
classes of liftings of the Hodge filtration of P.

Proof. We first show that ]5/1'515 — 15/(2 is a lifting of the Hodge filtration of P. By
definition, P/Q is finitely generated, projective, and we have S ®g (13/@) ~ P/Q.
So it suffices to show that Dp(S) ~ P/IsP. By the definition of Dp(S), we only
have to show that there is a nilpotent Wg,g-window (P1, Q1, F, F) with P, = P.

_ Consider the map 7 : P> P®RsR ~ P and ¢ : Q — Q@sR: Q. Let
P=T@®L,Q=IsT® L be a normal decomposition of P. Let T'= W(R) @ (s)
T,L = W(R) ®w(sy L. Then we can identify P with T & L and identify Q with
IRT & L. Then 7 and % are surjective. Put a = Ker(S — R). We know that
W (a) = Ker(W(S) - W(R)), hence W (a)P = Ker(P — P). Then it is clear that
7 1Q)=Q +W(a)P =aP.

Here a is defined after Lemma 2.41. Note that there is a map F on Q: We extend
F to m71(Q) by F|;p = 0. Note that Q NaP = aL and F(al) = faF(l) = 0, for
a €@l e L, since a = 0 for all a € & by Equation (2.22). Hence the extended
F' is well-defined. It is easy to see that (]5, 7 L F, F) is a nilpotent Wg,p-window
which lifts P under the base change functor. Hence Dp(S) = P/IsP.

Conversely, let p : Dp(S) — U be a lifting of the Hodge filtration of P. We will
construct a deformation of P to S. Let (P,Q, F, I') be a nilpotent Wg,g-window
which lifts P (see Theorem 2.42). Then Dp(S) = P/IgP. Put

U' =Ker(P — P/IsP =Dp(S) — U).

Then it can be checked that (1757 U F, F) is a display over S. It is easy to see
that the above two constructions are inverse to each other, hence give the desired
bijection. O
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Theorem 2.54 (Grothendieck-Messing). Let X be a formal p-divisible group over
R and Dx the Grothendieck-Messing crystal of X. Then we have a surjection

Dx(R) — Lie(X),
which is called the Hodge filtration of Dx. The isomorphism classes of defor-

mations of X to S are bijective to the isomorphism classes of liftings of the Hodge
filtration of Dx.

For the proof, see [M].
Remark 2.54.1 By theorems 2.49, 2.52, 2.53, to prove the Main Theorem 2.32 for
S with S — R € R°¥3, it suffice to prove the main theorem for R. We will not do
this. See [Z1].
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3. CLASSIFICATION OF FORMAL p-DIVISIBLE GROUPS UP TO ISOGENY
As before, we fix a prime number p. Let R be a commutative ring with 1.

Definition 3.1. Let X,Y be two formal groups over R of the same dimension.
Assume
X = SptR[[T1,...,T4]], Y =SpfR][[S1,...,S4]]
A homomorphism f: X — Y 1is called an isogeny if for
f*: R[[S1,...,S4]] = R[[T1,...,Td]]
there is an integer n € N such that

T C Imf~.

Remark 3.1.1. By Weierstrass Preparation Theorem (Theorem 1.51), an isogeny
is faithfully flat and finite.

Example 3.1.2. Assume that p- R = 0 and that X is a formal group over R given
by

X = SpfR[[T1,...,T4]].
We define a new formal group X ® by

X® . Nilz — Ab

X(p) (N) = X(N[Frob])a
where Frob : R — R is the Frobenius z — 7, and Nm,p) is the R-algebra on
N defined by ron = rP-n, for r € R,n € N. The map ¢ : N — Npop),
¢(n) = nP is an algebra homomorphism. Hence we can apply the functor X to
obtain a homomorphism

X(¢) : X(N) = X (Nigror) = X P(N)

of formal groups.
Claim 3.1.3. X(¢) is an isogeny. It is called the Frobenius homomorphism of X
and will be denoted by Fx.

In fact, as a set X(N) = X(Npop)) = N%, and Fy is given by (ny,...,ng) —

(nf,...,n%). Hence
F% : R[[T1,...,T4)]] — R[[T1,...,T4]]
is given by
T, — TP.

So it suffices to show that F'x preserves the group structures. Suppose the group
structure of X is given by the group law Fy(T,T"),..., F4(T,T'). Then the group
law of X () is given by F(p)(T T,.. F(p) (T, 1), Where F(p) (T, T') is obtained
by applying the Frobenius to the coefﬁments of Fy(T,T"). Then

n+xn = (Fi(n, ))a
Hence
Fx(n+xn') = (Fi(n,n')P),
while
Fx(n) +xo Fx (@) = (F” (Fx(n), Fx (1))).
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It is easy to see that
Fx(n+xn') = Fx(n)+xm» Fx(n').
We are done.

Lemma 3.2. Assume p- R = 0. Let P = (P,Q,F, F) be a display over R. Put
X =BTp. Let PP be the base change of P under Frob : R — R.
() If we write P®P) = (P®) QW) F®) F®) then
p) = W(R) QFW(R) P
QW =1Ix @rwr P+ Image(W(R) ®pwr) Q)
The operators F®) and FP) are uniquely determined by the relations:
FP(wer) =TweF(r), weW(R),zcP
FOVwor) =we F(z),
FPwey) ="weF(y), yeq.
(ii) The map
Vi:P— W(R) ®pwr) P
defined in Lemma 2.30 induces a morphism Frp : P — P®) which is called the
Frobenius homomorphism of P.

(iii) We have an isomorphism XP) ~ BT p,) and Fx can be identified with BT (Frp)
under this isomorphism.

The first two parts of the lemma is Example 23 in [Z1]. The third part of the
lemma is Proposition 87 of [Z1]. The following proof is a copy of them.

Proof. (i) By Proposition 2.13, we have W (Frob) = F. So P®) = W(R)®pw (r) P-
Now Part (i) follows from the definition (2.37) directly.
(ii) By definition of V¥, it is easy to see that V#(Q) C Q). Using the fact that P is
generated as a W(R)-module by the elements F (y) for y € @, a routine calculation
shows that V* commutes with F and F, hence V? induces a homomorphism of
displays

Frp: P — PWP,

(iii) By definition, for N € Nilg,
BT (N) = Coker[F®) —id : Q) (N) — P®)(N)],
see Theorem 2.29. Here
P(/m(\N) = W(N) @wry P¥ = W(N) @w ) W(R) ®pw(r) P.
While by definition,
x® (N) = X(Nigrob)) = Coker {W(N[Frob]) Qw(r) @ — W(N[Frob]) QW (R) P} .
The identification
0:W(N) @wr) W(R) @pwr) P ~ W(N[Frob]) Qw(r) P

E@1oy—EoFy), ¢eWN),yeqQ
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and a similar isomorphism for ) establish the isomorphism BT p,) ~ X (®),

00— QW)(N P®)(N) ———— BTpe (N) —=0

- I

0—=W(N, [Frob]) @w (rR) @ — W ( Nirrob]) ®w(r) P — XP)(N) >0

Consider the following two diagram

W(N) @w gy P —— X(N) W(N) Qw(r) P ——— X(N)

F®idpi lFX lid@V” lFx

W(N[F‘rob]) ®W(R) P— X(N[Frob]) W(N) ®W(R) P(p) I X(N[Frob])

where the bottom arrow of the second diagram is obtained via the identification
0 : W(N) Ow (R) P ~ W(N[Frob]) ®w(r) P. To show Fx ~ BT(Frp), we only
have to check that the second diagram is commutative. Since the Frobenius on
W(N ) is just the operator ', the left diagram is commutative. Hence, to prove
(iil), it suffices to verify that for £ € W(N) and z € P, the elements ¥ ® 2 €
W(N[Frob])®W( )P W( )®FW(R)Pand£®Vﬁx S W( )® W (R) P(®) have the
same image by the lower horizontal map of the left diagram. Since P is generated
as an abelian group by elements of the form uF(y) for y € Q and u € W(R), it
is enough to verify the equality for x = qu. In W(N) ®@rw(r) P, we have the
equalities:
feouly ="(¢u) ® Fy = F(Eu®y).

The last element has the same image in X (Ngob)) as {u®y, by the exact sequence
(2.11). Hence the lemma follows from the equality:

E® Vﬁ(qu) =éu®y.

‘We note that here the left hand side is considered as an element of W(N )@w( R)P(”),
while the right hand side is considered as an element of W(N ) @rw(r) P- O

Remark 3.2.1. Let f: X — Y be a homomorphism of formal groups. Then f is
an isogeny if and only if there is an integer m and a homomorphism g : ¥ — X®™)
such that go f = F'{.

X ! Y

F /

x®™)
This is clear by the definition of an isogeny.

Next, we consider formal groups over a field.

Let K be a field such that p- K = 0. Let K, = K'/?". We take K, in a fixed
algebraic closure of K and such that K,, C K,1;. Note that if K is perfect, then
K,, = K. Define

(3.1) A = UW(K,).
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Note that if K is perfect, we have Ax = W(K).

Lemma 3.3. The ring Ak is a discrete valuation ring and p is a prime element.
Furthermore, we have

Ak [pAk ~ UK,
which is the perfect closure KPt of K.

Proof. As in the proof of Lemma 2.42, we can see that p € radAg. Sincep =V oF
(see the proof of Proposition 2.15) in each W (K,,), by Proposition 2.13, we see that

p(xo, x1,...) = (0,28, 27, ...).

Then it is clear that Ax /pAx = UK, which is a field. It follows that Ak is a local
ring and pAg is the maximal ideal. It also follows that p is not nilpotent in Ag.
In fact, if p is nilpotent, then p* = 0 in Ax. Hence

p*(zo,1,...) =0,
for every (zg,x1,...) € W(K,,) and every n. But on the other hand, we have

k k
PP (o, w1,...) = (0,...,0,28 2t ...) #0,

k
where 28} is in the k + 1-th places. This is a contradiction.

Claim: For any ¢ € A, there is a natural number ¢ such that & = p‘¢ for a unit
(e Axk.

Suppose € € W(K,,). Let t be the smallest integer such that we can write £ = th
with n € W(K,,) and Wq(n) # 0. Tt is clear such ¢ exist. Write n = (zg, 1,...),
zg # 0. Define ¢ = (x(l)/pt,mi/pt,...) € W(Kpnyt). Then n = F'¢. Then & = p'C.
We show (¢ is a unit. Actually, for any v = (yo,41,...) € W(K;) for some ¢ with
yo # 0, we will show that y is a unit in Ax. In fact, we can write y = [yo] + z with
z € YW (K;), see Lemma 2.8 (2). By Lemma 2.8 (1), we see [yo] is a unit in W (K;).
By Lemma 2.20, we know z € radW (K;), hence y is a unit. We get the claim.

By the claim and the fact p is not nilpotent in Ay, we see that Ag is an integral
domain. Now it is clear A is a discrete valuation ring by the above claim. (]

Remark 3.3.1. We claim that Ax®,Q = W(K)®7Q, i.e., Ax and W (K) have the
same fraction field. It is clear that W(K)®7;Q C Ax ®7Q. For n € W(K,,) C Ak,
we know ¢ = 'y € W(K). Then

1 n n 1 n

77:7‘/ FU=7V§EW(K)®ZQ-
p p

Hence A C W(K) ®z Q. So we have Ax ®7 Q = W(K) ®z Q. We denote the

quotient field by
Wo(K).

Note that the Frobenius ©' : Ax — Ak is given by (zg,z1,...) = (af,27,...).
This is an isomorphism. We will denote it by o later on, because there are so many
maps denoted by F.
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Definition 3.4. A Dieudonné module over Ax is a pair (M,®), where M is a
free A -module of finite type and ® is an endomorphism of M, such that

O(Em) =0()P(m), € Ag,meM
pM C (M) C M.

Note that ®(M) is a submodule of M: £®(m) = ®(nm) if o(n) = &.

Remark 3.4.1. Since Ay is a principal ideal domain, any submodule of a free
Ajg-module should be free. From this fact, we can see that ® in Definition 3.4 is
injective. In fact, if it is not injective, then Ker® should be a free module with
positive rank. Then rtk®(M) < rkM = rkpM, which contradicts to pM C M.
Hence for a Dieudonné module (M, ®), there is a well-defined map

U:M-—->M
m—m', pm=®(m').

This map is o~ !-linear and satisfies ¥ o ® = ® o ¥ = p. Sometimes we will denote
U by pd~1.

Conversely, suppose we are given a triple (M, ®, ¥), where M is a free Ag-
module and ®, ¥ are endomorphisms such that ® is o-linear and ¥ is o~ !-linear
and Wo® = @ oW = p. Then it is clear that (M, ®) is a Dieudonné module. Hence
if K is perfect, Definition 3.4 is equivalent to Definition 2.26.

Definition 3.5. A Dieudonné module (M, ®) is called nilpotent if ¥ defined in
Remark 3.4.1. is nilpotent on M /pM.

Later, we will see this definition is consistent with the nilpotence condition for
a display.
Let K be a field of characteristic p. We defined the ring Ay in (3.1). Recall it
is a discrete valuation ring by Lemma 3.1.
Lemma 3.6. Let P = (P,Q, F, F) be a display over K. Then
(M,®) = (Ax @w(k) P,o® F)

is a Dieudonné module over Ax. The display P is a nilpotent if and only if (M, ®)
is a nilpotent Dieudonné module.

Proof. Let P =T & L,Q = IxT & L be a normal decomposition. Suppose T ~
W (K)? and L ~ W (K)¢. Suppose the map

FaF:TaL—P

£, (A B\ ('t
l ¢ D)\'l)"
Then the map F': P — P is given by
F(t)_ (A pB) ('t
1) —\C pD)\"l
(A B\ [(E; O t
~“\¢ p)\o pE)7\U)

is given by
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If we define a map ¥ : M — M, where M = Ax @w k) P, by

-1
_(pEq O 1 (A B
V= ( 0 E) 7 (C D
then it is clear that ¥ is o~ '-linear and ® o ¥ = ¥ o & = p, where ® = o ® F.
Hence (Ax ®@w (k) P,o ® F) is a Dieudonné module over Ag.

0_1,

The last assertion can be deduced by (2.16) and the definition of V. O

Remark 3.6.1 If P, is a display over K,,, the construction defined by Lemma 3.6
also gives an Ax-module. In the next lemma, we can see that every Dieudonné
module over Ax can be obtained in this way.

Lemma 3.7. Let (M, ®) be a Dieudonné module over Ax. Then there is an integer
n and a display P = (P,Q, F, F') over K,, such that M ~ A(K) ®wx,) P and
b=0QF, ie, (M,®) is obtained from P by the construction in Lemma 3.6.

Proof. Let ¥ = p®~! be the map defined in Remark 3.4.1. It is clear that pM C
U(M) C M. We know M/pM is a finite dimensional vector space over Ax /pAx
and we have the following exact sequence of Ay /pAx-vector spaces:

0— U(M)/pM — M/pM — M/Y(M) — 0.
Let (€1,...,€q) be a basis of M/U(M) and (€41, . -.,€x) be a basis of U(M)/pM.
Lift &; to e; € M, such thate; € ¥(M) for i =d+ 1,...,h. Then by construction,

ei(mod pM),1 < i < his a basis of M/pM. Hence by Nakayama’s Lemma, we see
that (e;, 1 <i < h) is basis of M. Write

h
(32) @(el) = Zaj,»ej, 1= 17...,d.
J=1

Similar to that ® is injective as we showed in Remark 3.4.1., we can see ¥ is also
injective by the same proof. Since we require e; € U(M),i =d+1,...,h, it makes
sense to talk W~1(e;) for i =d +1,...,h. We write

(3.3) U e) = ajiej, i=d+1,...,h
J

In Equation (3.2) and (3.3), a;; € A(K). Since there are only finitely many a;;,
we can find an integer n such that a;; € W(K,) for all i,j. Since ® is injec-
tive, ®(e;)(mod pM),1 < i < d, forms a basis of ®(M)/P(¥(M)) = &(M)/pM.
Similarly, ¥~!(e;)(mod ®(M)),d + 1 < i < h, is a basis of M/®(M). Then
by Nakayama’s Lemma again, {®(e1),...,®(eq), U™ (eat1), ¥ (es)} is a basis
of M. Consequently, the matrix (a;;)i<i j<n lies in GLy(W(K,)). We set T =
@lgigdW(Kn)eiy L= @d+1Si§hW(Kn)ei7 P=To®L, Q = IK,LT @ L. Define

Feii E aj;€j, iil,...,d,
J

Fei:Zajiej, i=d+1,...,h.

It is clear that P = (P, Q, F, F) is a display over W(K,,) and P ®w (k) Ax = M,
cQF =09o. O
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Lemma 3.8. Let X,Y be two formal p-divisible groups over K, then
HOIH()(7 Y) ~ HOmKl/p (XKl/p7 YKl/p),

where Xg1/p is the base change of X under the inclusion K — KY?. In general,
if X,Y are two formal p-divisible groups defined over K,, then for any u > m, we
have

Homg, (X,Y) ~ Homg, (X4, Yy),

where X,, means the base change of X under the inclusion K, — K,.

Proof. The first assertion follows from Corollary 1.58, and the second assertion is
a corollary of the first one. O

Definition 3.9. We define the category of potential formal p-divisible groups
over K, denoted by C, as follows. The objects of C are pairs (X,n), where n € N,
and X is a formal p-divisible group over K,. The homomorphisms are defined by

Hom((X,n),(Y,m)) = Hom(Xk,, Yx,),

where u > max(m,n). This definition is independent of the choice of u by Lemma

3.8.
Theorem 3.10. There is an equivalence of categories
{nilpotent Dieudonné-modules over Ax} ~C.

Proof. Let (M, ®) be a nilpotent Dieudonné module over Ax. By Lemma 3.7, there
is an integer n and a display P = (P,Q, F, F) such that M ~ Ag Qw(k,) P- By
Lemma 3.6, P is nilpotent. Then by the Main Theorem 2.32, X = BT is a formal
p-divisible group over K,. Hence

(M, ®) — (P,n) — (BTp,n)
defines a functor
{nilpotent Dieudonné-modules over Ax} — C.

By Lemma 3.6, Remark 3.6.1. and Lemma 3.7, it is easy to see that

(M,®) — (P,n)
is an equivalence of categories. The functor

(P,n) — (X,n)
is an equivalence by the Main Theorem 2.32. We are done. (]

Recall we use Wg(K) to denote the quotient field of Ag, which is also the
quotient field of W(K). In this section, we fix the following notation. Let N be a
Wo(K) vector space. Let ® : N — N be a bijective o®-linear map. Here a > 1 is
a fixed integer. We will denote these data by a pair (N, ®) in this section.

Definition 3.11. Let (N, ®) be a pair as defined above. A lattice M of N is a
finite generated A -module such that

Wo(K)®a, M~ N.
We fix the a lattice M. For x € N, we define
ordyz = max {t € Z|z € p'M } .
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We define
ordy® = max {t € Z|®(M) C p'M } .
We define the Newton slope of ® by

1
Newt(N, ®) = sup —ord p, ".
n>1"1

Remark 3.11.1. Since Ak is a PID and any torsion free module over a PID is
free, we see a lattice is a free Ax-module.

Remark 3.11.2 By definition, ordy;z = t if and only if 2 € p!M but z ¢ p*t1 M.
Similarly, ordy® = ¢ if and only if ®(M) C p'M but ®(M) € p+1M.

Lemma 3.12. Notations as in the above definition.
(1) For m,n > 1, we have

1 ) 1
—ordy ®" < —ord ™",
n mn

(2) We have
1
Newt(N,®) = lim —ordy ®".

n—oo M
(3) The Newton slope defined above is independent of the choice of the lattice M.
This justifies the notation Newt(N, ®).
(4) The Newton slope Newt (N, @) is finite.

Proof. (1) If ®M C p' M, then ®"M C p" M. Tt follows that ordy " > nord, .
Hence, we have

1 1

—ord ®" < —ord ™",

n mn
(2) To be added. O
Proposition 3.13. Let (N, ®) be a pair as defined in the beginning of this section.

Let M be a lattice in N such that ®*M C p~*M for some u > dimyy, () N + 1.
Then there is a lattice My in N such that M, C M.

Proof. Put M' = M +®M + --- + dv—10f. Then
2u—1
M +®M +--+ M = Z O M
1=0
u—1 u—1
=M+ I (@"M)c M +> dp'Mcp M.
j=0 §=0
Then we have a filtration
McM+dM c---CM+---+d“M Ccp M
of length u + 1. Since
dim gepers p~ ' M’ /M = dimgepert M’ @ 4, (Ax /PAk) = tkM’ = dimyy, ) N < u,
there is an integer e, with 1 < e < u such that
M 4+dM +- 4+ M =M+ -+ d°M'.
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Put

My =M +0M + - + &1 M.
Then it is clear that

(I)(Ml) C M.
O

Proposition 3.14. Let (N, ®) be a pair as defined in the beginning of this section.
Suppose h = dimyy, gy N. Let M C N be an arbitrary lattice, put

My =M+®M+---+ " 1)
Then ®(My) C M.

Corollary 3.15. Let (N,®) be a pair defined in the beginning of this section.
Assume Newt(N,®) > 0. Then N contains a ®-invariant lattice.

Proof. Let M C N be an arbitrary lattice. Put h = dim N. By assumption that
the Newton slope is non-negative and (2) of Lemma 3.12, there is an integer n € N

such that

1 1
= ordy®nrhtl) >~
nh+ 1) M = Thtl

ie., ordy @) > —pn. Hence "M C p~" M, namely,
(p@" )" M c M.

If we take M’ = M + p®"*IM + ... 4 (p@"*+H"=1 M, then (p@"TH)M’' c M’,
ie., ®"*tI1M’ c p~'M’. Then by Proposition 3.13 there is a ®-invariant lattice
M CN. g

Corollary 3.16. Let (N,®) be a pair as before, assume Newt(N,®) > & with
r,s € Z,7 > 0. Then there is a lattice M C N such that

"M C p* M.

Proof. We have Newt(N,p *®") = rNewt(N, ®) — s > 0. Then by Corollary 3.16,
we have there is a lattice M C N such that p~*®"M C M. Then &M C p°M. O

Lemma 3.17. Given a pair (N,®) as before. Suppose dim N = h. Let M be a
lattice in N. Assume there is an integer n such that ordp ® # %ordMq)". Then

1 1
OrdM(b + E S EOI‘dM@’l.
Proof. Put t = ordy®. By assumption and (1) of Lemma 3.12, we have t =
ordy® < %ordMCI)”. Hence ord;®™ > tn + 1. Set
M; = {m € M|®'(m) € p"*'M}.

Then above discussion shows that M,, = M. It is clear that M, is an A x-submodule
of M. Given m € M;, then ®'(m) € p"**'M. Hence ®'T!(m) € p"+'®(M). By
definition of ¢, we have ®(M) C p'M. So ®'*1(m) € ptt+D+1). Tt follows that
M; C M;1. Hence we get a filtration

pM:MOCM1CMQC"'CMiCMi+1C"'CM.
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Claim: If Mz = Mi+1, then Mi+1 = Mi+2~
Let m € M,y s. Since ®(M) C p'(M) by the definition of ¢, we can suppose
®(m) = p'my for some my € M. Now m € M, o implies that
(I)H-Z(m) — (I)H_l(q)(m)) — pt<I>i+1(m1) c p(i+2)t+lM.
Hence &1 (my) € pltD**10M . So m; € My, by definition. Now by assumption,
my € M;. So ®(my) € p**1 M. This implies
(I)iJrl (m) _ q)z(q)(m)) _ (pi(ptml) _ pt@i(ml) c p(i+1)t+1M,

ie., m € M;yi. The claim follows.

Since dimgpert M /pM = h, by the above claim there is an integer i < h with
M; = M;41. Since M,, = M for the given n, we must have My = M,, = M, i.e.,
®"(M) C p"*+1 M. So by the definition of the order, we have

ordy ®" > ht + 1.

This is exactly what we want to show. ]

Proposition 3.18 (Dirichlet). Given are x € R, R € Z with R > 2. Then there
exist r,s € Z, with 1 <r < R such that
s 1
s

This is an elementary result in Diophantine approximation.

r— - <

r

Proof. If x is rational, nothing to prove. Suppose z is irrational, consider the set

{qx — [qz];¢=0,1,...,R}.
Here [gx] is the greatest integer less than or equal to gz. There are R + 1 distinct

points in this set, and each point of this set lies in the interval [0, 1], so there exists
0 < q1 < ¢2 < R such that

(27 — [g27]) — (12 — [q12])| < 1/R.

Hence
R - Bl I 1
92— q (@2 —q)R
It suffices to take r = g2 — q1, s = [q2x] — [1]. a

Theorem 3.19. For any pair (N, ®) as above, we have
Newt(N, ®) € Q.
Proof. Assume dim N = h. Let A = Newt(N, ®). By Lemma 3.12 (4), A € R. Then
by Proposition 3.18, there exists r,s € Z, 1 < r < h + 1 such that
S 1
A 7‘ <
’ rl = r(h+1)
Set M =rA—s, ® =p~*®". Then X = Newt(N, d’'). We have
—— <N < —
h+1 h+1
By Corollary 3.16, there is a lattice M’ C N such that

(q)/)h+1 cC p_lM/.
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By Proposition 3.13, there exists a lattice M C N such that M C M. Hence
ordps (®’) > 0 by the definition of the order. It follows that A’ > 0 by the definition
of the Newton slope.

Claim: X = 0.
If M > 0, by the definition of the Newton slope again, there is an integer n > 0,
such that

1
ﬁordM(q)’)" > 0.
If ordy; @’ = 0, then by Lemma 3.17, we have
1 1 1
E = OI'dM(I)/ + E < EordM(fI)/)h < )\/7
1

this contradicts X < T So ord;®’ > 1. But then

1
N = sup —ord (®")" > 1.
n n

This contradicts ' < %_H The claim, hence the theorem, follows. ([l

3.1. 27. Let K be a field of characteristic p. Recall we have defined Ay, which is
a discrete valuation ring. Our aim of this section is to prove the following

Theorem 3.20. Let M be a finitely generated free Ax-module, ® : M — M be a
o®-linear homomorphism.

(i) Then there is a unique direct summand MPY C M such that MY is ®-invariant,
O : MPI — MP s bijective and ® : M /M3 — M/MP is nilpotent modulo p.

(ii) Moreover, if K is separably closed, then M has a basis my, ..., m, such that

As a warm-up, let us first consider the case where K is perfect. In this case
A = W(K). We begin with a lemma.

Lemma 3.21 (Fitting Decomposition Lemma.). Let R be a ring, o an automor-
phism of R. Let M be an R-module of finite length and ® : M — M a oc®-linear
homomorphism.

(i) Then there is a unique decomposition M = M@ M™! such that both M and
M™ gre ®-invariant, ®| s is bijective and ®|ymu is nilpotent.

(ii) Furthermore, the decomposition in (i) is functorial. More precisely, Let S be
another ring with an automorphism o', and f : R — S a ring homomorphism re-
specting the automorphisms. Put Mg = M ®r S. Let Mg = MSbij &) Mg“ be the
corresponding decomposition. Then Mgij ~ MPM@p S and M3 ~ M™ g S.

Proof. Recall that M has finite length if and only if M satisfies both ascending
chain condition and descending chain condition. Consider the following chains:

Ker® C Kerd? C --- C Ker®? C - -
Im® 5> Im®* > --- D Imd' > - .

Since ¢ is an automorphism, it is easy to check both Ker®’ and Im®* are submod-
ules of M. That M has finite length implies that there is an integer ¢ such that
for any s > ¢, we have Ker®® = Ker®'~! Im®* = Im®'~!. Take M"YV = Im®?,
MM = Ker®!. Tt is clear that ®|ymn is nilpotent. Given m € MU, then ®(m) €
®!*I(M) = MPY by the choice of t. Hence MPY is ®-invariant. Similarly M™!
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is also ®-invariant. Suppose m € MPJ and ®(m) = 0. Since m € M = Im®?,
we can suppose m = ®f(my) for m; € M. Then 0 = ®(m) = ®'T!(m;). Hence
my € Ker®'™ = Ker®'. We get m = ®'(my) = 0, i.e., ®|ymy is injective. If
m € MPJ = Im®?, we can take m; € M such that m = ®*(my) = ®(®*~1my).
Now ®!~tm € Im®!~! = Im®?. We get that ®|,mi is bijective.

Now we have to show that M = MP"J @ M™!  Since ®|ymi; is bijective and
®|pmi is nilpotent, we must have MPY N M™! = 0. So it suffices to show that
M = MPJ + ML Given m € M, we have ®!(m) € Im®! = Im®?. So there exist
my € M such that ®'(m) = ®2'(m;). Then m — ®'m; € Kerd! = M™!. Hence
M = MPI 4 Mt

Now we show the uniqueness. If M = M{) U g MP! is another decomposition,
consider Mfij N M™ Since (I)|M}>ij is bijective and ®|psmn is nilpotent, we get
MM A M = 0. Hence MM ¢ MPH. Symmetrically, M < MY, Hence
M{) U= M{) i, Similarly, MP! = M™! The functorial property follows from the
uniqueness. [

Proposition 3.22. Let K be a perfect field, and M a finitely generated free W (K)-
module. Suppose ® : M — M is a 0®-linear homomorphism. Recall o = ¥ here.
Then there is a decomposition M = M3 @ M™! such that both M™! and M9 are
D-invariant, ®|pmi is bijective and P|yma is nilpotent.

This assertion is stronger than that of Theorem 3.20.

Proof. Set M(n) = W, (K) ®w k) M. Note that W, (K) is an Artin ring since
W, (K) is a finite dimensional vector space over the field K. Then M (n) has finite
length. Take o, = ¥ to be the Frobenius on W, (K). Then o, is an automorphism
of Wy(K). Take ®, = " @ ®, which is ¢%-linear. Hence we can apply Lemma 3.21
to get a decomposition
M(n) = M(n)* @ M(n)™!

for ®,,. By the functorial property, we see {M (n)bij}n forms a projective system.
Put M = l'glM(n)bij. Similarly, we can define M™! = l'glM(n)n“. It is easy to
see that M = MPJ @ M™! gives the desired decomposition. O

Remark 3.22.1 The proof of Proposition 3.22. suggests that we can reduce
the problem to a problem over Artin rings, and then take projective limit. In
our general case, we have Artin rings Ax/p"Ax. Then we have a decomposi-
tion M,, = M/p"M = MPJ @ MM, But the module yLnM};ij is a module over

Ag = W (KPef), which is not Ax in general. This is not what we want to get.

Let us go back to our general case, i.e., the situation of Theorem 3.20. Since M
is finitely generated, we can find an integer m such that ® is defined over K,, =
K'/?" ie., there is free module My over W(K,,) and a I"-linear homomorphism
@0 : Mo — MO such that M = AK ®W(Km) MO and ® =% ® (po. Set

M(n) = Wi (Kn) @w (k,,) Mo,

fI)n:Fa@)(I)OM(n)—)M(n)
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Proposition 3.23. There exists a unique ®,,-invariant direct summand M (n)P9
of M(n) such that ®% : M(n)P — M(n)"J is an isomorphism and ®,, is nilpotent
on M(n)/M(n)*3. Here ®% is the linearization of ®,,, see Definition 2.21.

Example 3.23.1. If K is not perfect, a stronger assertion as in Proposition 3.22.
is false. But we can expect Proposition 3.23. to be true. For example, let K
be a non-perfect field. Let n be 1. Then W;(K) = K. Consider the K-module
M = K'? with the F-linear map ® : M — M defined by ®(m) = mP. Then
K CMand | : K — K, k+— kP. It is easy to see that

' : K ®ppob,x K — K

ERk — Pk
is an isomorphism. But ®|x is not surjective. It is clear that ® is zero on M/K.
Hence we can take MPY = K. But there is no M™! ¢ M such that M = K @ M™!
and M™! ~ M /K. Note that in this example ¥ is not an isomorphism on K, so we
cannot use Lemma 3.21.

Remark 3.23.2. Assume Proposition 3.23., then Mgij = @nM(n)bij isa W(Kp)-

module and MPY = A QW (Kom) Mg’ U satisfying the condition Theorem 3.20. (why
is ® : M — MPY bijective?) Hence, Proposition 3.23. implies Theorem 3.20. (i).

We now proceed to prove Proposition 3.23. We start with a lemma.

Lemma 3.24 (Dieudonné). Assume K is a separably closed field and V' is a finite
dimensional vector space over K. Let ® : V — V be a Frob®-linear isomorphism,
i.e., (&v) = fpaq)(v), where a is a positive integer. Then V has a basis of ®-
invariant vectors, i.e., we can write V.= ®Ke; with ®(e;) = e;.

The proof of this lemma is omitted.

Remark 3.24.1. Notations as in Lemma 3.24. For v € V', we can write v = > &e;
with & € K. Then ®(v) = v implies that & = ¢;, i.e., § € Fpa for all i. Hence
Vo = V?® is an Fpa-vector space and we have

V=K ®]Fpa V.

Note that under this isomorphism, we have ®(£ ® vg) = P ® vy.

Corollary 3.25. Assume K is separably closed. Let M, be a free W, (K)-module
and ® : M,, — M,, an ¥" -linear isomorphism. Then there is a free W, (Fpa)-module
such that

M, = Wn(K) ®Wn(]F,,a) L.
Under this isomorphism, we have ®(€ ®1) = ¢ @ 1.

Proof. The corollary is a direct consequence of Remark 3.24.1. and Nakayama’s
Lemma, by noting that W, (K)/pW,,(K) = K is separably closed. O

Proposition 3.26. Let R be a ring such that p- R = 0, and M a free W, (R)-
module. Let ® : M — M be an ¥ -linear homomorphism. Then the functor

Cr : {R-algebra} — Sets
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Cr(S) = {m € W(S) @w, ) M| F* @ B(m) = m}
for S € {R-algebra} is representable by an affine étale scheme over R.

Proof. For simplicity, we write C for Cr. Let {ey,...,eq} be a basis of M. Suppose
®(e;) = > aije; with a;; € W, (R). Let A = (a;;). Then ®(m) = A" m. So

O(S) = {m € W, (S)4 m = AF“'m} .

Since W, (S) ~ A%, we see that C(S) is a closed subscheme of (A%)?. Hence C is
representable.

To show that C' is representable by an étale scheme, we have to show: for any

exact

0 a s—Lo7 0,

where S, R are two R-algebras and f : S — T is a surjective ring homomorphism
with kernel a such that a? = 0, then f induce a bijection C(f) : C(S) ~ C(T).

We have the following commutative diagram

C(S) C(T)

| l

0 —— Wi(a) ®w, (ry M —— Wy (S) ®w, (ry M —— Wy, (T) ®w,,(ry M — 0

We first show that C(f) is injective. If m € C(S) such that f(m) = 0, we have to
show that m = 0. By the above diagram, we see that m € W,,(a) ®w, (ry M, hence
we can write m = > & ® n; with & € Wy, (a) and n; € M. Now m € C(S) implies
that m = ® ®(m) = ZFafi@)@(ni). If & = (xo,21,...),2; € a, then p- R =10
implies ¢, = (x5, 27,...), see Proposition 2.13. Now a? = 0 implies ¢, = 0. So
m = 0.

Next, we check that C(f) is surjective. For m € C(T), we first lift m to m €
W, (S) ®w, (ry M. Denote n = ¥* @ ®(m) — m. Then " ® ®(1n) is a lift of
F* @ ®(m) = m, since m € C(T). Hence 1 € W,,(a) ®w, (r) M. As above, we have
" @ ®(n) = 0. Then

@ @(m+n) = m+n,
ie, m+neC(S). It is clear that m + 7 is a lift of m. We are done. O

Now we turn to the proof of Proposition 3.23.
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