Bruno Kahn: Un invariant de degré 3 des algèbres centrales simples d'exposant 2

Submission: 2009, Nov 5, revised: 2009, Nov 13

We associate to any central simple algebra $A$ of exponent $2$ over a field of characteristic $\ne 2$ an invariant with values in the degree $2$ unramified cohomology of its Severi-Brauer variety modulo the image of the cohomology of the ground field. The main theorem is that this invariant is nonzero if and only if the index of $A$ is $\ge 8$.

2000 Mathematics Subject Classification:

Keywords and Phrases:

Full text: dvi.gz 10 k, dvi 19 k, ps.gz 620 k, pdf.gz 80 k, pdf 95 k.

Server Home Page