Oberseminar Gruppen und Geometrie

Sommersemester 2019

Mitglieder und Gäste der Arbeitsgruppe tragen über ihre laufenden Forschungsarbeiten vor.
Hier befindet sich eine Übersicht über die Vorträge in den vergangenen Semestern.
  • 3 April 2019
    Matteo Vannacci
    Pro-p groups with quadratic cohomology and generalised p-RAAGs
  • 14:15 - 15:45 in V4-119: A pro-p group is said to be quadratic if its F_p-cohomology algebra is generated in degree one and its relations come from degree two elements. The main example of a quadratic group is the absolute Galois group of a field, so the study of quadratic groups could lead to new insight into the mysterious class of absolute Galois groups. In this talk I will define a new class of pro-p groups called generalised p-RAAGs as a natural generalisation of Right Angled Artin Groups. These groups give uncountably many new examples of quadratic pro-p groups.
  • 10 April 2019
    Patrick Wegener
    Diagrammatics of Reflection and Artin Groups
  • 14:15 - 15:45 in V4-119: For a finite Coxeter system \((W,S)\) of rank \( n\) with set of reflections \(T\), we associate to every subset \( \{ t_1, \ldots, t_n \} \subseteq T\) with \( \langle t_1, \ldots , t_n \rangle = W\) a "Dynkin-like" diagram and show that it encodes a presentation of \( W\) (like the Dynkin diagram does). This extends previous work of Cameron-Seidel-Tsaranov as well as Barot-Marsh. We further outline an explicit construction of these diagrams and connect them with cluster algebras. At the end of my talk I will discuss to what extent these diagrams also encode a presentation of the Artin group associated to \( (W,S)\).
  • 17 April 2019
    Leo Margolis
    Orders of units in integral group rings
  • 14:15 - 15:45 in V4-119: Since the study of the unit group of integral group rings \(\mathbb{Z}G\) of a finite group \(G\) began with G. Higman's thesis in 1940 many conjectures have been put forward regarding the finite subgroups of units in \(\mathbb{Z}G\). The strongest of those, such as the Isomorphism Problem or the Zassenhaus Conjectures, gave rice to fascinating mathematics, but turned out to be wrong in general, with counterexamples in the class of solvable groups. On the other hand the strongest possible expectations one can have concerning possible orders of units in \(\mathbb{Z}G\) are known to hold for solvable groups. Namely, call a unit normalized if its coefficients sum up to one. Then the best possible statement one can hope for regarding orders of units in \(\mathbb{Z}G\) is that there is a normalized unit of order \(n\) in \(\mathbb{Z}G\) if and only if there is a group element of order \(n\) in \(G\). The question if this holds for any \(G\) is known as the Spectrum Problem. The weaker form of the question which one obtains by replacing \(n\) by the product of two distinct primes is known as the Prime Graph Question. The Spectrum Problem is known to have a positive answer for solvable groups and for the Prime Graph Question also a reduction theorem, to almost simple groups, has been obtained. I will present a result which states that if \(p\) and \(q\) are primes and the Sylow subgroup of \(G\) is cyclic of order \(p\) then \(\mathbb{Z}G\) contains a normalized unit of order \(pq\) if and only if \(G\) contains an element of order \(pq\). The main ingredient of the proof is the description of modules for blocks of defect 1 and their visualisation using Brauer trees. This directly settles the Prime Graph Question for most sporadic groups. This is joint work with M. Caicedo.
  • 24 April 2019
    Sarah Rees
    Rewriting in Artin groups
  • 14:15 - 15:45 in V4-119: The class of Artin groups is easy to define, via presentations, which have the form
    \( \langle x_1,x_2,\cdots,x_n \mid \overbrace{x_ix_jx_i\cdots}^{ m_{ij}}= \overbrace{x_jx_ix_j \cdots}^{m_{ij}}, i\neq j \in \{1,2,\ldots,n\}\rangle ,\, m_{ij} \in {\mathbb{N}} \cup \{ \infty\}, m_{ij} \geq 2. \)
    But it contains a variety of groups with apparently quite different properties. For the class as a whole, many problems remain open, including the word problem; this is in contrast to the situation for Coxeter groups, which arise as quotients of Artin groups. I'll discuss what is known about rewrite systems for Artin groups, and evidence for the possibility of a general approach to rewriting in these groups. I'll give some general background, starting at work of Artin, then Garside, Deligne, Brieskorn-Saito, then move on, via Appel-Schupp, to very recent work, by myself and Derek Holt (and sometimes Laura Ciobanu), by Eddy Godelle and Patrick Dehornoy, also by Blasco, Huang-Osajda.
  • 8 May 2019
    Volkmar Welker
    Higher dimensional connectivity versus minimal degree of random graphs and minimal free resolutions
  • 14:15 - 15:45 in V4-119: We study the clique complex, i.e. simplices are subsets of the vertex sets that form a complete subgraph of a random graph sampled from the Erdős-Renyi model. Motivated by applications in the study of minimal free resolutions of the Stanley-Reisner ring of the clique complex, we study for \( i \geq 0\) two invariants:
    1. the minimal number of vertices that have to be deleted such that the clique complex of the remaining graph has homology in dimension \(i\)
    2. the minimal number of vertices that have to be deleted such that an \(i\)-simplex in the clique complex has empty link.
    Random graph theory says that the two invariants coincide for \(i = 0\) and all (Erdős-Renyi) probability regimes. We show the same for a middle density regime in case \(i=1\), one inequality for all \(i\) and conjecture equality in general.
  • 15 May 2019
  • 14:15 - 15:45 in V4-119:
  • 22 May 2019
  • 29 May 2019
    Doryan Temmerman
  • 14:15 - 15:45 in V4-119:
  • 5 June 2019
    Jonas Beyrer
  • 14:15 - 15:45 in V4-119:
  • 12 June 2019
  • 19 June 2019
    Giles Gardam
    Part I of a double feature on one-relator groups
  • 14:00 - 14:55 in V4-119: Double feature on one-relator groups. We start at 2pm sharp!
  • 19 June 2019
    Alan Logan
    Part II of a double feature on one-relator groups
  • 15:05 - 16:00 in :
  • 26 June 2019
    Claudio Llosa Isenrich
  • 14:15 - 15:45 in : TBA
  • 3 July 2019
  • 10 July 2019