Back to the home page of A.Grigor'yan
SS 2023 03.04.2023- 14.07.2023
The
problems that are marked by * are additional. They do bring points to those who
solve them but they do not contribute to the maximal possible number of points.
Deadline for submission of homeworks is always Friday.
Joint submission of homework by groups of students is not allowed.
At least 50% of points for homework is required for admission to the exam.
0. Introduction
Examples and origin of PDEs: Laplace equation, heat equation, wave
equation, Schrödinger equation.
Quasi-linear PDEs of second order and change of coordinates.
Classification of linear 2nd order PDEs: elliptic, parabolic, hyperbolic.
1. Laplace equation and harmonic functions
Maximum principle and uniqueness in the Dirichlet problem.
The Green function in a ball.
Poisson formula and solvability of the Dirichlet problem in a ball.
Harnack inequality and other properties of harmonic functions.
Sequences of harmonic functions (Harnack theorems).
Discrete Laplace operator on graphs.
Separation of variables in the Dirichlet problem.
Variational problem and the Dirichlet principle.
2. Heat equation
The heat kernel.
Existence of bounded solutions of the Cauchy problem.
Maximum principle and uniqueness in the Cauchy problem.
Mixed problem and separation of variables.
3. Wave equation
Cauchy problem in dimension 1.
Energy and uniqueness.
Mixed problem for the wave equation.
Sperical means.
Cauchy problem in dimensions 2 and 3.
4. The eigenvalue problem
Distributions and Sobolev spaces.
Weak Dirichlet problem and Green operator.
Compact embedding theorem,
Eigenvalues and eigenfunctions of the weak Dirichlet problem.
* Higher order weak derivatives of weak solutions and eigenfunctions.
* Sobolev embedding theorem and smoothness of weak solutions and eigenfunctions.
and many more.