SUMMER SCHOOL
Geometry of quiver-representations
and preprojective algebras

Home page

Bibliography

[Be] D. J. Benson, Representations and cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Univ. Press 1991.
[Bo1] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math., 121 (1996), 245-287.
[Bo2] K. Bongartz, Minimal singularities for representations of quivers, Comment. Math. Helv., 63 (1994), 575-611.
[Bo3] K. Bongartz, Degenerations for representations of tame quivers, Ann. Scient. Ec. Norm. Sup., 28 (1995), 647-688.
[Bo4] K. Bongartz, Some geometric aspects of representation theory, Algebras and modules, I (Trondheim, 1996), 1-27, CMS Conf. Proc., 23, Amer. Math. Soc., 1998.
[CS] H. Cassens, P. Slodowy, On Kleinian singularities and quivers, Singularities (Oberwolfach, 1996), 263-288, Progr. Math., 162, Birkhäuser 1998.
[CB1] W. Crawley-Boevey, On homomorphisms from a fixed representation to a general representation of a quiver, Trans. Amer. Math. Soc., 348 (1996), 1909-1919.
[CB2] W. Crawley-Boevey, Subrepresentations of general representations of quivers, Bull. London Math. Soc., 28 (1996), 363-366.
[F1] W. Fulton, Young Tableaux, London Math. Soc. Student Texts 35, Cambridge Univ. Press, 1997.
[F2] W. Fulton, Intersection theory, Second edition, Springer-Verlag, Berlin, 1998.
[G] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71-103.
[GR] P. Gabriel, A. V. Roiter, Representations of Finite-Dimensional Algebras, Enc. of Math. Sci., 73, Algebra VIII, (Springer, 1992)
[GP] I. M. Gelfand, V. A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), pp. 163-237. Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 1972.
[GH] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, 1978.
[Ka1] V. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56 (1980), 57-92.
[Ka2] V. Kac, Root systems, representations of quivers and invariant theory. Invariant theory (Montecatini, 1982), 74-108, Lecture Notes in Math., 996, Springer, Berlin-New York, 1983.
[Ka3] V. Kac, Infinite-dimensional Lie algebras, Third edition, Cambridge Univ. Press, 1990.
[KS] M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J., 89 (1997), 9-36. (See below.)
[Ki] A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford, 45 (1994), 515-530.
[KR] H. Kraft, Ch. Riedtmann, Geometry of Representations of Quivers, in: Representations of Algebras, LMS Lecture Note Series 116, Cambridge Univ. Press, 1985, 109-145.
[Kre] L. Kronecker, Algebraische Reduction der scharen bilinearen Formen, Sitzungsber. Akad. Berlin (1890), 1225-1237.
[Krh] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom., 29 (1989), 665-683.
[KN] P. B. Kronheimer, H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann., 288 (1990), 263-307.
[LBP] L. Le Bruyn, C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.
[LP] J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, 54. Cambridge University Press 1997.
[Lu1] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., 4 (1991), 365-421.
[Lu2] G. Lusztig, Affine quivers and canonical bases, Pub. Math. I.H.E.S., 76 (1992), 111-163.
[Lu3] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics 110, Birkhäuser 1993.
[Lu4] G. Lusztig, On quiver varieties, Adv. Math., 136 (1998), 141-182.
[Na1] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76 (1994), 365-416.
[Na2] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J., 91 (1998),515-560.
[Rie1] Ch. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. Ecole Norm. Sup., 19 (1986), 275-301.
[Rie2] Ch. Riedtmann, Lie algebras generated by indecomposables, J. Algebra, 170 (1994), 526-546.
[Rin1] C. M. Ringel, Hall algebras and quantum groups, Invent. Math., 101 (1990), 583-591.
[Rin2] C. M. Ringel, The preprojective algebra of a quiver. Algebras and modules, II (Geiranger, 1996), 467-480, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998. (See below.)
[Rin3] C. M. Ringel, The preprojective algebra of a tame quiver: the irreducible components of the module varieties, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), 293-306, Contemp. Math., 229, Amer. Math. Soc. 1998.
[S1] A. Schofield, General representations of quivers, Proc. London Math. Soc., 65, (1992), 46-64.
[S2] A. Schofield, Quivers and Kac-Moody Lie algebras, Manuscript.
[Z1] G. Zwara, Degenerations for representations of extended Dynkin quivers, Comment. Math. Helv., 73 (1998), 71-88.
[Z2] G. Zwara, Degenerations for modules over representation-finite algebras, Proc. Amer. Math. Soc., 127 (1999), 1313-1322.
[Z3] G. Zwara, Degenerations of finite dimensional modules are given by extensions, to appear in Compositio Mathematica. (See below.)

Some documents available online

This page is maintained by William Crawley-Boevey
Last modified 11 April 2000