Publications

Publications
[8] A. Haydys. Isolated singularities of affine special Kaehler metrics in two dimensions. Commun. Math. Phys. (to appear) arXiv:1505.00462 

[7] A. Haydys, T.Walpuski. A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three. arXiv:1406.5683
      Cited by*:

• R. Takahashi. The moduli space of S^1-type zero loci for Z/2-harmonic spinors in dimension 3. arXiv:1503.00767

• C. Taubes. PSL (2; C) connections on 3-manifolds with L2 bounds on curvature. arXiv:1205.0514

• C. Taubes. The zero loci of Z/2 harmonic spinors in dimension 2, 3 and 4. arXiv:1407.6206
[6] A. Haydys. Dirac operators in gauge theory, In "New ideas in low-dimensional topology" edited by L.Kauffman and V.Manturov, to appear. arXiv:1303.2971
[5] A. Haydys. Fukaya-Seidel category and gauge theory, J. Symplectic Geom. 13 (2015), no. 1, 151-207.   arXiv:1010.2353
      Cited by*:

• S.Cherkis. Octonions, Monopoles, and Knots. arXiv:1403.6836

• D.Gaiotto, E.Witten. Knot invariants from four-dimensional gauge theory. Adv. Theor. Math. Phys. 16 (2012), no. 3, 935-1086.

• M. Garcia-Fernandez, J. Ross. Balanced metrics on twisted Higgs Bundles. arXiv:1401.7108

• R. Mazzeo and E. Witten. The Nahm pole boundary condition. In The influence of Solomon Lefschetz in geometry and topology, 171-226, Contemp. Math., 621, Amer. Math. Soc., Providence, RI, 2014.

• J. Qiu, M. Zabzine. On twisted N= 2 5D super Yang-Mills theory. arXiv:1409.1058

• Y.Tanaka. Some boundedness property of solutions to the Vafa-Witten equations on closed four-manifolds.  arXiv:1308.0862.

• Y.Tanaka. A perturbation and generic smoothness of the Vafa-Witten moduli spaces on closed symplectic four-manifolds.  arXiv:1410.1691

• Y.Tanaka. Stable sheaves with twisted sections and the Vafa-Witten equations on smooth projective surfaces. Manuscripta Math. 146 (2015), no. 3-4, 351-363.

• C. Taubes. Compactness theorems for SL(2; C) generalizations of the 4-dimensional anti-self dual equations, Part I. arXiv:1307.6447.

• C. Taubes. PSL(2; C) connections on 3-manifolds with L2 bounds on curvature. arXiv:1205.0514.

• T. Walpuski. G2–instantons on generalised Kummer constructions. Geometry & Topology 17 (2013) 2345–2388.

• E. Witten. Fivebranes and knots. Quantum Topol. 3 (2012), no. 1, 1-137.

• E. Witten. Khovanov homology and gauge theory. arXiv:1108.3103.

• E. Witten. Two Lectures On The Jones Polynomial And Khovanov Homology. arXiv:1401.6996


[4] A. Haydys. Gauge theory, calibrated geometry and harmonic spinors, J. Lond. Math. Soc. (2), 86(2):482-498, 2012. arXiv: 0902.3738
      Cited by*:

• A.Deser, O.Lechtenfeld, A.Popov. Sigma-model limit of Yang-Mills instantons in higher dimensions. arXiv: 1412.4258

• S. Donaldson, E. Segal. Gauge theory in higher dimensions, II. Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, 1–41, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011.

• M. Dunajski, M. Hoegner. SU(2) solutions to self-duality equations in eight dimensions.  J. Geom. Phys. 62 (2012), no. 8, 1747–1759.

• D. Harland et al. Yang-Mills flows on nearly Kähler manifolds and G 2-instantons.  Comm. Math. Phys. 300 (2010), no. 1, 185–204.

• A. Popov. Non-abelian vortices, super Yang-Mills theory and Spin(7)-instantons.Lett. Math. Phys. 92 (2010), no. 3, 253–268.

• T. Walpuski. G2–instantons on generalised Kummer constructions. Geometry & Topology 17 (2013) 2345–2388.

• T. Walpuski. Spin(7)-instantons, Cayley submanifolds and Fueter sections. arXiv:1409.6705

• S. Wang. A higher dimensional foliated Donaldson theory, I. arXiv:1212.6774.

[3] A. Haydys. HyperKahler and quaternionic Kahler manifolds with S1-symmetries. J. Geom. Phys. 58(2008), no. 3, 293-306. arXiv: 0706.4473
      Cited by*:

• DV Alekseevsky, V Cortés, T Mohaupt. Conification of K\"ahler and hyper-K\"ahler manifolds. arXiv:1205.2964

• DV Alekseevsky et al. Quaternionic Kähler metrics associated with special Kähler manifolds.      arXiv:1305.3549.

• S. Alexandrov. c-Map as c=1 string. Nuclear Physics B. 863 (1), 2012, 329–346.

• S. Alexandrov. Twistor approach to string compactifications: a review. Physics Reports 522 (2013), no. 1,  1–57.

• S. Alexandrov et al. Quantum hypermultiplet moduli spaces in N=2 string vacua: a review.      arXiv:1304.0766.

• S. Alexandrov, J. Manschot, B. Pioline. D3-instantons, mock theta series and twistors.  J. High Energy Phys. 2013, DOI 10.1007/JHEP04(2013)002.

• S. Alexandrov, G. Moore, A. Neitzke, B. Pioline. An $ R^ 3$ index for four-dimensional $ N= 2$ field theories. arXiv:1406.2360

• S. Alexandrov, B. Pioline. S-duality in twistor space. J. High Energy Phys. 2012, no. 8, 112, 31 pp.

• S. Alexandrov, D. Persson, B. Pioline.Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence. J. High Energy Phys. 2011, no. 12, 027, i, 64 pp.

 • A. Dey, A. Neitzke. Hyperkahler Sigma Model and Field Theory on Gibbons-Hawking Spaces. arXiv:1401.0349

• A. Gambioli, Y. Nagatomo, S. Salamon. Special geometries associated to quaternion-Kähler 8-manifolds doi:10.1016/j.geomphys.2014.11.007

• O. Macia, A. Swann. Elementary deformations and the hyperKähler-quaternionic Kähler correspondence. arXiv:1404.1169

• O. Macia, A. Swann. Twist geometry of the c-map. Commun. Math. Phys. 336 (2015), no. 3, 1329-1357.

• J. Malkoun. An Ansatz for Hyperkähler 8-Manifolds with two Commuting Rotating Killing Fields arXiv:1409.7799

• A. Neitzke. On a hyperholomorphic line bundle over the Coulomb branch. arXiv:1110.1619.

• A. Neitzke. Notes on a new construction of hyperkahler metrics. arXiv:1308.2198

• N. Hitchin. On the hyperkaehler/quaternion Kaehler correspondence.  Commun. Math. Phys., 2013,  DOI 10.1007/s00220-013-1689-y

• N. Hitchin. The hyperholomorphic line bundle. arXiv:1306.4241.

• N. Hitchin. Manifolds with holonomy U∗(2m). J Revista Matemática Complutense 2014, http://dx.doi.org/10.1007/s13163-014-0150-x

[2] A. Haydys. Nonlinear Dirac operator and quaternionic analysis. Comm.  Math. Phys. 281(2008), 251--261, arXiv: 0706.0389
      Cited by*:

• S. Donaldson, E. Segal. Gauge theory in higher dimensions, II. Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, 1–41, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011.

• S. Hohloch, G. Noetzel, D. Salamon. Hypercontact structures and Floer homology. Geom. Topol. 13 (2009), no. 5, 2543–2617.

• S. Hohloch, G. Noetzel, D. Salamon. Floer homology groups in hyperkähler geometry. New perspectives and challenges in symplectic field theory, 251–261, CRM Proc. Lecture Notes, 49, Amer. Math. Soc., Providence, RI, 2009.

• S. Ianuş et al. Twistorial maps between quaternionic manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 1, 47–67.

•  D. Salamon. The three-dimensional Fueter equation and divergence-free frames. Abh. Math. Semin. Univ. Hambg. 83 (2013), no. 1, 1–28.

[1] A. Haydys. Generalized Seiberg-Witten equations and hyperKahler geometry. PhD dissertation, Universitat Gottingen, February 2006.
      Cited by*:

• S. Donaldson, E. Segal. Gauge theory in higher dimensions, II. Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, 1–41, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011.

• S. Hohloch, G. Noetzel, D. Salamon. Hypercontact structures and Floer homology. Geom. Topol. 13 (2009), no. 5, 2543–2617.

• S. Hohloch, G. Noetzel, D. Salamon. Floer homology groups in hyperkähler geometry. New perspectives and challenges in symplectic field theory, 251–261, CRM Proc. Lecture Notes, 49, Amer. Math. Soc., Providence, RI, 2009.



*the list may be incomplete


Last updated: 30 June 2015