BIREP-Seminar — joint meeting, SBF-projects C3 / A4.

Study group on Borcherds-Kac-Moody algebras

This study group will revolve around Borcherds Lie algebras (or generalised Kac-Moody algebras). The main objectives are to explain the construction of a Littelmann path model for Borcherds algebras, and to give a link between their quantised enveloping algebras and Ringel-Hall algebras. Further related topics (such as crystals and species) may be considered if time permits.

This seminar is a joint meeting with the Stochastics group.

Plan

  1. Introduction and overview     Markus Schmidmeier     24.10.2008  
  2. Borcherds algebras I – Weyl groups, root systems     Jean-Marie Bois   07.11.2008
  3. Borcherds algebras II – integrable modules, characters     Angela Holtmann 21.11.2008
  4. A Littelmann path model for Borcherds algebras I     Xenia Lamprou   05.12.2008
  5. A Littelmann path model for Borcherds algebras II     Xenia Lamprou   12.12.2008
  6. Quantised Borcherds algebras and Hall algebras     Dieter Vossieck   19.12.2008

References

  1. R.E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1998), 501–512.
  2. R.E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405–444.
  3. B. Deng, J. Xiao, A new approach to Kac's theorem on representations of valued quivers, Math. Z. 245 (2003), 183–199.
  4. K. Jeong, S.-J. Kang, M. Kashiwara, Crystal bases for quantum generalized Kac-Moody algebras, Proc. London Math. Soc. (3) 90 (2005), 395–438.
  5. K. Jeong, S.-J. Kang, M. Kashiwara, D.-U. Shin, Abstract crystals for quantum generalised Kac-Moody algebras, Int. Math. Res. Not. IMRN, no 1, Art. ID mm001.
  6. A. Joseph, P. Lamprou, A Littelmann path model for crystals of generalized Kac-Moody algebras, arXiv:0804.1485.
  7. S.-J. Kang, Quantum deformations of generalized Kac-Moody algebras and their modules, J. Algebra 175 (1995), 1041–1066.
  8. B. Sevenhant, M. van den Bergh, A relation between a conjecture of Kac and the structure of the Hall algebra, J. Pure and Appl. Algebra 160 (2001), 319–332.
  9. M. Wakimoto, Infinite-dimensional Lie algebras, Translations of Mathematical Monographs, vol. 195, 2001.
Download a pdf version of the reference list.

Supporting documents

The slides of some talks are now available for downloading:

Prerequisites

While we will try to limit the formal prerequisites to a minimal amount, it could be good to be somewhat familiar with the theory of semi-simple Lie algebras (otherwise, just keep the example of sln in mind). Having followed these lectures might be a plus, but it is by no means essential.


Jean-Marie Bois – Polyxeni Lamprou
Last modified: Mon 15 Dec 2008
This is the webpage http://www.math.uni-bielefeld.de/~sek/sem/BKMWorkshop.html