Preprint des Projektes: DFG Forschergruppe Spektrale Analysis, asymptotische Verteilungen und stochastische Prozesse

Numerische Approximation und Spektrale Analysis unendlich-dimensionaler Dynamischer Systeme

04-024 Thorsten Hüls.
Bifurcation of Connecting Orbits with One Nonhyperbolic Fixed Point for Maps

In this paper we consider the bifurcation of transversal heteroclinic orbits in discrete time dynamical systems. We assume that a nonhyperbolic transversal heteroclinic orbit exists at some critical parameter value. This situation appears, for example, when one end point undergoes a fold or flip bifurcation. In these two cases the bifurcation analysis of the orbit is performed in detail. In particular, we prove, using implicit function techniques, that the orbit can be continued beyond the bifurcation point. Finally, we show numerical computations for the fold and for the flip bifurcations.