Universität Bielefeld

Lehre und Übungen

SFB 701 (Logo)
SFB 701
Fakultät für Mathematik
English version

Konferenzen

Lecture Mathematical Modelling and Simulation with Comsol Multiphysics II

Vorlesung Di., 12.30-14.00 Uhr, im V4-112 (Otten)
Übungen Mo., 12:30-14:00 Uhr, im U5-139 (Otten)
Abgabe nicht vorgesehen
Sprechstunde Di., 14.00-15.00 Uhr, im V5-134
eKVV https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=60265130 (Vorlesung: Otten)
https://ekvv.uni-bielefeld.de/kvv_publ/publ/vd?id=60285460 (Übung: Otten)
   

Abstract

Content of the lecture

Introduction into the theory of finite element methods
1. An application
1.1. Temperature distribution in a room
2. Mathematical notations and definitions
2.1. Some general notations
2.2. Spaces of continuous functions
2.3. Lebesgue spaces, embeddings and inequalities
2.4. Weak derivatives
2.5. Sobolev spaces, embeddings and inequalities
2.6. Divergence theorem and Green's formula
3. Basic Concepts of the finite element method
3.1. Weak formulation
3.2. Ritz-Galerkin method
3.3. Error estimates
3.3.1. Error estimates in energy norm
3.3.2. Error estimates in L2-norm
3.4. Space of continuous, piecewise linear polynomials
3.5. Implementation of Finite Element Methods
4. Variational formulation
4.1. General definitions and abstract linear spaces
4.2. Projection theorem
4.3. Riesz representation theorem
4.4. Abstract variational formulation
4.5. Lax-Milgram theorem
4.6. Céa's lemma
4.7. Appilcations to elliptic boundary value problems
4.7.1. Problems with Dirichlet boundary conditions
4.7.2. Problems with Neumann boundary conditions
4.7.3. Problems with Robin boundary conditions
5. Finite element spaces
5.1. Basic definition of a finite element
5.2. Triangular finite elements
5.2.1. The Lagrange element
5.2.2. The Hermite element
5.2.3. The Argyris element
5.3. Rectangular finite elements
5.3.1. The Lagrange element (the tensor product element)
5.3.2. The Serendipity element
5.4. The local interpolation operator
5.5. Triangulations and rectangular subdivisions
5.6. The finite element space
6. Convergence theory
6.1. The interpolation error

Content of the tutorial

Freezing Relative Equilibria in Equivariant First-Order Evolution Equations (with Comsol Multiphysics 5.1 and 5.2)
1.1 Traveling waves in reaction diffusion systems
1.2 Freezing method for traveling waves
1.3 Numerical approximation of traveling waves via freezing method
1.4 Spectra and eigenfunctions of traveling waves
1.4.1 Point spectrum of traveling waves on the imaginary axis
1.4.2 Essential spectrum of traveling waves
2.1 Oscillating waves in reaction diffusion systems
2.2 Freezing method for oscillating waves
2.3 Numerical approximation of oscillating waves via freezing method
2.4 Spectra and eigenfunctions of oscillating waves
2.4.1 Point spectrum of oscillating waves on the imaginary axis
2.4.2 Essential spectrum of localized oscillating waves
3.1 Rotating waves in reaction diffusion systems
3.2 Freezing method for rotating waves
3.3 Numerical approximation of rotating waves via freezing method
4. Freezing Waves with Several Symmetries in Reaction Diffusion Systems
5. Freezing Multistructures (Multifronts, Multipulses and Multisolitons) and Wave Interactions in Reaction Diffusion Systems
6. Further coherent structures in Reaction Diffusion Systems

Freezing Relative Equilibria in Equivariant Second-Order Evolution Equations (with Comsol Multiphysics 5.1 and 5.2)
7.1 Traveling waves in systems of damped wave equations
7.2 Freezing method for traveling waves
7.3 Numerical approximation of traveling waves via freezing method
7.4 Spectra and eigenfunctions of traveling waves
7.4.1 Point spectrum of traveling waves on the imaginary axis
7.4.2 Essential spectrum of traveling waves
8. Freezing Rotating Waves in Damped Wave Equations
8.1 Rotating waves in systems of damped wave equations
8.2 Freezing method for rotating waves
8.3 Numerical approximation of rotating waves via freezing method

For the implementation we suggest the following tutorials

Freezing Relative Equilibria in Equivariant First-Order Evolution Equations (with Comsol Multiphysics 5.1 and 5.2)

1. Freezing Traveling Waves in Reaction Diffusion Equations

Equation Space Wave Phenomena Traveling wave Space-Time Profile Space-Time Velocities Spectrum Eigenfunction Exercise Files
Fisher's equation 1D traveling front Exercise 1 mph
Nagumo equation 1D traveling front Exercise 2 mph
mph
Quintic Nagumo equation 1D traveling front Exercise 3 mph
mph
FitzHugh-Nagumo system 1D traveling front


Exercise 4 mph
FitzHugh-Nagumo system 1D traveling pulse


Exercise 5 mph
Barkley model 1D traveling pulse


mph

2. Freezing Oscillating Waves in Reaction Diffusion Equations

Equation Space Wave Phenomena Oscillating wave Space-Time Profile Space-Time Velocities Spectrum Eigenfunction Exercise Files
Schrödinger equation 1D oscillating pulse


Exercise 6 mph
Gross-Pitaevskii equation 1D oscillating pulse


Exercise 7 mph
cubic-quintic complex Ginzburg-Landau equation 1D oscillating pulse


Exercise 8 mph

3. Freezing Rotating Waves in Reaction Diffusion Systems

Equation Space Wave Phenomena 3D-View Space-Time Profile Space-Time Velocities Spectrum Eigenfunction Exercise Files
cubic-quintic complex Ginzburg-Landau equation 2D spinning soliton, dissipative soliton, rotating soliton mph
cubic-quintic complex Ginzburg-Landau equation 2D rotating spiral wave


mph
Lambda-omega system 2D rotating spiral wave mph
Barkley model 2D rotating spiral wave mph
cubic-quintic complex Ginzburg-Landau equation 3D spinning soliton, dissipative soliton, rotating soliton
Lambda-omega system 3D scroll wave, scroll ring

4. Freezing Waves with Several Symmetries in Reaction Diffusion Systems

Equation Space Wave Phenomena Wave Phenomena Space-Time Profile Space-Time Velocities Spectrum Eigenfunction Exercise Files
Schrödinger equation 1D traveling oscillating pulse



mph
cubic-quintic complex Ginzburg-Landau equation 1D traveling oscillating front



mph

5. Freezing Multistructures (Multifronts, Multipulses and Multisolitons) and Wave Interactions in Reaction Diffusion Systems

Equation Space Wave Phenomena Wave Phenomena Space-Time Profile Space-Time Velocities, Positions Spectrum Eigenfunction Exercise Files
Nagumo equation 1D Traveling 2-front (traveling multifront, repelling fronts)


mph
Nagumo equation 1D Traveling 2-front (collision, colliding fronts)


mph
quintic Nagumo equation 1D Traveling 2-front (traveling multifront)
quintic Nagumo equation 1D Traveling 2-front (collision)
quintic Nagumo equation 1D Traveling 3-front (traveling multifront)
quintic Nagumo equation 1D Traveling 4-front (traveling multifront)
quintic Nagumo equation 1D Traveling 4-front (collision)
FitzHugh-Nagumo system 1D Traveling 2-pulse (traveling multipulse)
cubic-quintic complex Ginzburg-Landau equation 1D Oscillating 2-pulse (oscillating multipulse)
cubic-quintic complex Ginzburg-Landau equation 1D Oscillating pulse and traveling oscillating front
cubic-quintic complex Ginzburg-Landau equation 1D Traveling oscillating 2-front (traveling oscillating multifront)
cubic-quintic complex Ginzburg-Landau equation 2D Spinning 2-soliton (rotating multisoliton)
cubic-quintic complex Ginzburg-Landau equation 2D Spinning 3-soliton (rotating multisoliton)

6. Further coherent structures in Reaction Diffusion Systems

Equation Space Wave Phenomena Wave Phenomena Space-Time Profile Space-Time Velocities Spectrum Eigenfunction Exercise Files
cubic-quintic complex Ginzburg-Landau equation 1D pulsating soliton


mph
cubic-quintic complex Ginzburg-Landau equation 1D creeping soliton


mph

Freezing Relative Equilibria in Equivariant Second-Order Evolution Equations (with Comsol Multiphysics 5.1 and 5.2)

7. Freezing Traveling Waves in Damped Wave Equations

Equation Space Wave Phenomena Traveling wave Space-Time Profile Space-Time Velocity, Acceleration Spectrum Eigenfunction Exercise Files
Damped Fisher's equation 1D traveling front
Damped Nagumo equation 1D traveling front mph
Damped quintic Nagumo equation 1D traveling front mph
Damped FitzHugh-Nagumo system 1D traveling front


mph
Damped FitzHugh-Nagumo system 1D traveling pulse mph
Damped Barkley model 1D traveling pulse

8. Freezing Rotating Waves in Damped Wave Equations

Equation Space Wave Phenomena 3D-View Space-Time Profile Space-Time Velocities, Accelerations Spectrum Eigenfunction Exercise Files
damped cubic-quintic complex Ginzburg-Landau equation 2D spinning soliton, dissipative soliton, rotating soliton

Literature

Finite element method (FEM):
  • [1]: S.C. Brenner, L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer, 3. Aufl., 2008.
  • [2]: P.G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, 2. Aufl., 2002.
  • [3]: A. Jüngel. Das kleine Finite-Elemente-Skript. Vorlesungsskript, TU Wien, 2001, (pdf).
  • [4]: S. Larsson, V. Thomée. Partielle Differentialgleichungen und numerische Methoden. Springer, 1. Aufl., 2005.

Ich wünsche allen Teilnehmern der Vorlesung viel Erfolg!

 
Letzte Aktualisierung:   Valid HTML 4.01 Transitional
04. Februar 2016