Dozent: Prof. Dr. Henning Krause
Übungen: Dr. Jan Geuenich
Vorlesungstermine:
Eintrag im elektronischen Vorlesungsverzeichnis
Die Veranstaltung ist eine Fortsetzung der Algebra I und behandelt zum Beispiel Moduln über Ringen (als Verallgemeinerung von Vektorräumen über Körpern). Insbesondere werden die endlich erzeugten Moduln über Hauptidealringen klassifiziert, sowie halbeinfache Moduln und halbeinfache Ringe behandelt. Einen guten Einblick gibt das Buch "Algebra" von Jantzen und Schwermer, welches auch für Teile der Vorlesung als Grundlage dient. Zur Auflockerung sind kleinere Ausflüge in die kommutative Algebra aber auch in die Nichtstandardanalysis geplant. Zu Beginn gibt es einen Nachtrag zur Körpertheorie: Die Existenz eines algebraischen Abschluß und der sogenannte Hauptsatz der Algebra werden bewiesen.
Literatur:
Das Tutorium zur Vorlesung findet montags 18–20 Uhr in Raum V4-119 statt und beginnt am Montag, den 16.04.2018.
Die Hausaufgaben werden ab dem 11.04.2018 jeden Mittwoch auf dieser Webseite veröffentlicht. Sie werden in Gruppen zu maximal drei Personen bearbeitet. In der folgenden Woche können sie bis spätestens Donnerstag 14:00 in das Postfach des Tutors Jan Geuenich in V3-126 geworfen werden.
Die Abgaben werden korrigiert und im Tutorium der folgenden Woche zurückgegeben und besprochen.
Am Ende des Semesters finden mündliche Prüfungen statt. Termin ist Mittwoch, der 5. September 2018.
Voraussetzungen für eine Teilnahme an der Prüfung sind: