BIREP – Representations of finite dimensional algebras at Bielefeld
Publications by the BIREP group since 2010
-
C. M. Ringel,
Iyama's finiteness theorem via strongly quasi-hereditary algebras,
Journal of Pure and Applied Algebra 214 (2010),
,
doi:10.1016/j.jpaa.2009.12.012.
-
H. Krause and J. Stovicek,
The telescope conjecture for hereditary rings via Ext-orthogonal pairs,
Adv. Math. 225 (2010),
,
doi:10.1016/j.aim.2010.04.027.
-
H. Krause,
Localization theory for triangulated categories,
in: T. Holm, P. Jørgensen and R. Rouquier (eds.), Triangulated categories, London Math. Soc. Lecture Note Ser. 375, Cambridge Univ. Press, Cambridge 2010,
.
-
C. M. Ringel,
Cluster-concealed algebras,
Advances in Mathematics 226 (2011),
,
doi:10.1016/j.aim.2010.08.014.
-
C. M. Ringel,
Gabriel–Roiter inclusions and Auslander–Reiten theory,
Journal of Algebra 324 (2010),
,
doi:10.1016/j.jalgebra.2010.09.003.
-
X.-W. Chen,
Homotopy equivalences induced by balanced pairs,
J. Algebra 324 (2010),
,
doi:10.1016/j.jalgebra.2010.09.002.
-
C. Bowman, S. R. Doty and S. Martin,
Decomposition of Tensor Products of Modular Irreducible Representations for SL_3 (with an appendix by C. M. Ringel),
International Electronic Journal of Algebra 9 (2011),
.
-
X.-W. Chen,
The stable monomorphism category of a Frobenius category,
Math. Res. Lett. 18 (2011), no. 1,
.
-
C. M. Ringel,
Indecomposables live in all smaller lengths,
Bulletin of the London Mathematical Society 43 (2011),
,
doi:10.1112/blms/bdq128.
-
H. Krause and Y. Ye,
On the centre of a triangulated category,
Proc. Edinburgh Math. Soc. 54 (2011),
,
doi:10.1017/S0013091509001199.
-
X.-W. Chen and H. Krause,
Expansions of abelian categories,
J. Pure Appl. Algebra 215 (2011),
,
doi:10.1016/j.jpaa.2011.04.008.
-
A.-C. van Roosmalen,
Abelian Hereditary Fractionally Calabi–Yau Categories,
Int. Math. Res. Not. 2012(12) (2012),
,
doi:10.1093/imrn/rnr118.
-
H. Krause,
Approximations and adjoints in homotopy categories,
Math. Annalen 353 (2012),
,
doi:10.1007/s00208-011-0703-y.
-
D. J. Benson, S. B. Iyengar and H. Krause,
Stratifying triangulated categories,
J. Topology 4 (2011),
,
doi:10.1112/jtopol/jtr017.
-
D. J. Benson, S. B. Iyengar and H. Krause,
Localising subcategories for cochains on the classifying space of a finite group,
C. R. Math. Acad. Sci. Paris 349 (2011),
,
doi:10.1016/j.crma.2011.08.019.
-
D. J. Benson, S. B. Iyengar and H. Krause,
Module categories for finite group algebras,
in: A. Skowroński and K. Yamagata (eds.), Representations of Algebras and Related Topics, EMS Series of Congress Reports, EMS Publ. House, Zürich 2011,
,
doi:10.4171/101.
-
C. M. Ringel,
The minimal representation-infinite algebras which are special biserial,
in: A. Skowroński and K. Yamagata (eds.), Representations of Algebras and Related Topics, EMS Series of Congress Reports, EMS Publ. House, Zürich 2011,
,
doi:10.4171/101.
-
H. Krause,
Report on locally finite triangulated categories,
J. K-Theory 9 (2012),
,
doi:10.1017/is011011001jkt171.
-
D. Guez and G. Stevenson,
Is reasoning in rats really unreasonable? Revisiting recent associative accounts,
Frontiers in Psychology 2 (2011),
doi:10.3389/fpsyg.2011.00277.
-
D. J. Benson, S. B. Iyengar and H. Krause,
Stratifying modular representations of finite groups,
Ann. of Math. 174 (2012),
,
doi:10.4007/annals.2011.174.3.6.
-
D. J. Benson, S. B. Iyengar and H. Krause,
Representations of finite groups: Local cohomology and support,
Oberwolfach Seminars 43, Birkhäuser Verlag 2012,
111pp,
doi:10.1007/978-3-0348-0260-4.
-
C. M. Ringel,
On the representation dimension of artin algebras,
Bull. Inst. Math. Acad. Sinica 7 (2012),
Link.
-
Ph. Fahr and C. M. Ringel,
Categorification of the Fibonacci Numbers Using Representations of Quivers,
Journal of Integer Sequences 15 (2011),
article 12.2.1,
Reprint.
-
D. J. Benson, S. B. Iyengar and H. Krause,
Colocalizing subcategories and cosupport,
J. Reine Angew. Math. 673 (2012),
,
doi:10.1515/CRELLE.2011.180.
-
I. Dell'Ambrogio and G. Tabuada,
Tensor triangular geometry of non-commutative motives,
Adv. Math. 229 (2012),
,
doi:10.1016/j.aim.2011.11.005.
-
G. Bobinski and A. B. Buan,
The algebras derived equivalent to gentle cluster tilted algebras,
J. Algebra Appl. 11 (2012),
1250012,
doi:10.1142/S021949881100535X.
-
G. Ciprian and J. Stovicek,
Brown representability often fails for homotopy categories of complexes,
J. K-Theory 9 (2012),
,
doi:10.1017/is011010026jkt167.
-
C. M. Ringel,
Cluster-additive functions on stable translation quivers,
J. Algebr. Comb. 36 (2012),
,
doi:10.1007/s10801-012-0346-4.
-
C. M. Ringel,
Minimal infinite cogeneration-closed subcategories,
Bull. Sci. Math. 136 (2012),
,
doi:10.1016/j.bulsci.2012.03.002.
-
C. M. Ringel,
Indecomposable representations of the Kronecker quivers,
Proc. AMS 141 (2013),
,
doi:10.1090/S0002-9939-2012-11296-1.
-
Ph. Fahr and C. M. Ringel,
The Fibonacci partition triangles,
Adv. Math. 230 (2012),
,
doi:10.1016/j.aim.2012.04.010.
-
E. Herscovich,
The Dixmier map for nilpotent super Lie algebras,
Commun. Math. Phys. 313 (2012),
,
doi:10.1007/s00220-012-1505-0.
-
J. Burke,
Finite injective dimension over rings with Noetherian cohomology,
Math. Res. Lett. 19 (2012),
,
doi:10.4310/MRL.2012.v19.n4.a1.
-
C. Berkesch, J. Burke, D. Erman and C. Gibbons,
The cone of Betti diagrams over a hypersurface ring of low embedding dimension,
J. Pure Appl. Algebra 216 (2012),
,
doi:doi:10.1016/j.jpaa.2012.03.007.
-
I. Dell'Ambrogio,
The unitary symmetric monoidal model category of small C*-categories,
Homology Homotopy Appl. 14(2) (2012),
,
Link.
-
J. Burke and M. E. Walker,
Matrix factorizations over projective schemes,
Homology Homotopy Appl. 14(2) (2012),
,
Link.
-
I. Dell'Ambrogio and G. Stevenson,
On the derived category of a graded commutative noetherian ring,
J. Algebra 373 (2013),
,
doi:10.1016/j.jalgebra.2012.09.038.
-
S. Bazzoni and J. Stovicek,
On the abelianization of derived categories and a negative solution to Rosicky's problem,
Compos. Math. 149 (2013),
,
doi:10.1112/S0010437X12000413.
-
C. M. Ringel and Bao-Lin Xiong,
On radical square zero rings,
Algebra and Discrete Mathematics 14 (2012),
Link.
-
S. B. Iyengar and H. Krause,
The Bousfield lattice of a triangulated category and stratification,
Math. Z. 273 (2013),
,
doi:10.1007/s00209-012-1051-7.
-
D. Benson, S. Iyengar and H. Krause,
Module categories for group algebras over commutative rings (with an appendix by G. Stevenson),
J. K-Theory 11 (2013),
,
doi:10.1017/is013001031jkt214.
-
H. Krause,
Koszul, Ringel, and Serre duality for strict polynomial functors,
Compos. Math. 149 (2013),
,
doi:10.1112/S0010437X12000814.
-
C. M. Ringel,
The Gorenstein projective modules for the Nakayama algebras,
J. Algebra 385 (2013),
,
doi:10.1016/j.jalgebra.2013.03.014 .
-
G. Stevenson,
Support theory via actions of tensor triangulated categories,
J. reine angew. Math. 681 (2013),
,
doi:10.1515/crelle-2012-0025.
-
H. Krause and M. Prest,
The Gabriel-Roiter filtration of the Ziegler spectrum,
Quart. J. Math. 64 (2013),
,
doi:10.1093/qmath/has020.
-
H. Krause and G. Stevenson,
A note on thick subcategories of stable derived categories,
Nagoya Math. J. 212 (2013),
,
doi:10.1215/00277630-2351125.
-
H. Krause,
Morphisms determined by objects in triangulated categories,
in: Algebras, quivers and representations, Proceedings of the Abel Symposium 2011, Springer Series Abel Symposia 8,
,
doi:10.1007/978-3-642-39485-0_9.
-
C. M. Ringel,
Distinguished bases of exceptional modules,
in: Algebras, quivers and representations, Proceedings of the Abel Symposium 2011, Springer Series Abel Symposia 8,
,
doi:10.1007/978-3-642-39485-0_11.
-
C. M. Ringel,
The Auslander bijections: How morphisms are determined by modules,
Bull. Math. Sci. 3 (2013),
,
doi:10.1007/s13373-013-0042-2.
-
M. Obaid, K. Nauman, W. S. M. Al-Shammakh, W. Fakieh and C. M. Ringel,
The number of complete exceptional sequences for a Dynkin algebra,
Colloq. Math. 133 (2013),
,
doi:10.4064/cm133-2-6.
-
Y. Jiang,
Parametrizations of canonical bases and irreducible components of nilpotent varieties,
Int. Math. Res. Not. 12 (2014),
,
doi:10.1093/imrn/rnt032.
-
Ph. Lampe,
Quantum cluster algebras of type A and the dual canonical basis,
Proc. Lond. Math. Soc. 108 (2014),
,
doi:10.1112/plms/pds098.
-
D. Benson, H. Krause and A. Skowroński (eds.),
Advances in Representation Theory of Algebras,
EMS Series of Congress Reports, EMS Publishing House 2014,
378pp,
doi:10.4171/125.
-
I. Dell'Ambrogio and G. Tabuada,
Morita homotopy theory of C*-categories,
J. Algebra 398 (2014),
,
doi:10.1016/j.jalgebra.2013.09.022.
-
C. M. Ringel,
Morphisms determined by objects: The case of modules over artin algebras,
Illinois J. Math 56 (2012),
.
-
I. Dell'Ambrogio and G. Stevenson,
Even more spectra: tensor triangular comparison maps via graded commutative 2-rings,
Appl. Categ. Struct. 22 (2014),
,
doi:10.1007/s10485-012-9296-1.
-
G. Stevenson,
Subcategories of singularity categories via tensor actions,
Compos. Math. 150 (2014),
,
doi:10.1112/S0010437X1300746X.
-
C. M. Ringel,
Quiver Grassmannians and Auslander varieties for wild algebras,
J. Algebra 402 (2014),
,
doi:10.1016/j.jalgebra.2013.12.021 .
-
G. Stevenson,
Duality for bounded derived categories of complete intersections,
Bull. London Math. Soc. 46 (2014),
,
doi:10.1112/blms/bdt089.
-
C. Psaroudakis and J. Vitória,
Recollements of Module Categories,
Appl. Categ. Struct. 22 (2014),
,
doi:10.1007/s10485-013-9323-x.
-
G. Stevenson,
Derived categories of absolutely flat rings,
Homology Homotopy Appl. 16 (2014),
,
Link.
-
I. Dell'Ambrogio,
Equivariant Kasparov theory of finite groups via Mackey functors,
J. Noncommut. Geom. 8 (2014),
,
doi:10.4171/JNCG/172.
-
C. M. Ringel and P. Zhang,
From submodule categories to preprojective algebras,
Math Z. 278 (2014),
,
doi:10.1007/s00209-014-1305-7.
-
H. Krause,
Abelian length categories of strongly unbounded type,
Int. Math. Res. Not. 2014(24) (2014),
,
doi:10.1093/imrn/rnt184.
-
H. Krause,
The artinian conjecture (following Djament, Putman, Sam, and Snowden),
in: Proceedings of the 47th symposium on ring theory and representation theory (Osaka, 2014), Saitama University 2015,
.
-
C. M. Ringel and P. Zhang,
Objective triangle functors,
Sci. China, Math. 58 (2015),
,
doi:10.1007/s11425-014-4954-4.
-
D. J. Benson, S. Iyengar and H. Krause,
A local-global principle for small triangulated categories,
Math. Proc. Camb. Philos. Soc. 158 (2015),
,
doi:10.1017/S0305004115000067.
-
G. Bobiński and H. Krause,
The Krull-Gabriel dimension of discrete derived categories,
Bull. Sci. Math. 139 (2015),
,
doi:10.1016/j.bulsci.2014.09.001.
-
J. Steen and G. Stevenson,
Strong generators in tensor triangulated categories,
Bull. London Math. Soc. 47 (2015),
,
doi:10.1112/blms/bdv037.
-
M. Obaid, K. Nauman, W. Fakieh and C. M. Ringel,
The numbers of support-tilting modules for Dynkin algebras,
Journal of Integer Sequences 18 (2015),
article 15.10.6,
Reprint.
-
H. Krause,
Deriving Auslander's formula,
Doc. Math. 20 (2015),
,
Link.
-
C. M. Ringel,
Generic representations of wild quivers,
Int. Math. Res. Not. 2015(19) (2015),
,
doi:10.1093/imrn/rnu224.
-
H. Krause,
Polynomial representations of GL(n) and Schur-Weyl duality,
Beitr. Algebra Geom. 56 (2015),
,
doi:10.1007/s13366-015-0237-7.
-
J. Burke and G. Stevenson,
The derived category of a graded Gorenstein ring,
in: Commutative Algebra and Noncommutative Algebraic Geometry: Volume II: Research Articles, MSRI Publications 68, Cambridge University Press 2015,
.
-
H. Krause,
Krull–Schmidt categories and projective covers,
Expo. Math. 33 (2015),
,
doi:doi:10.1016/j.exmath.2015.10.001.
-
H. Krause,
Morphisms determined by objects and flat covers,
Forum Math. 28 (2016),
,
doi:10.1515/forum-2014-0115.
-
A. Hubery,
Irreducible components of quiver Grassmannians,
Trans. Amer. Math. Soc. 369 (2017),
,
doi:10.1090/tran/6693.
-
M. Obaid, K. Nauman, W. Fakieh and C. M. Ringel,
Static subcategories of the module category of a finite-dimensional hereditary algebra,
Commun. Algebra 44 (2016),
,
doi:10.1080/00927872.2015.1053902.
-
S. Baland, A. Chirvasitu and G. Stevenson,
The prime spectra of relative stable module categories,
Trans. Amer. Math. Soc.,
doi:10.1090/tran/7297.
-
P. Lampe,
Diophantine equations via cluster transformations,
J. Algebra 462 (2016),
,
doi:10.1016/j.jalgebra.2016.04.033.
-
B. Antieau and G. Stevenson,
Derived categories of representations of small categories over commutative noetherian rings,
Pac. J. Math. 283 (216),
,
doi:10.2140/pjm.2016.283.21.
-
M. Obaid, K. Nauman, W. Fakieh and C. M. Ringel,
The Ingalls-Thomas Bijections,
Int. Electron. J. Algebra 20 (2016),
,
Link.
-
C. M. Ringel,
The representation theory of Dynkin quivers. Three contributions.,
Front. Math. China 11 (2016),
,
doi:10.1007/s11464-016-0548-5.
-
H. Krause,
Cohomological length functions,
Nagoya Math. J. 223 (2016),
,
doi:10.1017/nmj.2016.28.
-
C. M. Ringel,
The Catalan combinatorics of the hereditary artin algebras,
in: Recent Developments in Representation Theory, Contemp. Math. 673, Amer. Math. Soc., Providence, RI 2016,
.
-
A. Hubery and H. Krause,
A categorification of non-crossing partitions,
J. Eur. Math. Soc. 18 (2016),
,
doi:10.4171/JEMS/641.
-
M. Perling and S. Schröer,
Vector bundles on proper toric 3-folds and certain other schemes,
Trans. Amer. Math. Soc. 369 (2017),
,
doi:10.1090/tran/6813.
-
H. Krause, P. Littelmann, G. Malle, K.-H. Neeb and C. Schweigert (eds.),
Representation Theory – Current Trends and Perspectives,
EMS Series of Congress Reports, EMS Publishing House 2017,
773pp,
doi:10.4171/171.
-
H. Krause,
Highest weight categories and strict polynomial functors (with an appendix by C. Aquilino),
in: Representation Theory – Current Trends and Perspectives, EMS Series of Congress Reports, EMS Publishing House 2017,
,
doi:10.4171/171-1/13.
-
G. Stevenson,
Filtrations via Tensor Actions,
Int. Math. Res. Not.,
doi:10.1093/imrn/rnw325.
-
W. Crawley-Boevey and J. Sauter,
On quiver Grassmannians and orbit closures for representation-finite algebras,
Math. Z. 285 (2017),
,
doi:10.1007/s00209-016-1712-z.
-
D. Benson, S. Iyengar, H. Krause and J. Pevtsova,
Stratification and π-cosupport: Finite groups,
Math. Z. (2017),
doi:10.1007/s00209-017-1853-8.
-
I. Dell'Ambrogio, G. Stevenson and J. Stovicek,
Gorenstein homological algebra and universal coefficient theorems,
Math. Z.,
doi:10.1007/s00209-017-1862-7.
-
G. Stevenson,
The local-to-global principle for triangulated categories via dimension functions,
J. Algebra 473 (2017),
,
doi:10.1016/j.jalgebra.2016.12.002.
-
C. M. Ringel and P. Zhang,
Representations of quivers over the algebra of dual numbers,
J. Algebra 475 (2017),
,
doi:10.1016/j.jalgebra.2016.12.001.
-
M. Perling,
Combinatorial aspects of exceptional sequences on (rational) surfaces,
Math. Z.,
doi:10.1007/s00209-017-1887-y.
-
D. Benson and H. Krause,
The variety of subadditive functions for finite group schemes,
Fund. Math. 239 (2017),
,
doi:10.4064/fm262-1-2017.
-
D. Benson, S. Iyengar, H. Krause and J. Pevtsova,
Colocalising subcategories of modules over finite group schemes,
Ann. K-Theory 2 (2017),
,
doi:10.2140/akt.2017.2.387.
-
C. M. Ringel,
Lattice structure of torsion classes for hereditary artin algebras,
Nagoya Math. J.,
doi:10.1017/nmj.2017.12.
-
J. Steen and G. Stevenson,
Enrichment and Representability for Triangulated Categories,
Doc. Math. 22 (2017),
,
Link.
-
K. Großblotekamp and H. Krause,
Linear versus set valued Kronecker representations,
Comm. Algebra 45 (2017),
,
doi:10.1080/00927872.2017.1293072.
-
C. Aquilino and R. Reischuk,
The monoidal structure on strict polynomial functors,
J. of Algebra 485 (2017),
,
doi:10.1016/j.jalgebra.2017.05.009.
-
F. Gellert and Ph. Lampe,
Quantisation Spaces of Cluster Algebras,
Glasg. Math. J.,
doi:10.1017/S0017089517000076.
-
Ö. Eiriksson,
From Submodule Categories to the Stable Auslander Algebra,
J. Algebra 486 (2017),
,
doi:10.1016/j.jalgebra.2017.05.012.
-
C. M. Ringel,
The eigenvector variety of a matrix pencil,
Linear Algebra Appl. 531 (2017),
,
doi:10.1016/j.laa.2017.05.004.
-
L. Shaul,
Homological dimensions of local (co)homology over commutative DG-rings,
Canad. Math. Bull.,
doi:10.4153/CMB-2017-054-1.
-
N. Broomhead, D. Pauksztello and D. Ploog,
Discrete triangulated categories,
Bull. London Math. Soc.,
doi:10.1112/blms.12125.
-
H. Krause,
Highest weight categories and recollements,
Ann. Inst. Fourier 67 (2017),
,
doi:10.5802/aif.3147.
-
D. Benson, S. Iyengar, H. Krause and J. Pevtsova,
Stratification for module categories of finite group schemes,
J. Amer. Math. Soc. 31 (2018),
,
doi:10.1090/jams/887.
-
C. M. Ringel,
Quiver Grassmannians for Wild Acyclic Quivers,
Proc. Am. Math. Soc. 146 (2018),
,
doi:10.1090/proc/13882.
-
W. Crawley-Boevey,
Representations of equipped graphs: Auslander-Reiten theory,
in: K. Sanada (ed.), Proceedings of the 50th Symposium on Ring Theory and Representation Theory, Symposium on Ring Theory and Representation Theory Organizing Committee, Yamanashi 2018.
-
F. Gellert and P. Lampe,
Maximum antichains in posets of quiver representations,
Beitr. Algebra Geom. 59 (2018),
,
doi:10.1007/s13366-017-0359-1.
-
H. Krause and D. Vossieck,
Length categories of infinite height,
in: J. F. Carlson, S. B. Iyengar and J. Pevtsova (eds.), Geometric and topological aspects of group representations, Springer Proc. Math. Stat. 242, Springer, Cham 2018,
,
doi:10.1007/978-3-319-94033-5_8.
-
P. Balmer, H. Krause and G. Stevenson,
The frame of smashing tensor-ideals,
Math. Proc. Camb. Phil. Soc. (2018),
doi:10.1017/S0305004118000725.
-
R. Bennett-Tennenhaus and W. Crawley-Boevey,
Σ-pure-injective modules for string algebras and linear relations,
J. Algebra 513 (2018),
,
doi:10.1016/j.jalgebra.2018.07.032.
-
P. Balmer, H. Krause and G. Stevenson,
Tensor-triangular fields: ruminations,
Selecta Math. (N.S.) 25 (2019),
art. 13,
doi:10.1007/s00029-019-0454-2.
-
H. Krause,
Auslander-Reiten duality for Grothendieck abelian categories,
Trans. Amer. Math. Soc. 371 (2019),
,
doi:10.1090/tran/7379.
-
D. Benson, S. Iyengar, H. Krause and J. Pevtsova,
Local duality for representations of finite group schemes,
Compos. Math. 155 (2019),
,
doi:10.1112/S0010437X19007061.
-
B. Baumeister, K.-U. Bux, F. Götze, D. Kielak and H. Krause,
Non-crossing partitions,
in: M. Baake, F. Götze and W. Hoffmann (eds.), Spectral Structures and Topological Methods in Mathematics, EMS Publishing House 2019,
,
doi:10.4171/197-1/11.
-
H. Krause and G. Stevenson,
The derived category of the projective line,
in: M. Baake, F. Götze and W. Hoffmann (eds.), Spectral Structures and Topological Methods in Mathematics, EMS Publishing House 2019,
,
doi:10.4171/197-1/12.
-
A. B. Buan, H. Krause, N. Snashall and Ø. Solberg,
Support varieties – an axiomatic approach,
Math. Z. (2019),
doi:10.1007/s00209-019-02343-4.
-
W. Crawley-Boevey and A. Hubery,
A new approach to simple modules for preprojective algebras,
Algebr. Represent. Theory (2019),
doi:10.1007/s10468-019-09916-1.
Preprints
-
C. Köhler,
Thick subcategories of finite algebraic triangulated categories,
arXiv:1010.0146.
-
I. Dell'Ambrogio, H. Emerson, T. Kandelaki and R. Meyer,
A functorial equivariant K-theory spectrum and an equivariant Lefschetz formula,
arXiv:1104.3441.
-
Ph. Lampe,
Acyclic cluster algebras from a ring theoretic point of view,
arXiv:1210.1502.
-
C. M. Ringel,
The (n-1)-antichains in a root poset of width n,
arXiv:1306.1593.
-
C. M. Ringel,
Wild Algebras: Two Examples,
arXiv:1307.6509.
-
J. Sauter,
Cell decompositions of quiver flag varieties for nilpotent representations of the oriented cycle,
arXiv:1509.08026.
-
G. Stevenson,
A tour of support theory for triangulated categories through tensor triangular geometry,
arXiv:1601.03595.
-
S. Baland and G. Stevenson,
Comparisons between singularity categories and relative stable categories of finite groups,
arXiv:1601.07727.
-
C. M. Ringel and X.-W. Chen,
Hereditary triangulated categories,
to appear in: J. Noncommut. Geom.,
arXiv:1606.08279.
-
P. Lampe,
On the approximate periodicity of sequences attached to noncrystallographic root systems,
to appear in: Exper. Math.,
arXiv:1607.04223.
-
S. Gratz and G. Stevenson,
On the graded dual numbers, arcs, and non-crossing partitions of the integers,
arXiv:1611.02070.
-
A. Hubery,
Characterising the bounded derived category of an hereditary abelian category,
arXiv:1612.06674.
-
C. M. Ringel,
Kronecker modules generated by modules of length 2,
to appear in: Representations of Algebras, Contemp. Math. 705, Amer. Math. Soc.,
arXiv:1612.07679.
-
C. M. Ringel,
The elementary 3-Kronecker modules,
arXiv:1612.09141.
-
J.P.C. Greenlees and G. Stevenson,
Morita theory and singularity categories,
arXiv:1702.07957.
-
M. Pressland and J. Sauter,
Special tilting modules for algebras with positive dominant dimension,
arXiv:1705.03367.
-
Ö. Eiriksson and J. Sauter,
Quiver-graded Richardson Orbits,
arXiv:1707.03244.
-
L. Shaul,
Injective DG-modules over non-positive DG-rings,
arXiv:1709.01479.
-
C. M. Ringel,
The shift orbits of the graded Kronecker modules,
to appear in: Math. Z.,
arXiv:1709.02552.
-
C. M. Ringel,
The root posets and their rich antichains.
-
M. Pressland and J. Sauter,
On quiver Grassmannians and orbit closures for gen-finite modules,
arXiv:1802.01848.
-
T. Barthel, B. Keller and H. Krause,
Completing perfect complexes,
arXiv:1805.10751.
-
M. B. Botnan and W. Crawley-Boevey,
Decomposition of persistence modules,
arXiv:1811.08946.
-
D. Benson, S. Iyengar, H. Krause and J. Pevtsova,
Detecting nilpotence and projectivity over finite unipotent supergroup schemes,
arXiv:1901.08273.
-
W. Crawley-Boevey, B. Ma, B. Rognerud and J. Sauter,
Combinatorics of faithfully balanced modules,
arXiv:1905.00613.
-
D. Benson, S. Iyengar, H. Krause and J. Pevtsova,
Local duality for the singularity category of a finite dimensional Gorenstein algebra,
arXiv:1905.01506.
-
B. Keller and H. Krause,
Tilting preserves finite global dimension,
arXiv:1911.11749.